首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High affinity binding of cholecystokinin to small cell lung cancer cells   总被引:2,自引:0,他引:2  
D G Yoder  T W Moody 《Peptides》1987,8(1):103-107
The binding of 125I-Bolton Hunter-cholecystokinin octapeptide (125I-BH-CCK-8) to small cell lung cancer cell lines was investigated. 125I-BH-CCK-8 bound with high affinity (Kd = 2.4 nM) to an apparent single class of sites (1700/cell) using cell line NCI-H209. Binding was time dependent and the ratio of specific/nonspecific binding was 8/1. Pharmacology studies indicated that gastrin, caerulein, CCK-33 and nonsulfated CCK-8 were potent inhibitors of specific 125I-BH-CCK-8 binding whereas CCK-26-32-NH2 was not. Because CCK receptors are present on small cell lung cancer cells, CCK may function as a regulatory peptide in this disease.  相似文献   

2.
A broad spectrum of radiolabeled peptides with high affinity for receptors expressed on tumor cells is currently under preclinical and clinical investigation for scintigraphic imaging and radionuclide therapy. The present paper evaluates two (99m)Tc-labeled forms of the C-terminal octapeptide of cholecystokinin (CCK8): sulfated (s)CCK8, with high affinity for CCK1 and CCK2 receptors, and nonsulfated (ns)CCK8, with high affinity for CCK2 receptors but low affinity for CCK1 receptors. Peptides were conjugated with the bifunctional chelator N-hydroxysuccinimidyl hydrazino niconitate (s-HYNIC). (99m)Tc-labeling, performed in the presence of nicotinic acid and tricine, was highly efficient (approximately 95%) and yielded products with a high specific activity (approximately 700 Ci/mmol) and good stability (approximately 5% release of radiolabel during 16 h incubation in phosphate buffered saline at 37 degrees C). Chinese hamster ovary cells stably expressing the CCK1 receptor (CHO-CCK1 cells) internalized approximately 3% of added (99m)Tc-sCCK8 per confluent well during 2 h at 37 degrees C. Internalization was effectively blocked by excess unlabeled sCCK8. CHO-CCK1 cells did not internalize (99m)Tc-nsCCK8. Displacement of (99m)Tc-sCCK8 and -nsCCK8 by unlabeled CCK-8 (performed at 0 degrees C to prevent internalization) revealed 50% inhibitory concentrations (IC(50)) of 8 nM and >1 microM, respectively. CHO-CCK2 cells internalized approximately 25% and approximately 5% of added (99m)Tc-sCCK8 and -nsCCK8, respectively. In both cases internalization was blocked by excess unlabeled peptide. IC(50) values for the displacement of (99m)Tc-sCCK8 and -nsCCK8 were 3 nM and 10 nM, respectively. CHO-CCK1 cell-derived tumors present in one flank of athymic mice accumulated 2.0% of injected (99m)Tc-sCCK8 per gram tissue at 1 h postinjection. This value decreased to 0.6% following coinjection with excess unlabeled peptide. Uptake of (99m)Tc-nsCCK8 was low (0.2%) and not did change by excess unlabeled peptide (0.3%). Accumulation of (99m)Tc-sCCK8 and -nsCCK8 by CHO-CCK2 cell-derived tumors (present in the other flank) amounted to 4.2% and 0.6%, respectively. In both cases uptake was significantly reduced by excess unlabeled peptide to 1.0% and 0.4% for sCCK8 and nsCCK8, respectively. Accumulation of (99m)Tc-sCCK8 was also high in pancreas (11.7%), stomach (2.0%), and kidney (2.1%), whereas uptake of (99m)Tc-nsCCK8 was high in stomach (0.7%) and kidney (1.4%). Both radiolabeled peptides showed a rapid blood clearance. In conclusion, these data show that CCK8 analogues can be efficiently labeled with (99m)Tc using s-HYNIC as chelator and nicotinic acid/tricine as coligand system without compromising receptor binding. Furthermore, the present study demonstrates that CCK1 tumors hardly accumulate (99m)Tc-nsCCK8, CCK2 tumors accumulate 2 times more (99m)Tc-sCCK8 than CCK1 tumors, and CCK2 tumors accumulate 15 times more (99m)Tc-sCCK8 than (99m)Tc-nsCCK8. Although accumulation in some nontarget organs was also higher with (99m)Tc-sCCK8, this may not reflect the human situation due to a different receptor expression pattern in humans as compared to mice. Therefore, further studies are warranted to investigate the possible use of (99m)Tc-sCCK8 for scintigraphic imaging of CCK receptor-positive tumors in humans.  相似文献   

