首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatocyte intracellular membranes may facilitate the directed movement of bilirubin and other hydrophobic substrates to the active site of UDP-glucuronyltransferase in the endoplasmic reticulum. We postulated that the lipid composition and physical properties of membranes that transport substrate may modulate bilirubin glucuronidation. To examine this hypothesis, we incorporated [14C]bilirubin substrate into the membrane bilayer of small unilamellar liposomes composed of native phospholipid purified from rat hepatic microsomes. The initial velocity of bilirubin glucuronide formation in rat liver microsomes, measured by radiochemical assay, was considerably more rapid than for bilirubin in liposomes of egg phosphatidylcholine (p less than 0.001). Moreover, the ratio of bilirubin diglucuronide to monoglucuronides synthesized was markedly increased (p less than 0.01), approaching that observed in normal rat bile. Although the rates of bilirubin glucuronidation did not correlate with fluidity of the liposomal membrane core region, specific phospholipid head groups were associated with an increase, and cholesterol a decrease, in rates of glucuronidation. Movement of [3H]bilirubin from dual-labeled liposomes to microsomes occurred without concomitant [14C]phospholipid transfer. Thus, the lipid composition of membranes incorporating bilirubin appears to modulate the rate of glucuronidation and the relative rates of bilirubin mono- and diglucuronide formation. Phospholipid head groups on the surface of the bilayer, not the hydrocarbon core regions, may be implicated in the rapid process of membrane transport, which is likely to involve membrane-membrane collisions or diffusion of free substrate rather than membrane fusion.  相似文献   

2.
Bilirubin may be transported within intracellular membranes of the hepatocyte and may undergo membrane-membrane transfer to gain access to the conjugating enzyme UDP-glucuronyltransferase in the endoplasmic reticulum. We have demonstrated previously that the lipid composition of liposomal membranes incorporating bilirubin substrate influences the rate of transfer and glucuronidation of bilirubin by hepatic microsomes. To examine the mechanism(s) of substrate transfer, we incorporated radiolabelled bilirubin into small unilamellar model membranes of egg phosphatidylcholine or natural phospholipids in the proportions present in native hepatic microsomes. The rate at which bilirubin was transferred to rat liver microsomes and glucuronidated was then examined in the presence of various endogenous compounds that promote membrane fusion. For bilirubin substrate in membranes of egg phosphatidylcholine, the addition of Ca2+ (2 mM) increased the microsomal glucuronidation rate, whereas retinol enhanced microsomal conjugation rates for bilirubin in membranes of both lipid compositions. When the transfer of [3H]bilirubin from dual-labelled liposomes to microsomes was enhanced by Ca2+ or retinol, there was no associated increase in [14C]phospholipid transfer. Thus it appears likely that bilirubin is transferred to the endoplasmic reticulum by rapid cytosolic diffusion or membrane-membrane collisions, rather than by membrane fusion; this process may be modulated by changes in the lipid microenvironment of the substrate or the effective intracellular concentrations of Ca2+ or retinol. The observation that polymyxin B induced concomitant membrane-membrane transfer of [3H]bilirubin and [14C]phospholipid suggests that under certain circumstances membrane fusion or aggregation may promote the movement of lipophilic substrates in hepatocytes.  相似文献   

3.
Pigment gallstones contain considerable amounts of unconjugated bilirubin (UCB) in the form of calcium bilirubinate and/or bilirubin polymers. Since more than 98% of bile pigments are excreted as conjugates of bilirubin, the source of this UCB needs to be identified. By using a rapid h.p.l.c. method, we compared the non-enzymic hydrolysis of bilirubin monoglucuronide (BMG) and bilirubin diglucuronide (BDG) to UCB in model bile and in native guinea-pig bile. Model biles containing 50 microM solutions of pure BMG and BDG were individually incubated in 25 mM-sodium taurocholate (NaTC) and 0.4 M-imidazole/5 mM-ascorbate buffer (TC-BUF) at 37 degrees C. Over an 8 h period, BMG hydrolysis produced 4-6 times more UCB than BDG hydrolysis. At pH 7.4, 25% of the BMG was converted into UCB, whereas only 4.5% of BDG was converted into UCB. Hydrolysis rates for both BMG and BDG followed the pH order 7.8 greater than 7.6 approximately equal to 7.4 greater than 7.1 Incubation with Ca2+ (6.2 mM) at pH 7.4 in TC-BUF resulted in precipitated bile pigment which, at 100 X magnification, appeared similar to precipitates seen in the bile of patients with pigment gallstones. At pH 7.4, lecithin (crude phosphatidylcholine) (4.2 mM) was a potent inhibitor of hydrolysis of BMG and BDG. The addition of a concentration of cholesterol equimolar with that of lecithin eliminated this inhibitory effect. Guinea-pig gallbladder bile incubated with glucaro-1,4-lactone (an inhibitor of beta-glucuronidase) underwent hydrolysis similar to the model bile systems. The non-enzymic hydrolysis of bile pigments, especially BMG, may be an important mechanism of bile-pigment precipitation and, ultimately, of gallstone formation.  相似文献   

