首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two crystal forms of beta-galactosidase have been obtained from Escherichia coli. One crystal form is hexagonal space group P6222 or enantiomorph, with cell dimensions a = b = 154 A, c = 750 A. The second form is monoclinic, space group P21, with cell dimensions a = 107.9 A, b = 207.5 A, c = 509.9 A, beta = 94.7 degrees. The monoclinic form seems better suited to detailed structural analysis. The crystals are radiation-sensitive, but by using synchrotron radiation in conjunction with a long (400 mm) crystal-to-film distance it was possible to resolve the individual reflections. On the basis of crystal density measurements, there are four tetramers each of molecular weight 465,000 per asymmetric unit. The Patterson function strongly suggests that two of the tetramers are related to the other two by translation. The data are consistent with the tetramers having 222 point symmetry, but this is not proven.  相似文献   

2.
A method for the purification of brewer's yeast pyruvate decarboxylase (EC 4.1.1.1) that resolves the enzyme into multiple active isoforms was developed. Seven activity fractions are resolved by DEAE HPLC chromatography. Among these fractions, three distinct subunit composition isoforms are apparent by sodium dodecyl sulfate-polyacrylamide gel electrophoresis: alpha 4, a homotetrameric holoenzyme consisting of the lower mass subunit; alpha 2 beta 2, a heterotetrameric holoenzyme consisting of lower and higher mass subunits; and beta 4, a homotetrameric holoenzyme consisting of the higher mass subunit. Beta 4 is a heretofore unreported form which may represent the unproteolyzed form of the enzyme. The Km and Vmax for the alpha 4 and beta 4 isoforms are identical within the limits of experimental error, as is their behavior vis-à-vis the allosteric regulator pyruvamide. All active isoforms exist as tetramers according to gel filtration analysis under native conditions. The purification has been successfully applied to pyruvate decarboxylase isolated from two different species of yeast and therefore is likely to be of general utility for purification of this enzyme from other yeast sources. Conditions under which all three isoforms demonstrate exceptional stability, making them amenable to prolonged physicochemical studies at 4 degrees C and even at room temperature are reported.  相似文献   

3.
The quaternary structure of phosphofructokinase from pig liver has been studied by electron microscopy. Particles ranging in size from tetramers to long flexible chains of tetramers were commonly observed. Phosphofructokinase tetramers are square planar and approximately 110 A on a side; individual subunits are roughly spherical, with a mean radius of 28 A. Chains are formed by end-to-end association of tetramers rather than by tetramer stacking. The geometry of association implies that phosphofructokinase tetramers possess D2 symmetry, with distinct isologous bonding domains for dimer, tetramer, and chain formation.  相似文献   

4.
Native crystallographic data of tetrameric phosphorylase a crystals, space group P21; have been collected photographically to 3 å resolution. These data have been used in Patterson search methods in reciprocal and real space.The tetramers were found to exhibit molecular 222 symmetry. The cross vector between the centres of the two symmetry related tetramers in the unit cell was determined by two different translation function methods.On the basis of these rotation and translation function results a model for the arrangement of monomers within the tetramer and of tetramers in the unit cell is proposed.The 222 symmetry of the tetrameric molecule is found only when high resolution diffraction data are included (i.e. higher than 6 å). At lower resolution other symmetries dominate.Calculations with the proposed model have shown that these spurious symmetries result from the nonspecific overlap of protein-protein and solvent-solvent cross vectors.These results emphasize the importance of high resolution data when noncrystallographic symmetry of globular proteins is studied.Extract from Dissertation, Technische UniversitÄt München.  相似文献   

5.
A recombinant form of Rhodobacter sphaeroides phosphoribulokinase (PRK), expressed in Escherichia coli and isolated by affinity chromatography, was crystallized by the sitting drop vapor diffusion technique using NH4H2PO4 (pH 5.6) as the precipitating agent. PRK crystallizes in the cubic space group P432, with unit cell parameters a = b = c = 129.55 A. Based on the assumption of one 32-kDa monomer per asymmetric unit, the Vm value is 2.83 A3/Da. The octameric molecular symmetry is consistent with two planar tetramers stacked in a nearly eclipsed arrangement. A native data set has been collected to 2.6 A resolution.  相似文献   