3.
Rat liver parenchymal cell binding, uptake, and proteolytic degradation of rat 125I-labeled high density lipoprotein (HDL) subfraction, HDL3 (1.10 less than d less than 1.210 g/ml), in which apo-A-I is the major polypeptide, were investigated. Structural and metabolic integrity of the isolated cells was verified by trypan blue exclusion, low lactic dehydrogenase leakage, expected morphology, and gluconeogenesis from lactate and pyruvate. 125I-labeled HDL3 was incubated with 10 X 10(6) cells at 37 degrees and 4 degrees in albumin and Krebs-Henseleit bicarbonate buffer, pH 7.4. Binding and uptake were determined by radioactivity in washed cells. Proteolytic degradation was determined by trichloroacetic acid-soluble radioactivity in the incubation medium. At 37 degrees, maximum HDL3 binding (Bmax) and uptake occurred at 30 min with a Bmax of 31 ng/mg dry weight of cells. The apparent dissociation constant of the HDL3 receptor system (Kd) was 60 X 10(-8) M, based on Mr = 28,000 of apo-A-I, the predominant rat HDL3 protein. Proteolytic degradation showed a 15-min lag and then constant proteolysis. After 2 hours 5.8% of incubated 125I-labeled HDL3 was degraded. Sixty per cent of cell radioactivity at 37 degrees was trypsin-releasable. At 37 degrees, 125I-labeled HDL3 was incubated with cells in the presence of varying concentrations of native (cold) HDL3, very low density lipoproteins, and low density lipoproteins. Incubation with native HDL3 resulted in greatest inhibition of 125I-labeled HDL3 binding, uptake, and proteolytic degradation. When 125I-labeled HDL3 was preincubated with increasing amounts of HDL3 antiserum, binding and uptake by cells were decreased to complete inhibition. Cell binding, uptake, and proteolytic degradation of 125I-labeled HDL3 were markedly diminished at 4 degrees. Less than 1 mM chloroquine enhanced 125I-labeled HDL3 proteolysis but at 5 mM or greater, chloroquine inhibited proteolysis with 125I-labeled HDL3 accumulation in cells. L-[U-14C]Lysine-labeled HDL3 was bound, taken up, and degraded by cells as effectively as 125I-labeled HDL3. These data suggest that liver cell binding, uptake, and proteolytic degradation of rat HDL3 are actively performed and linked in the sequence:binding, then uptake, and finally proteolytic degradation. Furthermore, there may be a specific HDL3 (lipoprotein A) receptor of recognition site(s) on the plasma membrane. Finally, our data further support our previous reports of the important role of liver lysosomes in proteolytic degradation of HDL3.  相似文献   