4.
The stabilities of bilirubin (BR) glucuronide, monoglucuronide (BMG), and diglucuronide (BDG) were studied under various conditions by HPLC. In aqueous media, BMG showed a pronounced lability and was easily transformed into equimolar BDG and BR. It was proved by direct analysis of tetrapyrrole isomers that BDG and BR were formed from dipyrrole exchange of BMG molecules. All reducing agents examined (sodium ascorbate, cysteine, GSH, dithiothreitol, NADH, and NADPH) suppressed the transformation of BMG into BDG and BR. Bovine serum albumin and rat liver cytosol fractions also stabilized BMG strongly. BDG was fairly stable in aqueous media as compared with BMG. When BMG was incubated both with and without liver plasma membranes (N2 fraction) from Wistar rats, the formation rates of BDG and BR in both incubation mixtures were exactly the same. The composition of BDG and BR isomers was the same in both mixtures. Also, heat denaturation of the plasma membranes did not affect formation rates. Moreover, the reaction was completely inhibited by sodium ascorbate. These findings indicate that rat liver plasma membranes have no enzyme activity for BDG formation from BMG.  相似文献   

5.
We have developed an extremely rapid and efficient reverse-phase h.p.l.c. method for the measurement of bilirubin and its conjugates in human bile and in model bile systems. Our method involves the use of a Perkin-Elmer 3 mu C18 column and a methanol/sodium acetate/aq. ammonium acetate buffer system. Three isomers of bilirubin diglucuronide (BDG), two isomers of bilirubin monoglucuronide (BMG), three isomers of unconjugated bilirubin (UCB) and minor conjugates containing glucose and xylose were separated in 12 min. Initial quantification of BDG and BMG was based on the use of the ethyl anthranilate azo derivative of bilirubin (AZO UCB); however, the standard curves for BDG, BMG and UCB were similar enough to permit quantification to be later based on the UCB standard curve only, thereby simplifying the quantification process. Routine direct injection of 6 or 10 microliter of crude undiluted or diluted (1:1) bile sample was sufficient for analysis. The method was helpful in diagnosing biliary-tract obstruction in a newborn and a partial deficiency state of bilirubin conjugation (Crigler-Najjar syndrome) in a 10-year-old male. When the method was applied to biles of patients both with and without gallstones, levels of UCB were less than 2% of total pigment, consistent with previous reports. Because of its speed and efficiency, this method has the potential for a broad range of applications including enzymic, kinetic and bile sample analyses.  相似文献   

6.
It has been assumed that following hepatic uptake, bilirubin is bound exclusively to cytosolic proteins prior to conjugation by microsomal UDP-glucuronyl-transferase. Since bilirubin partitions into lipid rather than the aqueous phase at neutral pH, we postulated that bilirubin reaches the sites of glucuronidation by rapid diffusion within membranes. To examine this hypothesis, [14C]bilirubin was incorporated into the membrane bilayer of small unilamellar liposomes of egg phosphatidylcholine. Radiochemical assay of this membrane-bound substrate in a physiologic concentration, using native rat liver microsomes, demonstrated immediate formation of bilirubin glucuronides at a more rapid initial velocity than for bilirubin bound to the high-affinity sites of purified cytosolic binding proteins, i.e. glutathione S-transferases (p less than 0.025) or native liver cytosol (p less than 0.05). Kinetic analysis suggested that the mechanisms of substrate transfer from liposomal membranes and from purified glutathione S-transferases to microsomal UDP-glucuronyltransferase were similar. The exchange of 3H- and 14C-labeled bilirubin substrate between binding proteins and liposomal membranes was then investigated using Sepharose 4B chromatography. As the concentration of bilirubin was increased relative to that of protein, net transfer of substrate from the protein to the membrane pool was observed. These findings indicate that bilirubin is efficiently transported by membrane-membrane transfer to hepatic microsomes, where it undergoes rapid conjugation. Bilirubin entering hepatocytes may partition between membrane and cytosolic protein pools, but as intracellular bilirubin concentration increases, the membrane pool is likely to provide a greater proportion of the substrate for glucuronidation.  相似文献   

