首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 254 毫秒
1.
Significant increases of TXB2 and PGE2 are reported to occur in pancreas transplantation. These increases are prevented with scavengers of oxygen-free radicals. In this communication, we report on changes of prostacyclin metabolites such as tissue 6-keto prostaglandin F1 alpha and urinary 2,3-dinor 6-keto prostaglandin F1 alpha in rats subjected to pancreas transplantation after different periods of organ cold preservation ischemia as well as the effect of superoxide dismutase (SOD) on these changes. For this purpose, male Lewis rats were classified as follows: Group I, Control; Group II, syngenic pancreas transplantation after 15 min of organ preservation in Collins solution at 4 degrees C; Group III, same as II but with 12 hours of organ preservation; Group IV, same as III, but with SOD pretreatment. Results have shown significant posttransplantation increases of both tissue 6-keto PGF1 alpha and urinary 2, 3 dinor 6-keto PGF1 alpha, the latter being a useful marker to evaluate systemic prostacyclin (PGI2) production by rat pancreas. This effect was prevented when the organ had been exposed to SOD during the period of cold preservation ischemia. These results confirm the implication of oxygen-free radicals (OFR) in the ischemia-reperfusion process associated to rat pancreas transplantation leading to enhanced arachidonic acid metabolism.  相似文献   

2.
The influences of exogenous PGE1, PGE2, PGF2 alpha, LTC4 and insulin (INS) on glucose oxidation in uterine strips isolated from ovariectomized-diabetic (OVD) and ovariectomized-estrogenized-diabetic (OVED) rats, were studied. The spayed animals were made diabetic by a single injection of streptozotocin (65 mg.kg-1 body weight). The effects of prostaglandins were studied in the presence of indomethacin (INDO) in the incubation medium and the effects of LTC4 in the presence of INDO and nordihydroguaretic acid (NDGA). These procedures were followed in order to avoid the possible influences of endogenous derivatives of arachidonic acid formed by the activity of cyclooxygenase and of lipoxygenases. INDO and NDGA did not modify significantly the formation of 14CO2 from U-14C-glucose in uteri from OVD and from OVED rats. INS (0.5 U.ml-1) augmented significantly labelled glucose metabolism, both in OVD as well as in OVED rats. On the other hand, added PGE1, PGE2, PGF2 alpha or LTC4 failed to alter glucose metabolism in uteri from OVD rats. Only PGE1 was able to increase significantly (p less than 0.05) 14CO2 production from labelled glucose in uterine strips from OVED rats. In OVD rats the stimulatory action of INS on uterine glucose metabolism was significantly enhanced by exogenous PGE1, but not modified by PGE2, by PGF2 alpha or by LTC4. PGE1, PGE2 and LTC4 sensitized uterine strips obtained from OVED rats to the effects of INS. The possible importance of PGE1 in improving uterine glucose metabolism in diabetic animals is discussed.  相似文献   

3.
Glycogen values in uterine strips isolated from normal-fed estrous or diestrous rats, or from rats fed a restricted diet (50% of normal food intake for 25 days) were measured. Determinations were made immediately after killing (0 time or post-isolation) as well as after incubation in glucose-free medium (60 min time or post-incubation). The post-incubation levels of glycogen in the uteri from normal-fed animals diminished significantly in comparison to post-isolation values, and this decrement was not modified by the addition of indomethacin, nordihydroguaiaretic acid or exogenous prostaglandins E1, E2 or F2 alpha. In rats fed a restricted-diet, the initial glycogen values (0 time) were significantly lower than in normal-fed controls, but did not decline further after incubation in glucose-free medium (60 min time). The addition of indomethacin, acetylsalicylic acid or of nordihydroguaiaretic acid led to a significant fall in the glycogen levels, and exogenous PGE1, PGE2 or PGF2 alpha failed to alter the effects of the inhibitors. The values of PGE and PGF prostaglandins release to the medium by the uterus from restricted-diet rats did not differ from those obtained in the experiments with normal-fed animals. Administration of 17-beta estradiol to restricted-diet rats led to suppression of the effects of this diet on the glycogen concentration. The above results indicate that in rats subjected to a prolonged period of dietary restriction, the uterine glycogen becomes responsive to the effects of cyclooxygenase and lipoxygenase inhibitors, suggesting the operation of some regulatory mechanism during critical periods of nutrition.  相似文献   