4.
The aim of this study was to quantify the abilities of mouse liver parenchymal and nonparenchymal cells with respect to (i) cholesteryl ester (CE) selective uptake from low-density lipoproteins (LDL), oxidized LDL (OxLDL), and high-density lipoprotein (HDL); and (ii) their free cholesterol efflux to HDL. The preparations of cells were incubated with lipoproteins labelled either in protein with iodine-125 or in CE with 3H-cholesterol oleate, and lipoprotein-protein and lipoprotein-CE associations were measured. The associations of LDL-protein and LDL-CE with nonparenchymal cells were 5- and 2-fold greater, respectively, than with parenchymal cells. However, in terms of CE-selective uptake (CE association minus protein association) both types of cell were equivalent. Similar results were obtained with OxLDL, but both types of cell showed higher abilities in OxLDL-CE than in LDL-CE selective uptake (on average by 3.4-fold). The association of HDL-protein with nonparenchymal cells was 3x that with parenchymal cells; however, nonparenchymal cells associated 45% less HDL-CE. Contrary to parenchymal cells, nonparenchymal cells did not show HDL-CE selective uptake activity. Thus parenchymal cells selectively take CE from the 3 types of lipoproteins, whereas nonparenchymal cells exert this function only on LDL and OxLDL. Efflux was 3.5-fold more important in nonparenchymal than in parenchymal cells.  相似文献   

5.
Cholecystokinin (CCK) receptors on rat pancreatic acini have been demonstrated to be glycoproteins. In order to study whether their carbohydrate moieties play a role in ligand binding, membrane preparations (adjusted to 0.2 mg protein me) were incubated with 20 pM 125-I-CCK octapeptide (125I-CCK8) for 4 h at 30 degrees C in the presence of lectins with different sugar specificities. Concanavalin A, soy-bean agglutinin, and peanut agglutinin in concentrations up to 1 mM did not alter specific 125I-CCK8 binding. Ulex europeus lectin I showed a dose-dependent enhancement of CCK binding up to 150% of controls at a concentration of 1 mM. Wheat-germ agglutinin (WGA) was the only lectin found to have an inhibitory effect. Inhibition was dose-dependent, with maximal reduction attained at 42 nM, but CCK binding was only partially inhibited to 66.2 +/- 4.4%. Inhibition by WGA was prevented by the presence of N-acetyl-D-glucosamine or N,N',N"-triacetylchitotriose, sugars that are specific for WGA. The inhibitory effect of WGA was not due to an increase in non-specific binding, increased CCK degradation, or CCK binding to WGA. Binding data indicated that the presence of WGA resulted in a decrease in receptor affinity (Kd = 567 +/- 191 v. 299 +/- 50 pM). No significant change in the number of available binding sites was observed. This suggests that WGA is not binding to the active binding site. It is conceivable that binding of WGA to N-acetyl-D-glucosamine or its polymers can lead to a conformational change in the receptor protein, and that this carbohydrate moiety is essential for optimal receptor-ligand interaction.  相似文献   

6.
125I-Hemoglobin.haptoglobin injected intravenously into rats was incorporated into liver parenchymal cells as evidenced by a cell separation technique. A mixture of freshly isolated liver parenchymal and nonparenchymal cells failed to internalize and degrade the 125I-hemoglobin.haptoglobin added, although it retained the ability to bind the molecule. The liver parenchymal cells in primary culture also lacked the ability to degrade 125I-hemoglobin.haptoglobin, although they bound the molecule more extensively as compared with the freshly isolated liver cells. It was confirmed that the 125I-hemoglobin.haptoglobin which was bound to the freshly isolated liver parenchymal cells localized on the outer surface of liver plasma membranes. Scatchard plots revealed the existence of two binding sites for 125I-hemoglobin-haptoglobin on the isolated liver plasma membrane: an apparent high affinity binding site (Kd = 1.3 X 10(-7) M) and an apparent low affinity binding site (Kd = 4.0 X 10(-6) M) at 37 degrees C. In contrast, freshly isolated liver parenchymal cells had only an apparent low affinity binding site (Kd = 1.4 X 10(-6) M) at 37 degrees C. Impairment of the apparent high affinity binding site during the isolation procedure with collagenase seemed to be related to loss of the ability to internalize and degrade the 125I-hemoglobin.haptoglobin molecules into the freshly isolated liver parenchymal cells or liver parenchymal cells in primary culture.  相似文献   