7.
F Vanstapel  N Blanckaert 《Biochemistry》1987,26(19):6074-6082
Hepatic glucuronidation of the asymmetrical natural bilirubin molecule results in formation of two different positional isomers, bilirubin C-8 monoglucuronide and bilirubin C-12 monoglucuronide. In view of the existence of multiple isoforms of UDPglucuronyltransferase, which is the microsomal enzyme system responsible for bilirubin esterification, we performed kinetic analysis of microsomal glucuronidation of bilirubin and a number of its structural congeners to determine whether synthesis of the two monoglucuronide isomers involved two distinct substrate-binding sites or reflected two different modes of binding to a single catalytic site. Both isomers were found in all tested species (man, rat, guinea pig, sheep), but there were marked species differences in the C-8/C-12 ratio of monoglucuronide found in bile or formed by liver microsomes. Correspondence between in vivo and in vitro results for such regioselectivity of glucuronidation was excellent in each species. On the basis of our results of kinetic analysis of bilirubin esterification at variable pigment substrate concentrations and inhibition studies with alternative substrates, we postulate that both natural monoglucuronide isomers are synthesized at a single binding site. Possible mechanisms responsible for the markedly regioselective esterification of bilirubin by rat and sheep liver were investigated by study of glucuronidation of selected structural analogues of the pigment. Our results do not support explanations of regioselectivity of bilirubin glucuronidation in terms of (i) preferential binding of either the C-8- or C-12-containing dipyrrolic half of the asymmetrical bilirubin molecule or (ii) enantioselective complexation of bilirubin UDPglucuronyltransferase to one of the two chirality enantiomers of intramolecularly hydrogen-bonded bilirubin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We describe a facile and sensitive reverse-phase h.p.l.c. method for analytical separation of biliary bile pigments and direct quantification of unconjugated bilirubin (UCB) and its monoglucuronide (BMG) and diglucuronide (BDG) conjugates in bile. The method can be 'scaled up' for preparative isolation of pure BDG and BMG from pigment-enriched biles. We employed an Altex ultrasphere ODS column in the preparative steps and a Waters mu-Bondapak C18 column in the separatory and analytical procedures. Bile pigments were eluted with ammonium acetate buffer, pH 4.5, and a 20 min linear gradient of 60-100% (v/v) methanol at a flow rate of 2.0 ml/min for the preparative separations and 1.0 ml/min for the analytical separations. Bile pigments were eluted in order of decreasing polarity (glucuronide greater than glucose greater than xylose conjugates greater than UCB) and were chemically identified by t.l.c. of their respective ethyl anthranilate azo derivatives. Quantification of UCB was carried out by using a standard curve relating a range of h.p.l.c. integrated peak areas to concentrations of pure crystalline UCB. A pure crystalline ethyl anthranilate azo derivative of UCB (AZO . UCB) was employed as a single h.p.l.c. reference standard for quantification of BMG and BDG. We demonstrate that: separation and quantification of biliary bile pigments are rapid (approximately 25 min); bile pigment concentrations ranging from 1-500 microM can be determined 'on line' by using 5 microliters of bile without sample pretreatment; bilirubin conjugates can be obtained preparatively in milligram quantities without degradation or contamination by other components of bile. H.p.l.c. analyses of a series of mammalian biles show that biliary UCB concentrations generally range from 1 to 17 microM. These values are considerably lower than those estimated previously by t.l.c. BMG is the predominant, if not exclusive, bilirubin conjugate in the biles of a number of rodents (guinea pig, hamster, mouse, prairie dog) that are experimental models of both pigment and cholesterol gallstone formation. Conjugated bilirubins in the biles of other animals (human, monkey, pony, cat, rat and dog) are chemically more diverse and include mono-, di- and mixed disconjugates of glucuronic acid, xylose and glucose in proportions that give distinct patterns for each species.  相似文献   