4.
Arachidonic acid metabolism is modulated during differentiation induced by 1alpha,25(OH)(2)D(3) in HL-60 cells. Antioxidants that affect arachidonic acid metabolism enhance this differentiation program. Ascorbate also enhances differentiation in 1alpha,25(OH)(2)D(3)-induced cells depending on the induction of cAMP. The aim of this work was to study if this cAMP rise depends on modulation of arachidonic acid metabolism by ascorbate. Cyclooxygenase inhibitors, indomethacin and aspirin, increased cAMP levels and also enhanced 1alpha,25(OH)(2)D(3)-induced differentiation in HL-60 cells. Ascorbate did not affect the release of arachidonic acid-derived metabolites but decreased the levels of TXB(2) and PGE(2), suggesting the inhibition of cyclooxygenase. On the other hand, free arachidonic acid increased both cAMP levels and differentiation in the absence or presence of 1alpha,25(OH)(2)D(3). Neither cyclooxygenase inhibitors nor ascorbate modified AA effect. Then, inhibition of cyclooxygenase activity by ascorbate could accumulate free arachidonic acid or other metabolites that increase cAMP levels and enhance differentiation in 1alpha,25(OH)(2)D(3)-induced HL-60 cells.  相似文献   

5.
The effect of a 25-day restricted diet (50% of the normal food intake) on uterine glucose metabolism of ovariectomized (25 days) and non-ovariectomized rats, was studied. Underfeeding reduces (14)CO(2) production from U(14)C-glucose in intact animal. However, in spayed rats, results are the opposite. In intact rats receiving a low food intake, the effect of the addition to the KRB medium of various agonist opioids, was studied. Dinorphin A did not bring about any change. On the other hand, beta endorphin increased glucose metabolism. Also, the addition of Dago and Dadle increased (14)CO(2) production, while their corresponding specific blockers, beta-FNA and Naltrindole, reversed it. Ovariectomized rats subjected to food restriction are not affected by opioid agonists. In vitro morphine, like endogenous opioids, increased (14)CO(2) in intact restricted diet rats. Arachidonic acid metabolism in these rats show that underfeeding brings about a decrease in PGF(2 alpha) and PGE(2), but the addition of morphine does not alter this situation, for which eicosanoids metabolites are not related to the effect of morphine. The morphine effect was not altered by naloxone. The subcutaneous injection of morphine increased glucose metabolism in intact underfed animals, while naloxone reduced (14)CO(2) in spayed rats subjected to underfeeding. It can be concluded that uteri from ovariectomized rats receiving a restricted diet are influenced by a mechanism of upregulation related to endogenous opioids. These likely originate in other tissues, and so prevent us from seeing the morphine effect.  相似文献   

6.
Renomedullary tissue from rabbit or rat was incubated with angiotensin I, II, III, arachidonic acid, bradykinin, indomethacin and meclofenamate to study their effect on PGE2 production. Arachidonic acid and bradykinin enhanced PGE2 production significantly. Indomethacin and meclofenamate inhibited PGE2 production by more than 70%. Angiotensin I, II and III did not influence PGE2 production. These results suggest that bradykinin and arachidonic acid stimulate PGE2 production by a direct cellular action whereas the angiotensins do not.  相似文献   

7.
Urinary excretion of prostanoids prostaglandin E2 (PGE2), PGE-M (7alpha-hydroxy-5,11-diketo-2,3,4,5,20-penta-19-carboxyprostano ic acid), 6-keto-PGF1alpha, 2,3-dinor-6-keto-PGF1alpha, thromboxane B2 (TxB2) 2,3-dinor-TxB2 and 11-dehydro-TxB2 was determined by gas chromatography/mass spectrometry in preterm and term infants to show that there is an age-dependent excretion rate of the above prostanoids in infants this young. Group I included premature children with normal postnatal development, Groups II and III included term children who were admitted in the neonatal period for observation because of feeding problems but who were subsequently found to be completely healthy. We present normal data of three primary prostanoids and four prostanoid metabolites. In Group I, excretion rates of 2,3-dinor-TxB2 were significantly lower than in Group II (P = 0.04) and in Group III (P = 0.05). Furthermore, the excretion rate of 11-dehydro-TxB2 in group I was significantly lower than in Group II (P = 0.05). We found no significant age-dependent differences between the three groups in excretion rates of PGE2, PGE-M, 6-keto-PGF1alpha, 2,3-dinor-6-keto-PGF1alpha, and TxB2.  相似文献   