7.
Two human breast cancer cell lines (MCF 7 and T 47D) possess calcitonin-responsive adenylate cyclase systems. Suspended cells of both lines specifically bound 125I-labelled salmon calcitonin with mean dissociation constants of 1.7 nM (MCF 7) and 1.4 nM (T 47D); mean receptor numbers were 5300 and 24400 per cell respectively. Measurement of specific binding to MCF 7 cells was obscured by rapid and substantial degradation of the labelled hormone. Degradation of 125I-labelled salmon calcitonin: (i) was of high capacity; (ii) lacked the specificity displayed by 125I-labelled salmon calcitonin binding to the same cells; and (iii) was not related to binding since cell incubation supernatants retained full degrading activity. The degrading activity was inhibited by corticotropin (1-24)-tetracosapeptide, insulin and bacitracin. Inclusion of bacitracin in the incubation resulted in apparently fewer numbers of lower affinity receptors on MCF 7 cells, whereas these parameters were identical to T 47D cells incubated in the presence or absence of bacitracin. Eel [2-aminosuberic acid 1,7]-calcitonin was resistant to proteolysis in the presence of either cell line. Analysis of hormone-receptor interactions with calcitonin-responsive cells should take account of potent calcitonin-degrading activities in some cell lines.  相似文献   

8.
Parenchymal and nonparenchymal cells were isolated from perfused rat livers and incubated at 37 degrees C in the absence and presence of ethanol (50 mM). 1. Nonparenchymal cells prepared by means of centrifugation showed a higher rate of incorporation of L-[U-14C]valine into protein than nonparenchymal cells prepared by means of pronase. Cells prepared by the former method were used for further studies. 2. Protein degradation was present in suspensions of both parenchymal and nonparenchymal cells evidenced by increasing levels of branched amino acids in the intracellular and extracellular compartment during cell incubation. 3. The rate of cellular protein synthesis (corrected for precursor pool specific radioactivity) was of the same order of magnitude in nonparenchymal and parenchymal cells when expressed as nmol valine incorporated per mg protein. This rate was also close to the value found in intact liver by other workers. 4. Approximately 25% of the total radioactivity incorporated during incubation for 2 h was found in proteins released to the medium from parenchymal cells, while the corresponding figure for nonparenchymal cells was 3.5%. 5. Ethanol inhibited incorporation of labelled valine into stationary and medium proteins of parenchymal cells. No such effects were found in nonparenchymal cells. 6. Nonparenchymal cells did not metabolize ethanol while parenchymal cells did, shown by changes in lactate/pyruvate ratio and medium pH. It was concluded that nonparenchymal cells are capable of synthesizing proteins at a rate comparable to that found in parenchymal cells. Protein synthesis in parenchymal cells was inhibited by ethanol, but nonparenchymal protein synthesis was unaffected. This difference may be linked to the ability of the former cell type to metabolize ethanol.  相似文献   

9.
Abstract: This study was directed at the issue of whether or not subpopulations of cholecystokinin (CCK) receptors exist within the CNS. This was achieved through the use of two radiolabelled probes, namely [125I] Bolton-Hunter (BH) CCK 8 and [3H]pentagastrin (Boc-β-Ala CCK 4), in comparative studies under identical conditions. Both probes bound with high affinity to the mouse cerebral cortical CCK receptor binding site with apparent equilibrium dissociation constants (KD) of 1.9 nM and 1.4 nM for [3H]pentagastrin and [125I]BH CCK 8, respectively. The maximal binding capacity was 1.05 and 1.15 pmol/g weight for the tritium and iodinated probes, respectively. Hill analysis yielded Hill numbers close to unity, suggesting the absence of more than one binding site and the lack of cooperativity of CCK receptor binding. Kinetic studies revealed binding site homogeneity in that no evidence of multiphasic dissociation curves was seen. Computerised analysis of displacement binding data using LIGAND established that both radiolabelled probes bound to a single site, with the one-site model providing the best fit of the data. Similar rank orders of potency were obtained for various fragments of CCK 8 in competing for the CCK receptor, labelled with either probe. Both CCK 8 and CCK 4 bound with roughly equinanomolar affinity. These studies demonstrate that both CCK 8 and its shorter C-terminal fragment CCK 4 bind to a single class of high-affinity binding site, with as yet no evidence of CNS CCK receptor multiplicity.  相似文献   