9.
The availability of a unique series of liver samples from human subjects, both control patients (9) and those with liver disease (6; biliary atresia (2), retransplant, chronic tyrosinemia type I, tyrosinemia, Wilson's disease) allowed us to characterize human hepatic UDP-glucuronosyltransferases using photoaffinity labeling, immunoblotting and enzymatic assays. There was wide inter-individual variation in photoincorporation of the photoaffinity analogs, [32P]5-azido-UDP-glucuronic acid and [32P]5-azido-UDP-glucose and enzymatic glucuronidation of substrates specific to the two subfamilies of UDP-glucuronosyltransferases. However, the largest differences were between subjects with liver disease. Glucuronidation activities toward one substrate from each of the UDP-glucuronosyltransferases subfamilies, 1A and 2B, for control and liver disease, respectively, were 1.7-4.5 vs 0.4-4.7 nmol/mg x min for hyodeoxycholic acid (2B substrate) and 9.2-27.9 vs 8.1-75 nmol/mg x min for pchloro-m-xylenol (1A substrate). Microsomes from a patient with chronic tyrosinemia (HL32) photoincorporated [32P]5-azido-UDP-glucuronic acid at a level 1.5 times higher than the other samples, was intensely photolabeled by [32P]5-azido-UDP-glucose and had significantly higher enzymatic activity toward p-chloro-m-xylenol. Immunoblot analysis using anti-UDP-glucuronosyltransferase antibodies demonstrated wide inter-individual variations in UDP-glucuronosyltransferase protein with increased UDP-glucuronosyltransferase protein in HL32 microsomes, corresponding to one of the bands photolabeled by both probes. Detailed investigation of substrate specificity, using substrates representative of both the 1A (bilirubin, 4-nitrophenol) and 2B (androsterone, testosterone) families was carried out with HL32, HL38 (age and sex matched control) and HL18 (older control). Strikingly increased (5-8-fold) glucuronidation activity was seen in comparison to HL18 only with the phenolic substrates. The results indicate that one or more phenol-specific UDP-glucuronosyltransferase 1A isoforms are expressed at above normal levels in this tyrosinemic subject.  相似文献   

10.
The kinetics of [3H]bilirubin binding to human erythrocyte ghost membranes was investigated. The binding occurred rapidly and was saturable with respect to [3H]bilirubin and membrane concentration. The apparent dissociation constant (Kd) and maximum binding (Bmax.) for bilirubin of the membranes were 2.3 microM and 0.93 nmol/mg of protein respectively. Low-affinity binding, non-saturable at 400 microM, was observed. Thermal dependency of the saturable binding showed a U-shaped curve with the lowest value around 37 degrees C. Affinity labelling of the membrane proteins using [3H]bilirubin-Woodward's reagent K complex did not define individual proteins. The Kd (12 microM) and Bmax. (4.4 nmol/mg of protein) for bilirubin of the tryptic membranes increased 5.0 and 5.2 times the respective control values (2.4 microM and 0.85 nmol/mg of protein). Heat-treatment of the membranes for 3 min at 100 degrees C increased the saturable binding as much as by 222%. These results indicate that there exist saturable bilirubin-binding sites on the erythrocyte membranes and also suggest that they are not composed of proteins.  相似文献   

