首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NPR1 (a non‐expressor of pathogenesis‐related genes1) has been reported to play an important role in plant defense by regulating signaling pathways. However, little to nothing is known about its function in herbivore‐induced defense in monocot plants. Here, using suppressive substrate hybridization, we identified a NPR1 gene from rice, OsNPR1, and found that its expression levels were upregulated in response to infestation by the rice striped stem borer (SSB) Chilo suppressalis and rice leaf folder (LF) Cnaphalocrocis medinalis, and to mechanical wounding and treatment with jasmonic acid (JA) and salicylic acid (SA). Moreover, mechanical wounding induced the expression of OsNPR1 quickly, whereas herbivore infestation induced the gene more slowly. The antisense expression of OsNPR1 (as‐npr1), which reduced the expression of the gene by 50%, increased elicited levels of JA and ethylene (ET) as well as of expression of a lipoxygenase gene OsHI‐LOX and an ACC synthase gene OsACS2. The enhanced JA and ET signaling in as‐npr1 plants increased the levels of herbivore‐induced trypsin proteinase inhibitors (TrypPIs) and volatiles, and reduced the performance of SSB. Our results suggest that OsNPR1 is an early responding gene in herbivore‐induced defense and that plants can use it to activate a specific and appropriate defense response against invaders by modulating signaling pathways.  相似文献   

2.
3.
4.
The first rate-limiting enzyme of the mevalonate pathway during isoprenoid biosynthesis is 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR). In this study, the expression pattern of the MdHMGR2 gene in Malus domestica suggests that MdHMGR2 was expressed in a tissue-specific manner and was significantly induced by ethephon (ETH), indoleacetic acid (IAA), methyl jasmonate (MeJA), and salicylic acid (SA). The MdHMGR2 promoter was isolated, sequenced, and analyzed through bioinformatics tools, and the results suggest the presence of various putative cis-acting elements responsive to different hormones. Activity of β-glucuronidase (GUS) driven by the full length MdHMGR2 promoter and its 5′deletion fragments was detected in transgenic Arabidopsis thaliana. A strong GUS activity was observed in seedlings, roots, newly growing true leaves, anthers, and stigmas in transgenic Arabidopsis containing the full MdHMGR2 promoter. The results indicate that a region from -1050 to -827 was crucial for promoter activity. In addition, the MdHMGR2 promoter was induced in response to ETH, IAA, MeJA, and SA. The analysis suggests that an ethylene-responsive element in the region from -1050 to -1005 was required for the ethylene inducibility.  相似文献   

5.
6.
7.
8.
9.
Chung HJ  Fu HY  Thomas TL 《Planta》2005,220(3):424-433
The carrot (Daucus carota L.) lea-class gene Dc3 is expressed in developing seeds and in vegetative tissues subject to drought and treatment with exogenous abscisic acid (ABA). Cis regulatory elements involved in seed-specific expression and in response to ABA were identified in transgenic tobacco (Nicotiana tabacum L.) using -glucuronidase (GUS) reporter gene constructs containing a series of deletion and orientation mutants of the Dc3 promoter. These experiments demonstrated that the Dc3 promoter is comprised of a proximal promoter region (PPR) and a distal promoter region (DPR). TCGTGT motifs in the DPR in combination with the PPR comprise a novel, bipartite ABA module in the Dc3 gene promoter. The PPR contains cis-acting elements responsible for the developmental regulation of Dc3 expression in seeds. Five similar sequence motifs with the consensus ACACgtGCa were identified in the PPR. Both DPR and PPR interact with common nuclear proteins that are present in embryos and are inducible by ABA in vegetative tissues.  相似文献   

10.
In silico analysis showed that the differentially expressed type 3 oil palm metallothionein-like genes MT3-A and MT3-B share at least 11 common putative promoter regulatory elements. The identified motifs include W-boxes, TATCCA element, binding element for cytokinin response regulators and pollen-specific elements. A high degree of conservation was observed in their genomic organisation where the coding regions are divided at two identical positions in both genes by two AT-rich introns. Promoter activity of the MT3-B gene was analysed using a transient assay by bombarding oil palm tissue slices with a β-glucuronidase (GUS) gene construct and a stable reporter assay by analysing GUS expression in transformed Arabidopsis thaliana plants. Transient expression analysis revealed MT3-B promoter activity in oil palm root tissues but not in fruit mesocarp at 12 weeks after anthesis and spear leaves. The T3 homozygous transgenic Arabidopsis plants, harbouring the MT3-B promoter/GUS construct, showed reporter activity in cotyledons and mature leaves with lower expression levels in root tissues. The expression levels in the roots of the T3 homozygous transgenic plants increased five- and 2.5-folds when treated with 80 μM of Zn2+ and Fe2+, respectively. Altogether, these results indicate that the MT3-A and MT3-B promoter activities may be regulated by a variety of abiotic factors and MT3-B promoter may potentially be manipulated for use in plant genetic engineering for induced synthesis of gene product.  相似文献   