10.
The binding of [125I]gastrin releasing peptide ([125I]GRP) to Swiss 3T3 cells at 37 degrees C increases rapidly, reaching a maximum after 30 min and decreasing afterwards. The decrease in cell-associated radioactivity at this temperature is accompanied by extensive degradation of the labelled peptide. At 4 degrees C equilibrium binding is achieved after 6 h and [125I]GRP degradation is markedly inhibited. Extraction of surface-bound ligand at low pH demonstrates that the iodinated peptide is internalized within minutes after addition to 3T3 cells at 37 degrees C. The rate of internalization is strikingly temperature-dependent and is virtually abolished at 4 degrees C. In addition, lysomotropic agents including chloroquine increase the cell-associated radioactivity in cells incubated with [125I]GRP. The binding of [125I]GRP to Swiss 3T3 cells was not affected by pretreatment for up to 24 h with either GRP or bombesin at mitogenic concentrations. Furthermore, pretreatment with GRP did not reduce the affinity labelling of a Mr 75,000-85,000 surface protein recently identified as a putative receptor for bombesin-like peptides. These results demonstrate that while peptides of the bombesin family are rapidly internalized and degraded by Swiss 3T3 cells, the cell surface receptors for these molecules are not down-regulated.  相似文献   

11.
Isolated rat liver parenchymal cells incubated in the presence of monensin exhibited a reduced uptake of 125I-asialofetuin (125I-AF). Binding studies indicated that the effect was due to a rapid reduction in the number of active surface receptors for the asialoglycoprotein. Monensin had no effect on receptor internalization, but apparently interrupted the recycling of receptors back to the cell surface. Monensin also inhibited the degradation of 125I-AF previously bound to the cells; this inhibition was probably not due to a direct effect on intralysosomal proteolysis, as no lysosomal accumulation of undegraded ligand could be demonstrated in subcellular fractionation studies by means of sucrose gradients. It is more likely that monensin inhibits transfer of the labelled ligand from endocytic vesicles to lysosomes, as indicated by the accumulation of radioactivity in the former and by the ability of monensin to prevent the normally observed time-dependent increase in the buoyant density of endocytic vesicles. Whereas the effect of monensin on binding and uptake of asialofetuin was reversible, the effect on asialofetuin degradation could not be reversed.  相似文献   

12.
The metabolism of brain natriuretic peptide (BNP) was studied in rats infused with 125I-BNP. During the infusion, the intact peptide was progressively converted to labelled degradative products, separated into nine peaks of radioactivity on HPLC, and accounting for approximately 70% of total plasma radioactivity at the plateau phase. After stopping the infusion, intact BNP disappeared with a half-life of 1.23 +/- 0.35 min whereas the labelled fragments accounted for progressively greater proportion of total activity. The degradation of BNP was significantly reduced by phosphoramidon (t1/2, 11.28 +/- 0.49 min) and captopril (t1/2, 6.99 +/- 0.34 min). A maximal effect was observed when both protease inhibitors were given simultaneously (t1/2, 15.3 +/- 0.48 min). When 125I-BNP was incubated in vitro with purified endopeptidase 24.11 (E-24.11) and angiotensin-converting enzyme (ACE), there was a time-dependent disappearance of the intact peptide associated with the generation of six labelled fragments, corresponding to fragments found in vivo. In serum the peptide was rapidly degraded with a half-life of 4.6 +/- 0.1 min, and the pattern of labelled fragments was similar to that observed during in vitro incubation with ACE. Captopril significantly reduced the rate of degradation of BNP in serum. The results allow to associate two define enzyme activities, namely E-24.11 and ACE, with the metabolism of BNP in vitro. They also indicate that, despite a close homology between ANP and BNP, the two peptides undergo different pathways of clearance.  相似文献   