6.
Peripherin-2 and Rom-1 are homologous tetraspanning membrane proteins that assemble into noncovalent tetramers and higher order disulfide-linked oligomers implicated in photoreceptor disc morphogenesis. Individuals who coinherit a L185P peripherin-2 mutation and a null or G113E rom-1 mutation are afflicted with retinitis pigmentosa, whereas individuals who inherit only one defective gene are normal. We examined the expression, subunit assembly, and disulfide-mediated oligomerization of L185P and L185A peripherin-2 and L188P Rom-1 by velocity sedimentation, co-immunoprecipitation, and cross-linking. These mutants formed noncovalent dimers under disulfide-reducing conditions but failed to assemble into core tetramers. Under nonreducing conditions, L185P dimers formed disulfide-linked tetramers but not higher order oligomers. L185P coassembled with wild-type peripherin-2 and Rom-1 to form tetramers and higher order disulfide-linked oligomers characteristic of the wild-type proteins. The G113E Rom-1 mutant expressed 20-fold lower than wild-type Rom-1, indicating that it behaves mechanistically as a null allele. We conclude that Leu(185) of peripherin-2 (Leu(188) of Rom-1) is critical for tetramer but not dimer formation and that the core tetramer has 2-fold symmetry. Peripherin-2-containing tetramers are required for higher order disulfide-linked oligomer formation. The level of these oligomers is critical for stable photoreceptor disc formation and the digenic retinitis pigmentosa disease phenotype.  相似文献   

7.
We propose that the basic unit of chromatin is constructed of two isologously paired heterotypic protein tetramers each containing one molecule of H2A, H2B, H3, and H4 histone. These proteins form a core that holds 140 base pairs (bp) of DNA in a single left-handed, non-interwound DNA supercoil approximately 95 bp in circumference, creating A nucleosome particle (DNA and protein) organized about a dyad axis of symmetry. Such a nucleosome can open up into its separate half-nucleosomes to allow genetic readout without requiring histone displacement  相似文献   

8.
Eukaryotic protein kinases are typically strictly controlled by second messenger binding, protein/protein interactions, dephosphorylations or similar processes. None of these regulatory mechanisms is known to work for protein kinase CK2 (former name “casein kinase 2”), an acidophilic and constitutively active eukaryotic protein kinase. CK2 predominantly exists as a heterotetrameric holoenzyme composed of two catalytic subunits (CK2α) complexed to a dimer of non-catalytic subunits (CK2β). One model of CK2 regulation was proposed several times independently by theoretical docking of the first CK2 holoenzyme structure. According to this model, the CK2 holoenzyme forms autoinhibitory aggregates correlated with trans-autophosphorylation and driven by the down-regulatory affinity between an acidic loop of CK2β and the positively charged substrate binding region of CK2α from a neighboring CK2 heterotetramer. Circular trimeric aggregates in which one-half of the CK2α chains show the predicted inhibitory proximity between those regions were detected within the crystal packing of the human CK2 holoenzyme. Here, we present further in vitro support of the “regulation-by-aggregation” model by an alternative crystal form in which CK2 tetramers are arranged as approximately linear aggregates coinciding essentially with the early predictions. In this assembly, the substrate binding region of every CK2α chain is blocked by a CK2β acidic loop from a neighboring tetramer. We found these crystals with CK2Andante that contains a CK2β variant mutated in a CK2α-contact helix and described to be responsible for a prolonged circadian rhythm in Drosophila. The increased propensity of CK2Andante to form aggregates with completely blocked active sites may contribute to this phenotype.  相似文献   

9.
Members of the tetraspanin superfamily function as transmembrane scaffold proteins that mediate the assembly of membrane proteins into specific signaling complexes. Tetraspanins also interact with each other and concentrate membrane proteins into tetraspanin-enriched microdomains (TEMs). Here we report that lens-specific tetraspanin MP20 can form multiple types of higher-order assemblies and we present crystalline arrays of MP20. When isolated in the absence of divalent cations, MP20 is solubilized predominantly in tetrameric form, whereas the presence of divalent cations during solubilization promotes the association of MP20 tetramers into higher-order species. This effect only occurs when divalent cations are present during solubilization but not when divalent cations are added to solubilized tetrameric MP20, suggesting that other factors may also be involved. When purified MP20 tetramers are reconstituted with native lens lipids in the presence of magnesium, MP20 forms two-dimensional (2D) crystals. A projection map at 18 Å resolution calculated from negatively stained 2D crystals showed that the building block of the crystal is an octamer consisting of two tetramers related to each other by 2-fold symmetry. In addition to 2D crystals, reconstitution of MP20 with native lipids also produced a variety of large protein-lipid complexes, and we present three-dimensional (3D) reconstructions of the four most abundant of these complexes in negative stain. The various complexes formed by MP20 most likely reflect the many ways in which tetraspanins can interact with each other to allow formation of TEMs.  相似文献   

10.
The tetrameric catalase from Proteus mirabilis PR (EC 1.11.1.6), known to bind NADPH, has been crystallized by the hanging-drop method in a form apparently depleted in dinucleotide. The crystals belong to the hexagonal space group P6(2)22 with a = b = 111.7 A, c = 248.8 A. There is one subunit in the asymmetric unit. Data were collected to 2.9 A at the L.U.R.E. (Orsay) synchrotron radiation facility. The tetramers have been located in the crystal, centered on the site (1/2, 0, 0) with 222 symmetry.  相似文献   