11.
Chemical inhibition of the mitochondrial electron transport chain (mtETC) by antimycin A (AA) or the TCA cycle by monofluoroacetate (MFA) causes increased expression of nucleus-encoded alternative oxidase (AOX) genes in plants. In order to better understand the mechanisms of this mitochondrial retrograde regulation (MRR) of gene expression, constructs containing deleted and mutated versions of a promoter region of the Arabidopsis thaliana AOX1a gene (AtAOX1a) controlling expression of the coding region of the enhanced firefly luciferase gene were employed to identify regions of the AtAOX1a promoter important for induction in response to mtETC or TCA cycle inhibition. Transient transformation coupled with in vitro and in vivo assays as well as plants containing transgenes with truncated promoter regions were used to identify a 93 base pair portion of the promoter, termed the MRR region, that was necessary for induction. Further mutational analyses showed that most of the 93 bp MRR region is important for both AA and MFA induction. Sub-regions within the MRR region that are especially important for strong induction by both AA or MFA were identified. Specific mutations in a W-box and Dof motifs in the MRR region indicate that these specific motifs are not important for induction. Recent evidence suggests that MRR of AOX genes following inhibition of the mtETC is via a separate signaling pathway from MRR resulting from metabolic shifts, such as those that result from MFA treatment. Our data suggest that these signaling pathways share regulatory regions in the AtAOX1a promoter. Arabidopsis proteins interacted specifically with a probe containing the MRR region, as shown by electrophoretic mobility shift assays and Southwestern blotting. These interactions were eliminated under reducing conditions.  相似文献   

12.
The key regulator of salicylic acid (SA)-mediated resistance, NPR1, is functionally conserved in diverse plant species, including rice (Oryza sativa L.). Investigation in depth is needed to provide an understanding of NPR1-mediated resistance and a practical strategy for the improvement of disease resistance in the model crop rice. The rice genome contains five NPR1-like genes. In our study, three rice homologous genes, OsNPR1/NH1, OsNPR2/NH2 and OsNPR3, were found to be induced by rice bacterial blight Xanthomonas oryzae pv. oryzae and rice blast Magnaporthe grisea, and the defence molecules benzothiadiazole, methyl jasmonate and ethylene. We confirmed that OsNPR1 is the rice orthologue by complementing the Arabidopsis npr1 mutant. Over-expression of OsNPR1 conferred disease resistance to bacterial blight, but also enhanced herbivore susceptibility in transgenic plants. The OsNPR1-green fluorescent protein (GFP) fusion protein was localized in the cytoplasm and moved into the nucleus after redox change. Mutations in its conserved cysteine residues led to the constitutive localization of OsNPR1(2CA)-GFP in the nucleus and also abolished herbivore hypersensitivity in transgenic rice. Different subcellular localizations of OsNPR1 antagonistically regulated SA- and jasmonic acid (JA)-responsive genes, but not SA and JA levels, indicating that OsNPR1 might mediate antagonistic cross-talk between the SA- and JA-dependent pathways in rice. This study demonstrates that rice has evolved an SA-mediated systemic acquired resistance similar to that in Arabidopsis, and also provides a practical approach for the improvement of disease resistance without the penalty of decreased herbivore resistance in rice.  相似文献   