13.
Cholecystokinin (CCK) receptors were investigated in the tumoral acinar cell line AR 4-2 J derived from rat pancreas, after preincubation with 20 nM dexamethasone. At steady state binding at 37 degrees C (i.e., after a 5 min incubation), less than 10% of the radioactivity of [125I]BH-CCK-9 (3-(4-hydroxy-[125I]iodophenyl)propionyl (Thr34, Nle37) CCK(31-39)) could be washed away from intact cells with an ice-cold acidic medium, suggesting high and rapid internalization-sequestration of tracer. By contrast, more than 85% of the tracer dissociated rapidly after a similar acid wash from cell membranes prelabelled at steady state. In intact AR 4-2 J cells, internalization required neither energy nor the cytoskeleton framework. Tracer internalization was reversed partly but rapidly at 37 degrees C but slowly at 4 degrees C. In addition, two degradation pathways of the tracer were demonstrated, one intracellular and one extracellular. Intracellular degradation occurred at 37 degrees C but not at 20 degrees C and resulted in progressive intracellular accumulation of [125I]BH-Arg that corresponded, after 1 h at 37 degrees C, to 35% of the radioactivity specifically bound. This phenomenon was not inhibited by serine proteinase inhibitors and modestly only by monensin and chloroquine. Besides, tracer degradation at the external cell surface was still observable at 20 degrees C and yielded a peptide (probably [125I]BH-Arg-Asp-Tyr(SO3H)-Thr-Gly). This degradation pathway was partly inhibited by bacitracin and phosphoramidon while thiorphan, an inhibitor of endopeptidase EC 3.4.24.11, was without effect.  相似文献   

14.
The intracellular movement, following uptake of 125I-labelled denatured serum albumin into nonparenchymal liver cells, was followed by means of subcellular fractionation. Isolated nonparenchymal rat liver cells were prepared by means of differential centrifugation. The cells were homogenized in a sonifier and the cytoplasmic extract subjected to isopycnic centrifugation in a sucrose gradient. The intracellular movement of the labelled albumin was followed by comparing the distribution profile of radioactivity in the sucrose gradient with those of marker enzymes for plasma membrane and lysosomes. The distribution profiles for radioactivity after the cells had been exposed to the labelled denatured albumin for different time periods indicated that the radioactivity was first associated with subcellular fractions of lower modal densities than the lysosomes. With time of incubation the radioactivity moved towards higher densities. After prolonged incubations in the absence of extracellular labelled denatured albumin the radioactivity peak coincided with that of the lysosomal marker β-acetylglucosaminidase. When the cells were treated with the lysosomal inhibitor leupeptin, degradation of the labelled albumin was decreased, resulting in a massive intracellular accumulation of radioactivity. The radioactivity peak coincided with the peak of activity for the lysosomal marker β-acetylglucosaminidase, suggesting lysosomal degradation.  相似文献   