11.
The "brain" form of the anion exchanger protein 3 (bAE3) has been purified to homogeneity from the rabbit kidney by differential centrifugation and immunoaffinity chromatography. A single protein band of approximately 165 kDa was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. Monomers, dimers (a major component), and a higher oligomeric form (apparently tetramers) were found after oxidative cross-linking of purified bAE3. The largest form of bAE3 was separated from dimers and monomers by sucrose gradient centrifugation and was studied by transmission electron microscopy to confirm a tetrameric structure. Two main types of bAE3 images were detected, round (approximately 11-14 nm) and square-shaped (approximately 12 x 12 nm). Image analysis revealed fourfold rotational symmetry of both the round and square-shaped images, indicating that bAE3 consists of multiples of 4 subunits. We conclude that bAE3 in Triton X-100 solution is predominantly a mixture of dimers and tetramers with a smaller amount of monomers.  相似文献   

12.
Protein phosphatase 2A (PP2A) is a ubiquitous phospho-serine/threonine phosphatase that controls many diverse cellular functions. The predominant form of PP2A is a heterotrimeric holoenzyme consisting of a scaffolding A subunit, a variable regulatory B subunit, and a catalytic C subunit. The C subunit also associates with other interacting partners, such as α4, to form non-canonical PP2A complexes. We report visualization of PP2A complexes in mammalian cells. Bimolecular fluorescence complementation (BiFC) analysis of PP2A subunit interactions demonstrates that the B subunit plays a key role in directing the subcellular localization of PP2A, and confirms that the A subunit functions as a scaffold in recruiting the B and C subunits to form a heterotrimeric holoenzyme. BiFC analysis also reveals that α4 promotes formation of the AC core dimer. Furthermore, we demonstrate visualization of specific ABC holoenzymes in cells by combining BiFC and fluorescence resonance energy transfer (BiFC-FRET). Our studies not only provide direct imaging data to support previous biochemical observations on PP2A complexes, but also offer a promising approach for studying the spatiotemporal distribution of individual PP2A complexes in cells.  相似文献   

13.
Stern-Bach Y 《Neuron》2004,41(3):309-311
AMPA receptors are tetramers assembled as a dimer-of-dimers with a 2-fold rotational symmetry in their extracellular domains. Two papers in this issue of Neuron, by Horning and Mayer and Sobolevsky et al., provide complementary data that extend this view and highlight the role of dimers in channel gating.  相似文献   

14.
15.
The majority of the protein mass of HeLa 40S heterogeneous nuclear ribonucleoprotein monoparticles is composed of multiple copies of six proteins that resolve in SDS gels as three groups of doublet bands (A1, A2; B1, B2; and C1, C2) (Beyer, A. L., M. E. Christensen, B. W. Walker, and W. M. LeStourgeon. 1977. Cell. 11: 127-138). We report here that when 40S monoparticles are exposed briefly to ribonuclease, proteins A1, C1, and C2 are solubilized coincidentally with the loss of most premessenger RNA sequences. The remaining proteins exist as tetramers of (A2)3(B1) or pentamers of (A2)3(B1)(B2). The tetramers may reassociate in highly specific ways to form either of two different structures. In 0.1 M salt approximately 12 tetramers (derived from three or four monoparticles) reassemble to form highly regular structures, which may possess dodecahedral symmetry. These structures sediment at 43S, are 20-22 nm in width, and have a mass near 2.3 million. These structures possess 450-500 bases of slowly labeled RNA, which migrates in gels as fragments 200-220 bases in length. In 9 mM salt the tetramers reassociate to form 2.0 M salt-insoluble helical filaments of indeterminant length with a pitch near 60 nm and diameter near 18 nm. If 40S monoparticles are treated briefly with nuclease-free proteases, the same proteins solubilized by nuclease (A1, C1, and C2) are preferentially cleaved. This protein cleavage is associated with the dissociation of most of the heterogeneous nuclear RNA. Proteins A2 and B1 again reassemble to form uniform, globular particles, but these sediment slightly slower than intact monoparticles. These findings indicate that proteins A1, C1, and C2 and most of the premessenger sequences occupy a peripheral position in intact monoparticles and that their homotypic and heterotypic associations are dependent on protein-RNA interactions. Protein cross-linking studies demonstrate that trimers of A1, A2, and C1 exist as the most easily stabilized homotypic association in 40S particles. This supports the 3:1 ratio (via densitometry) of the A and C proteins to the B proteins and indicates that 40S monoparticles are composed of three or four repeating units, each containing 3(A1),3(A2),1(B1),1(B2),3(C1), and 1(C2).  相似文献   