13.
14.
Late embryogenesis abundant (LEA) proteins have been implicated in many stress responses of plants. In this report, a LEA protein gene OsLEA3-1 was identified and over-expressed in rice to test the drought resistance of transgenic lines under the field conditions. OsLEA3-1 is induced by drought, salt and abscisic acid (ABA), but not by cold stress. The promoter of OsLEA3-1 isolated from the upland rice IRAT109 exhibits strong activity under drought- and salt-stress conditions. Three expression constructs consisting of the full-length cDNA driven by the drought-inducible promoter of OsLEA3-1 (OsLEA3-H), the CaMV 35S promoter (OsLEA3-S), and the rice Actin1 promoter (OsLEA3-A) were transformed into the drought-sensitive japonica rice Zhonghua 11. Drought resistance pre-screening of T1 families at anthesis stage revealed that the over-expressing families with OsLEA3-S and OsLEA3-H constructs had significantly higher relative yield (yield under drought stress treatment/yield under normal growth conditions) than the wild type under drought stress conditions, although a yield penalty existed in T1 families under normal growth conditions. Nine homozygous families, exhibiting over-expression of a single-copy of the transgene and relatively low yield penalty in the T1 generation, were tested in the field for drought resistance in the T2 and T3 generations and in the PVC pipes for drought tolerance in the T2 generation. Except for two families (transformed with OsLEA3-A), all the other families (transformed with OsLEA3-S and OsLEA3-H constructs) had higher grain yield than the wild type under drought stress in both the field and the PVC pipes conditions. No significant yield penalty was detected for these T2 and T3 families. These results indicate that transgenic rice with significantly enhanced drought resistance and without yield penalty can be generated by over-expressing OsLEA3-1 gene with appropriate promoters and following a bipartite (stress and non-stress) in-field screening protocol.  相似文献   

15.
Non‐expresser of pathogenesis‐related genes 1 (NPR1) is the master regulator of salicylic acid‐mediated systemic acquired resistance. Over‐expression of Arabidopsis NPR1 and rice NH1 (NPR1 homolog1)/OsNPR1 in rice results in enhanced resistance. While there are four rice NPR1 paralogs in the rice genome, none have been demonstrated to function in disease resistance. To study rice NPR1 paralog 3, we introduced constructs into rice and tested for effects on resistance to infection by Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight. While over‐expression of NH3 using the maize ubiquitin‐1 promoter failed to enhance resistance, introduction of an extra copy of NH3 driven by its own promoter (nNT‐NH3) resulted in clear, enhanced resistance. Progeny analysis confirms that the enhanced resistance phenotype, measured by Xoo‐induced lesion length, is associated with the NH3 transgene. Bacterial growth curve analysis indicates that bacterial population levels are reduced 10‐fold in nNT‐NH3 lines compared to control rice lines. The transgenic plants exhibit higher sensitivity to benzothiadiazole (BTH) and 2,6‐dichloroisonicotinic acid (INA) treatment as measured by increased cell death. Expression analysis of pathogenesis‐related (PR) genes showed that nNT‐NH3 plants display greatly enhanced induction of PR genes only after treatment with BTH. Our study demonstrates an alternative method to employ a regulatory protein to enhance plant defence. This approach avoids using undesirable constitutive, high‐level expression and may prove to be more practical for engineering resistance.  相似文献   

16.
Abebe T  Skadsen RW  Kaeppler HF 《Planta》2005,221(2):170-183
The lemma and palea (lemma/palea), which form the husk of barley (Hordeum vulgare L.) seeds, constitutively express high levels of defense-related genes, relative to leaves [Abebe et al. (2004) Crop Sci 44:942–950]. One of these genes, Lem2, is expressed mainly in the lemma/palea and coleoptile and is strongly upregulated by salicylic acid (SA) and its functional analog 2,6-dichloroisonicotinic acid . Induction by SA was rapid, occurring within 4 h of treatment. However, Lem2 is not responsive to methyl jasmonate (MeJA) or wounding and is downregulated by drought, dehydration, and abscisic acid. These results suggest that Lem2 is involved in systemic acquired resistance. Sequence analysis showed that LEM2 is a jacalin-related lectin (JRL)-like protein with two domains. Consistent with northern and western blot data, transient expression analyses using Lem2::gfp constructs showed strong expression in lemmas and a trace expression in leaves. Successive 5 deletions of the 1,414 bp upstream region gradually weakened promoter strength, as measured by real-time PCR. Promoter deletion studies also revealed that the –75/+70 region (containing the TATA box, 5 UTR, and a SA-response element) determines tissue specificity and that the distal promoter region simply enhances expression. Southern analysis indicated that Morex barley has at least three copies of the Lem2 gene arranged in tandem on chromosome 5(1H) Bin 02, near the short arm telomere. Lem2 is not present in the barley cultivars Steptoe, Harrington, Golden Promise, and Q21861.Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U. S. Department of Agriculture  相似文献   