11.
An ADP-ribosylarginine hydrolase, which catalyzes the degradation of ADP-ribosyl[14C]arginine to ADP-ribose plus arginine, was separated by ion exchange, hydrophobic, and gel permation chromatography from NAD:arginine ADP-ribosyltransferases, which are responsible for the stereospecific formation of alpha-ADP-ribosylarginine. As determined by NMR, the specific substrate for the hydrolase was alpha-ADP-ribosylarginine, the product of the transferase reaction. The ADP-ribose moiety was critical for substrate recognition; (phosphoribosyl) [14C]arginine and ribosyl[14C]arginine were poor substrates and did not significantly inhibit ADP-ribosyl[14C]arginine degradation. In contrast, ADP-ribose was a potent inhibitor of the hydrolase and significantly more active than ADP greater than AMP greater than adenosine. In addition to ADP-ribosyl[14C]arginine, both ADP-ribosyl[14C]guanidine and (2'-phospho-ADP-ribosyl)[14C]arginine were also substrates; at pH greater than 7, ADP-ribosyl[14C]guanidine was degraded more readily than the [14C]arginine derivative. Neither arginine, guanidine, nor agmatine, an arginine analogue, was an effective hydrolase inhibitor. Thus, it appears that the ADP-ribosyl moiety but not the arginine group is critical for substrate recognition. Although the hydrolase requires thiol for activity, dithiothreitol accelerated loss of activity during incubation at 37 degrees C. Stability was enhanced by Mg2+, which is also necessary for optimal enzymatic activity. The findings in this paper are consistent with the conclusion that different enzymes catalyze ADP-ribosylarginine synthesis and degradation. Furthermore, since the hydrolase and transferases possess a compatible stereospecificity and substrate specificity, it would appear that the two enzymatic activities may serve as opposing arms in an ADP-ribosylation cycle.  相似文献   

12.
Y H Wong  P A Frey 《Biochemistry》1979,18(24):5337-5341
When UDP-galactose 4-epimerase is inactivated by p-(bromoacetamido)phenyl uridyl pyrophosphate (BUP), the diphosphopyridine nucleotide (DPN) associated with this enzyme as a tightly bound coenzyme cannot be reduced by substrates or by UMP-activated reduction by glucose. Upon acid denaturation of the inactivated enzyme, the DPN released corresponded to 15-30% of that released from the native enzyme. When the enzyme is inactivated by [14C]BUP, about 80% of the radioactivity bound at the active site is released from the protein upon acid denaturation. When epimerase-[3H]DPN is inactivated with [14C]BUP, the 3H and 14C released from the protein upon denaturation of the complex cochromatograph on DEAE-Sephadex. Experiments with [nicotinamide-4-3H]DPN and [adenine-2,8-3H]DPN show that it is the adenine ring that is alkylated. The data suggest that the adenine ring of DPN in epimerase-DPN may be oriented near the glycosyl-binding subsite of this enzyme. Since the nicotinamide ring must also be near this site, it appears that the DPN may not be in an extended conformation when it is bound at the active site of UDP-galactose 4-epimerase from Escherichia coli.  相似文献   

13.
This study was undertaken to develop techniques for measuring absolute rates of sterol synthesis in extrahepatic tissues in vitro and to estimate the magnitude of the errors inherent in the use of various 14C-labeled substrates for such measurements. Initial studies showed that significant errors were introduced when rates of synthesis were estimated using [3H]water since about 20 nmol of water were bound to each mg of tissue cholesterol isolated as the digitonide. This source of error could be eliminated by subtracting apparent incorporation rates obtained at 0 degrees C from those obtained at 37 degrees C or by regenerating and drying the free sterol. In a second set of experiments, the H/C incorporation ratio in cholesterol was determined in the liver by measuring the absolute rates of hydrogen and acetyl CoA flux into sterols. The ratio of 0.69 +/- 0.03 was found to be independent of the rate of hepatic cholesterol synthesis, the rate of hepatic acetyl CoA generation, or the source of the acetyl CoA. In a third set of studies, rates of incorporation of [3H]water or 14C-labeled acetate, octanoate, and glucose into digitonin-precipitable sterols were simultaneously measured in nine different extrahepatic tissues. Assuming that the H/C ratio measured in the liver also applied to these tissues, the [3H]water incorporation rates were multipled by the reciprocal of the H/C ratio to give the absolute rates of sterol synthesis in each tissue. When these were compared to the incorporation rates determined with the 14C-labeled substrates the magnitude of the errors in the rates of sterol synthesis obtained with these substrates in each tissue could be assessed. Only [14C]octanoate gave synthesis rates approaching 100% of those obtained with [3H]water and this occurred only in the intestine and kidney; in the other extrahepatic tissues this substrate gave rates of 6--66+ of the absolute rates. Rates of [14C]acetate incorporation in sterols varied from 4 to 62% of the [3H]water incorporation rates while those obtained with [14C]glucose were only 2--88% of the true rates. These studies document the large and highly variable errors inherent in estimating rates of sterol synthesis in extrahepatic tissues using 14C-labeled substrates under in vitro conditions.  相似文献   