15.
Thrombospondin was purified from human platelets and labeled with 125I, and its metabolism was quantified in cell cultures of human embryonic lung fibroblasts. 125I-Thrombospondin bound to the cell layer. The binding reached an apparent steady state within 45 min. Trichloroacetic acid-soluble radioactivity was detected in the medium after 30 min of incubation; the rate of degradation of 125I-thrombospondin was linear for several hours thereafter. Degradation of 125I-thrombospondin was saturable. The apparent Km and Vmax for degradation at 37 degrees C were 6 X 10(-8) M and 1.4 X 10(5) molecules per cell per minute, respectively. Degradation was inhibited by chloroquine or by lowering the temperature to 4 degrees C. Experiments in which cultures were incubated with thrombospondin for 45 min and then incubated in medium containing no thrombospondin revealed two fractions of bound thrombospondin. One fraction was localized by indirect immunofluorescence to punctate structures; these structures were lost coincident with the rapid degradation of 50-80% of bound 125I- thrombospondin. The second fraction was localized to a trypsin- sensitive, fibrillar, extracellular matrix. 125I-Thrombospondin in the matrix was slowly degraded over a period of hours. Binding of 125I- thrombospondin to the extracellular matrix was not saturable and indeed was enhanced at thrombospondin concentrations greater than 3 X 10(-8) M. The ability of 125I-thrombospondin to bind to extracellular matrix was diminished tenfold by limited proteolytic cleavage with trypsin. Degradation of trypsinized 125I-thrombospondin was also diminished, although to a lesser extent than matrix binding. Heparin inhibited both degradation and matrix binding. These results suggest that thrombospondin may play a transitory role in matrix formation and/or organization and that specific receptors on the cell surface are responsible for the selective removal of thrombospondin from the extracellular fluid and matrix.  相似文献   

16.
A convenient binding assay has been developed for the determination of low-density lipoprotein (LDL) receptors in homogenates of cultured and freshly-isolated normal and malignant human cells. Cell homogenates were incubated with 125I-labeled LDL and the ligand bound to the homogenate particulates was separated from the unbound ligand by filtration. When the particulates of the homogenates were subsequently incubated with heparin, a fraction of the bound 125I-LDL was released. Previous studies on intact cells have shown that heparin exclusively releases LDL bound to its cell surface receptor. The heparin-sensitive binding of 125I-LDL to cell homogenate particulates represents LDL bound to its cell surface receptor as judged from the following criteria: (a) it was quantitatively similar to the heparin-sensitive binding of 125I-LDL to intact cells, (b) it showed a direct correlation to the receptor-mediated degradation of 125I-LDL by intact cells, (c) no heparin-sensitive binding could be detected in homogenates prepared from normal erythrocytes or from cultured fibroblasts from a patient with homozygous familial hypercholesterolemia (two types of cell lacking LDL receptors), (d) it was dependent on calcium and inhibited by EDTA, (e) it was susceptible to treatment with pronase, and (f) it was heat-labile. The assay developed should be of value in determining the number of LDL receptors in tissues, since it is far less time-consuming and requires less material than currently available methods.  相似文献   

17.
The intracellular movement, following uptake of 125I-labelled denatured serum albumin into nonparenchymal liver cells, was followed by means of subcellular fractionation. Isolated nonparenchymal rat liver cells were prepared by means of differential centrifugation. The cells were homogenized in a sonifier and the cytoplasmic extract subjected to isopycnic centrifugation in a sucrose gradient. The intracellular movement of the labelled albumin was followed by comparing the distribution profile of radioactivity in the sucrose gradient with those of marker enzymes for plasma membrane and lysosomes. The distribution profiles for radioactivity after the cells had been exposed to the labelled denatured albumin for different time periods indicated that the radioactivity was first associated with subcellular fractions of lower modal densities than the lysosomes. With time of incubation the radioactivity moved towards higher densities. After prolonged incubations in the absence of extracellular labelled denatured albumin the radioactivity peak coincided with that of the lysosomal marker β-acetylglucosaminidase. When the cells were treated with the lysosomal inhibitor leupeptin, degradation of the labelled albumin was decreased, resulting in a massive intracellular accumulation of radioactivity. The radioactivity peak coincided with the peak of activity for the lysosomal marker β-acetylglucosaminidase, suggesting lysosomal degradation.  相似文献   