17.
We have previously isolated a Brassica juncea cDNA encoding a novel chitinase BjCHI1 with two chitin-binding domains (Zhao and Chye in Plant Mol Biol 40:1009–1018, 1999). The expression of BjCHI1 was highly inducible by methyl jasmonate (MeJA) treatment, wounding, caterpillar feeding, and pathogenic fungal infection. These observations suggest that the promoter of BjCHI1 gene might contain specific cis-acting elements for stress responses. Here, we report the cloning and characterization of the BjCHI1 promoter. A 1,098 bp BjCHI1 genomic DNA fragment upstream of the ATG start codon was isolated by PCR walking and various constructs were made by fusing the BjCHI1 promoter or its derivatives to β-glucuronidase reporter gene. The transgenic Arabidopsis plants showed that the BjCHI1 promoter responded to wounding and MeJA treatment, and to treatments with either NaCl or polyethyleneglycol (PEG 6000), indicating that the BjCHI1 promoter responses to both biotic and abiotic stresses. A transient gene expression system of Nicotiana benthamiana leaves was adopted for promoter deletion analysis, and the results showed that a 76 bp region from −695 to −620 in the BjCHI1 promoter was necessary for MeJA-responsive expression. Furthermore, removal of a conserved T/G-box (AACGTG) at −353 to −348 of the promoter greatly reduced the induction by MeJA. This is the first T/G-box element identified in a chitinase gene promoter. Gain-of-function analysis demonstrated that the cis-acting element present in the 76 bp region requires coupling with the T/G-box to confer full magnitude of BjCHI1 induction by MeJA.  相似文献   

18.
19.
Earlier, a pollen-specific Oryza sativa indica pollen allergen gene (OSIPA), coding for expansins/pollen allergens, was isolated from rice, and its promoter—upon expression in tobacco and Arabidopsis—was found active during the late stages of pollen development. In this investigation, to analyze the effects of different putative regulatory motifs of OSIPA promoter, a series of 5′ deletions were fused to β-glucuronidase gene (GUS) which were stably introduced into rice and Arabidopsis. Histochemical GUS analysis of the transgenic plants revealed that a 1631 bp promoter fragment mediates maximum GUS expression at different stages of anther/pollen development. Promoter deletions to −1272, −966, −617, and −199 bp did not change the expression profile of the pollen specificity. However, the activity of promoter was reduced as the length of promoter decreased. The region between −1567 and −199 bp was found adequate to confer pollen-specific expression in both rice and Arabidopsis systems. An approximate 4-fold increase in the GUS activity was observed in the pollen of rice when compared to that of Arabidopsis. As such, the OSIPA promoter seems promising for generation of stable male-sterile lines required for the production of hybrids in rice and other crop plants.  相似文献   

20.
Puroindolines form the molecular basis of wheat grain hardness. However, little is known about puroindoline gene regulation. We previously reported that the Triticum aestivum puroindoline-b gene (PinB) promoter directs β-glucuronidase gene (uidA) seed-specific expression in transgenic rice. In this study, we isolated a puroindoline-a gene (PinA), analyzed PinA promoter activity by 5′ deletions and compared PinA and PinB promoters in transgenic rice. Seeds of PinA-1214 and PinB-1063 transgenic plants strongly expressed uidA in endosperm, in the aleurone layer and in epidermis cells in a developmentally regulated manner. The GUS activity was also observed in PinA-1214 embryos. Whereas the PinB promoter is seed specific, the PinA promoter also directed, but to a lower level, uidA expression in roots of seedlings and in the vascular tissues of palea and pollen grains of dehiscent anthers during flower development. In addition, the PinA promoter was induced by wounding and by Magnaporthe grisea. By deletion analysis, we showed that the “390-bp” PinA promoter drives the same expression pattern as the “1214-bp” promoter. Moreover, the “214-bp” PinA promoter drives uidA expression solely in pollen grains of dehiscent anthers. The presence of putative cis-regulatory elements that may be related to PinA expression is discussed from an evolutionary point of view. By electrophoretic mobility shift assay, we showed that putative cis-elements (WUN-box, TCA motifs and as-1-like binding sites) whose presence in the PinA promoter may be related to wounding and/or the pathogen response form complexes with nuclear extracts isolated from wounded wheat leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号