14.
3-Mercaptopicolinic acid (3-MPA) is reportedly a specific inhibitor of phosphoenolpyruvate (PEP) carboxykinase and has hitherto been used accordingly to elucidate the metabolic role of PEP carboxykinase in vitro and in vivo. We show that 3-MPA has multiple effects on intermediary metabolism in hemidiaphragms from 40 h-starved rats. It decreases the release of lactate + pyruvate and alanine in hemidiaphragms provided with no added substrate or with valine, leucine or isoleucine. Moreover, irrespective of the substrate provided (none, valine, leucine, isoleucine, glucose, acetate, oleate), 3-MPA decreases the [lactate]/[pyruvate] ratio. 3-MPA is without effect on 14CO2 production from [U-14C]valine, [1-14C]valine, [1-14C]leucine, [U-14C]isoleucine or [1-14C]oleate, but stimulates 14CO2 production from [U-14C]glucose and [1-14C]pyruvate and inhibits 14CO2 production from [1-14C]acetate. Glycolytic flux (measured as 3H2O formation from [5-3H]glucose) is stimulated by 3-MPA. It is concluded that 3-MPA has site(s) of actions other than PEP carboxykinase and that the putative role of PEP carboxykinase in alanine synthesis de novo in skeletal muscle from tricarboxylic acid-cycle intermediates and related amino acids requires reappraisal.  相似文献   

15.
A one-step procedure has been developed for the preparation of [3H]bilirubin IX-alpha in good yield from unlabelled bilirubin. Irradiation of an aqueous solution of [3H]bilirubin IX-alpha in the presence of human serum albumin results in the covalent attachment of the bilirubin to the protein. Preliminary degradation studies have been carried out to locate the site of attachment of the bilirubin to the albumin.  相似文献   

16.
A versatile synthesis of spin-labelled radioactive cytidine diphospho-sn-1,2-diacylglycerol (CDP-diglyceride) has been developed based on the combination of the enzymatic acylation of radioactive sn-glycero-3-phosphate with 12-doxyl stearic acid and the chemical conversion of the thus obtained spin-labelled radioactive phosphatidic acid with cytidine monophosphomorpholi-date into spin-labelled radioactive CDP-diglyceride. The method for the isolation and purification of the latter compound was described. This obtained CDP-[2-3H]diglyceride contained 10% of fatty acids of paramagnetic nature, presumably present as a covalently bound 12-doxyl stearic acid esters. The biological activity was tested by using the synthesized compound as a substrate in the mitochondrial biosynthesis of phosphatidylglycerol. It was found that spin-labelled CDP-[2-3H]diglyceride prepared as described can be converted in the presence of sn-[2-14C]-glycero-3-phosphate into a spin-labelled [2-3H, 2'-14C]phosphatidylglycerol with isolated rat liver mitochondria, establishing therefore that the site of its utilization is identical with the site of phosphatidylglycerol synthesis in isolated mitochondria, i.e. inner mitochondrial membrane. Results described demonstrate that the synthesized spin-labelled CDP-diglyceride can be used as a specific probe for the spin- and radioactive covalent labelling of polyglycerophosphatides of mitochondrial membranes. Some implications and further possibilities in the study of biological membranes using the spin-labelled radioactive CDP-diglyceride are discussed.  相似文献   

17.
1. Commercially available [2-14C]pyruvate and [2-14C]malonate were found to contain 3-6% (w/w) of [14C]acetate. 2. The contaminating [14C]acetate was efficiently utilized for fatty acid synthesis by isolated chloroplasts, whereas the parent materials were poorer substrates. 3. Maximum incorporation rates of the different substrates examined were (ng-atoms of C/h per mg of chlorophyll): [1-14C]acetate, 2676; [2-14C]pyruvate, 810; H14CO3-, 355; [2-14C]malonate, 19. 4. Products of CO2 fixation were probably not a significant carbon source for fatty acid synthesis in the presence of exogenous acetate.  相似文献   