16.
Comparative modeling methods are commonly used to construct models of homologous proteins or oligomers. However, comparative modeling may be inapplicable when the number of subunits in a modeled oligomer is different than in the modeling template. Thus, a dimer cannot be a template for a tetramer because a new monomer-monomer interface must be predicted. We present in this study a new prediction approach, which combines protein-protein docking with either of two tetramer-forming algorithms designed to predict the structures of tetramers with D2 symmetry. Both algorithms impose symmetry constraints. However, one of them requires identification of two of the C2 dimers within the tetramer in the docking step, whereas the other, less demanding algorithm, requires identification of only one such dimer. Starting from the structure of one subunit, the procedures successfully reconstructed 16 known D2 tetramers, which crystallize with either a monomer, a dimer or a tetramer in the asymmetric unit. In some cases we obtained clusters of native-like tetramers that differ in the relative rotation of the two identical dimers within the tetramer. The predicted structural pliability for concanavalin-A, phosphofructokinase, and fructose-1,6-bisphosphatase agrees semiquantitatively with the observed differences between the several experimental structures of these tetramers. Hence, our procedure identifies a structural soft-mode that allows regulation via relative rigid-body movements of the dimers within these tetramers. The algorithm also predicted three nearly correct tetramers from model structures of single subunits, which were constructed by comparative modeling from subunits of homologous tetrameric, dimeric, or hexameric systems.  相似文献   

17.
18.
Centrioles are conserved microtubule-based organelles with 9-fold symmetry that are essential for cilia and mitotic spindle formation. A conserved structure at the onset of centriole assembly is a “cartwheel” with 9-fold radial symmetry and a central tubule in its core. It remains unclear how the cartwheel is formed. The conserved centriole protein, SAS-6, is a cartwheel component that functions early in centriole formation. Here, combining biochemistry and electron microscopy, we characterize SAS-6 and show that it self-assembles into stable tetramers, which serve as building blocks for the central tubule. These results suggest that SAS-6 self-assembly may be an initial step in the formation of the cartwheel that provides the 9-fold symmetry. Electron microscopy of centrosomes identified 25-nm central tubules with repeating subunits and show that SAS-6 concentrates at the core of the cartwheel. Recombinant and native SAS-6 self-oligomerizes into tetramers with ∼6-nm subunits, and these tetramers are components of the centrosome, suggesting that tetramers are the building blocks of the central tubule. This is further supported by the observation that elevated levels of SAS-6 in Drosophila cells resulted in higher order structures resembling central tubule morphology. Finally, in the presence of embryonic extract, SAS-6 tetramers assembled into high density complexes, providing a starting point for the eventual in vitro reconstruction of centrioles.  相似文献   

19.
The three-dimensional structure of an R-state conformer of glycogen phosphorylase containing the coenzyme-substrate analog pyridoxal-5'-diphosphate at the catalytic site (PLPP-GPb) has been refined by X-ray crystallography to a resolution of 2.87 A. The molecule comprises four subunits of phosphorylase related by approximate 222 symmetry. Whereas the quaternary structure of R-state PLPP-GPb is similar to that of phosphorylase crystallized in the presence of ammonium sulfate (Barford, D. & Johnson, L.N., 1989, Nature 340, 609-616), the tertiary structures differ in that the two domains of the PLPP-GPb subunits are rotated apart by 5 degrees relative to the T-state conformation. Global differences among the four subunits suggest that the major domains of the phosphorylase subunit are connected by a flexible hinge. The two different positions observed for the terminal phosphate of the PLPP are interpreted as distinct phosphate subsites that may be occupied at different points along the reaction pathway. The structural basis for the unique ability of R-state dimers to form tetramers results from the orientation of subunits with respect to the dyad axis of the dimer. Residues in opposing dimers are in proper registration to form tetramers only in the R-state.  相似文献   

20.
The hemoglobin of the bullfrog, Rana catesbeiana, forms aggregates larger than tetramers in two ways. The first, which results from intermolecular disulfide bonds, can be prevented by treatment with iodoacetamide. The second way results from the association of the deoxygenated forms of the two major components, B and C, to form reversibly an aggregate which is believed to be a trimer, BC2. The sedimentation velocity data show that the stoichiometry of the aggregate cannot be 1:1. The electrophoretic pattern of the deoxygenated B/C mixture suggests that the association is not indefinite. No significant aggregation of the separate deoxygenated tetramers of the components nor of the oxygenated components or mixture occurs. Gel chromatography of the oxygenated forms of components B and C and of mixtures indicates that the B and C tetramers both form dimers upon dilution with a dissociation constant of 2-3 micron. The oxygen-binding data indicate that the B/C aggregate has a much lower oxygen affinity than its constituent tetramers. Dissociation of the low affinity B/C aggregate to higher affinity B and C tetramers with increasing oxygenation gives rise to enhanced cooperativity as measured by the Hill coefficient which is maximal near 75-80% oxygenation and is as high as 4.1 at a heme concentration of 15 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号