18.
Direct modulation of epidermal growth factor binding by cholecystokinin   总被引:1,自引:0,他引:1  
The effects of cholecystokinin-octapeptide (CCK8), the biologically active C-terminal moiety of cholecystokinin (CCK), on the binding of epidermal growth factor (EGF) were studied in isolated rat pancreatic acini. CCK8 inhibited 125I-EGF binding in a dose-dependent manner. One-half maximal inhibition occurred at 5 X 10(-10)M, and maximal inhibition at 10(-8)M CCK8. This inhibitory effect was detectable within 5 minutes of addition of CCK8, and was not associated with enhanced degradation of 125I-EGF in incubation media. Unlabeled EGF exerted only a slightly greater inhibitory effect than CCK8 on 125I-EGF binding at equivalent molar concentrations. In contrast to CCK8, the gastrointestinal hormone vasoactive intestinal polypeptide (VIP) did not significantly alter EGF binding. CCK8 also inhibited EGF binding in mouse pancreatic acini, but did not alter binding in A-431 human carcinoma cells. These findings suggest that physiological levels of CCK may regulate EGF binding in the pancreas and other tissues with receptors for both hormones. They thus point to a previously unrecognized mechanism for hormonal interaction.  相似文献   

19.
The binding, internalization, and degradation of basic fibroblast growth factor (bFGF) in human omental microvascular endothelial cells (HOME cells) were investigated. Binding studies of bFGF in human endothelial cells have not yet been reported. Basic FGF bound to HOME cells (KD of 42.0 +/- 3.8 pM and 70,526 +/- 6121 binding sites/cell for the high-affinity sites, KD of 0.933 +/- 0.27 nM and 630,252 +/- 172,459 sites/cell for low-affinity binding sites). The number of low-affinity binding sites was found to be variable. Washing the cells with 2 M phosphate-buffered saline removed completely 125I-bFGF bound to low-affinity binding sites but decreased also the high-affinity binding. The majority of the surface-bound 125I-bFGF was removed by washing the cells with acetic acid buffer at pH 3. At 37 degrees C, 30% of the cell-associated 125I-bFGF became resistant to the acidic wash after 90 min, suggesting that this fraction of bound 125I-bFGF was internalized. At this temperature, degradation of the internalized ligand was followed after 1 h by the appearance of three major bands of 15,000, 10,000, and 8,000 Da and was inhibited by chloroquine. These results demonstrated two classes of binding sites for bFGF in HOME cells; the number of high-affinity binding sites being larger than the number reported for bovine capillary endothelial cells. The intracellular processing of bFGF in HOME cells seems to be different from that of heparin binding growth factor-1 in murine lung capillary endothelial cells and of eye-derived growth factor-1 in Chinese hamster fibroblasts.  相似文献   

20.
Specific binding sites for cholecystokinin (CCK) have been characterized in a particulate membrane fraction of rat cerebral cortex using a biologically active 125I-labeled derivative of the C-terminal octapeptide of CCK (CCK-8) prepared by reaction with the iodinated form of the imidoester (125IIE), methyl-p-hydroxybenzimidate. The time course of binding to cortical membranes was rapid, temperature dependent, and saturable. Half-maximal binding at 24 degrees C was reached in 30 min and full binding at 120 min. At 37 degrees C there was only a slight increase in 125IIE-CCK-8 bound after 15 min. The addition of a large excess of CCK-8 after 30 min of binding at 24 degrees C caused a prompt and rapid decline in radioligand bound showing that the interaction was reversible. There was a progressive decline in the amount of 125IIE-CCK-8 bound to membranes with increasing concentrations of CCK-8 and other structurally related peptides. CCK-8 displaced 50% of the radioligand at 4 nM, CCK-33 at 10 nM, and gastrin (desulfated CCK-8) at 60 nM. Secretin, a structurally unrelated peptide, was unable to displace the radioligand from cortical membranes at 1.0 microM. Finally, 125IIE-CCK-8 exposed to cortical membranes or to buffers that had previously contained such membranes for 60 min at 24 degrees C bound equally as well to fresh cortical membranes as control radioligand that had not been exposed to the same conditions. Thus the 125I-CCK-8 radioligand used in this study was highly resistant to degradative processes in rat brain tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号