18.
A radioassay for specific determination of the rates of UDP-glucuronic acid-dependent conversion of bilirubin into the two isomeric (C-8, C-12) bilirubin monoglucuronides and bilirubin diglucuronide is described and illustrated by its application to rat liver microsomes. The method is based on measurement of the relative amounts of radiolabel in unesterified bilirubin and its mono- and di-esterified reaction products after incubation with [14C]bilirubin as substrate. This analysis is performed by the alkaline-methanolysis procedure, combined with one of two t.l.c. systems developed in order to enhance the sensitivity, accuracy and precision of the radioassay. Results for rates of total bilirubin glucuronide formation obtained with the new assay and the standard enzyme assay based on the ethyl anthranilate diazo-method were identical. However, the sensitivity of the latter technique is approx. 10-fold lower than that of the radioassay.  相似文献   

19.
We have investigated the subcellular location and regulation of hepatic bilirubin UDP-glucuronyltransferase, which has been presumed to be located largely in the smooth endoplasmic reticulum. Purity of subcellular membrane fractions isolated from rat liver was assessed by electron microscopy and marker enzymes. Bilirubin UDP-glucuronyltransferase activity was measured by radiochemical assay using a physiologic concentration of [14C]bilirubin, and formation rates of bilirubin diglucuronide and monoglucuronides (C-8 and C-12 isomers) were determined. Activity of the enzyme was widely distributed in subcellular membranes, the majority being found in smooth and rough endoplasmic reticulum, with small amounts in nuclear envelope and Golgi membranes. No measurable activity was found in plasma membranes or in cytosol. Synthesis of bilirubin diglucuronide as a percentage of total conjugates and the ratio of C-8/C-12 bilirubin monoglucuronide isomers formed were comparable in all membranes, suggesting that the same enzyme is present in all locations. However, the regulation of bilirubin UDP-glucuronyltransferase activity differed among intracellular membranes; enzyme activity measured in the presence of the allosteric effector uridine 5'-diphospho-N-acetylglucosamine exhibited latency in smooth endoplasmic reticulum and Golgi membranes, but not in rough endoplasmic reticulum and nuclear envelope. Since rough membranes comprise 60% of hepatocyte endoplasmic reticulum and bilirubin UDP-glucuronyltransferase activity in vitro is maximal in this membrane fraction under presumed physiologic conditions, it is likely that the rough endoplasmic reticulum represents the major site of bilirubin glucuronidation in hepatocytes.  相似文献   

20.
The xylene ring of riboflavin originates by dismutation of the precursor, 6,7-dimethyl-8-ribityllumazine. The formation of the latter compound requires a 4-carbon unit as the precursor of carbon atoms 6 alpha, 6, 7, and 7 alpha of the pyrazine ring. The formation of riboflavin from GTP and ribose phosphate by cell extract from Candida guilliermondii has been observed by Logvinenko et al. (Logvinenko, E. M., Shavlovsky, G. M., Zakal'sky, A. E., and Zakhodylo, I. V. (1982) Biokhimiya 47, 931-936). We have studied this enzyme reaction in closer detail using carbohydrate phosphates as substrates and synthetic 5-amino-6-ribitylamino-2,4-(1H,3H)-pyrimidinedione or its 5'-phosphate as cosubstrates. Several pentose phosphates and pentulose phosphates can serve as substrate for the formation of riboflavin with similar efficiency. The reaction requires Mg2+. Various samples of ribulose phosphate labeled with 14C or 13C have been prepared and used as enzyme substrates. Radioactivity was efficiently incorporated into riboflavin from [1-14C]ribulose phosphate, [3,5-14C]ribulose phosphate, and [5-14C]ribulose phosphate, but not from [4-14C]ribulose phosphate. Label from [1-13C]ribose 5-phosphate was incorporated into C6 and C8 alpha of riboflavin. [2,3,5-13C]Ribose 5-phosphate yielded riboflavin containing two contiguously labeled segments of three carbon atoms, namely 5a, 9a, 9 and 8, 7, 7 alpha. 5-Amino-6-[1'-14C] ribitylamino-2,4 (1H,3H)-pyrimidinedione transferred radioactivity exclusively to the ribityl side chain of riboflavin in the enzymatic reaction. It follows that the 4-carbon unit used for the biosynthesis of 6,7-dimethyl-8-ribityllumazine consists of the pentose carbon atoms 1, 2, 3, and 5 in agreement with earlier in vivo studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号