8.
The urinary excretion of total N-tau-methylhistidine by the growing rat was measured to evaluate the effects of dietary protein and energy restriction on muscle protein turnover in vivo. 2. Young male rats (about 100 g initial wt.) were fed on one of three diets. Group I (controls) received an adequate 18% lactalbumin diet for 28 days, on which they sustained maximum growth. Group II (protein-depleted) was fed for 14 days on 0.5 lactalbumin diet, which caused loss of weight; this was followed by repletion for 14 days with the control diet. Group III (protein-energy restricted) received a 1% lactalbumin diet at one-half the food intake of group II for 14 days, and this was also followed by 14 days of repletion with the control diet. 3. The controls showed a progressive rise in the daily urinary output of N-tau-methylhistidine, which was proportionally slightly less rapid than the body-weight increase. 4. The protein-depleted group II showed a marked and progressive decrease in N-tau-methylhistidine excretion, which was proportionally greater than the fall in body weight; during repletion, N-tau-methylhistidine output rose in parallel with body-weight increase, but it did not reach the value attained by the control group. 5. Group III, restricted in both dietary protein and energy, showed an initial small increase in daily N-tau-methylhistidine output, which contrasted with the sharp loss of body weight during this period. After 11 days on this restricted diet, group III then underwent a decrease in N-tau-methylhistidine output, which persisted into the first 4 days of the repletion period, after which output of the methylated amino acid became the same as for group II. 6. Creatinine output, used as an additional metabolic measure of muscle metabolism, showed a fairly constant relationship to body weight in groups I and II during depletion and repletion. However, rats with protein-energy deficiency (group III) underwent a marked increase in output of creatinine per unit of body weight, which also persisited into the repletion period before it fell to more normal values relative to body weight. 7. Analysis of the N-tau-methylhistidine content of actin isolated from a group of protein-depleted rats revealed a small (5%) but significance (P less than 0.02) decrease relative to well-nourished controls. 8. Hence, the rate of muscle protein degradation, as indicated by changes in urinary N-tau-methylhistidine output, appears to respond sensitively and in opposite directions to insufficiency of protein of energy in the diet.  相似文献   

9.
Isolated uteri from rats fed with a normal diet convert [14C]arachidonate into eicosanoids: PGE(2), PGF(2alpha), TXB(2) and 6-keto-F(1alpha). Restricted diet (50% of the normal diet, during 25 days) diminishes the levels of PGE(2), PGF(2alpha) and TXB(2). The addition of Interleukin-1alpha to the Krebs-Ringer bicarbonate medium increases sharply the production of eicosanoids. Inhibitors of nitric oxide synthase, Nomega-nitro-L-arginine methyl ester or aminoguanidine, do not prevent eicosanoids increase. Conversely, NS-398 (a selective inhibitor of COX-2) blocks the increase of eicosanoids while PGE(2) blocks eicosanoids production mediated by IL-1alpha. Other experiments with uteri of underfed rats confirm that interleukin-1alpha produces an increase in the glucose metabolism. The addition of Nomega-nitro-L-arginine methyl ester, aminoguadinine or NS-398 blocked such stimulation. It is concluded that Interleukin-1alpha produces an increase of glucose metabolism in uteri isolated from underfed rats by two different mechanisms, both involving COX-2: (1) nitric oxide independent and (2) nitric oxide dependent.  相似文献   

10.
Twenty crossbred gilts with at least 2 consecutive estrous cycles of 18 to 21 days in length were used to study the effects of prostaglandins E2 and F2 alpha (PGE2 and PGF2 alpha) on luteal function in indomethacin (INDO) treated cycling gilts. Intrauterine and jugular vein catheters were surgically placed before day 7 of the treatment estrous cycle and gilts were randomly assigned to 1 of 5 treatment groups (4/group). With exception of the controls (Group I) all gilts received 3.3 mg/kg INDO every 8 h, Groups III, IV and V received 2.5 mg PGF2; 2.5 mg PGF2 alpha + 400 micrograms PGE2 every 4 hr, or 400 micrograms PGE2 every 4 h, respectively. All treatments were initiated on day 7 and continued until estrus or day 23. Jugular blood for progesterone analysis was collected twice daily from day 7 to 30. Estradiol-17 beta (E2-17 beta) concentrations were determined in samples collected twice daily, from 2 d before until 2 d following the day of estrus onset. When compared to pretreatment values, estrous cycle length was unaffected (P greater than 0.05) in Group I, prolonged (P less than 0.05) in Groups II, IV and V; and shortened (P less than 0.05) in Group III. The decline in plasma progesterone concentration that normally occurs around day 15 was unaffected (P greater than .05) in Group I; delayed (P less than 0.05) in Groups II, IV and V; and occurred early (P less than 0.05) in Group III. Mean E2-17 beta remained high (31.2 +/- 4.9 to 49.3 +/- 3.1 pg/ml) in Groups III and IV, while the mean concentrations in Groups III and V varied considerably (17.0 +/- 2.0 to 52.2 +/- 3.5 pg/ml). The results of this study have shown that PGE2 will counteract the effects of PGF2 alpha in INDO treated cycling gilts. The inclusion of PGF2 alpha appeared to either stimulate E2-17 beta secretion or maintain it at a higher level than other treatments.  相似文献   

11.
Prostaglandins (PGs) are known to have effects on hepatic glucose metabolism. Some actions of PGs in intact liver systems may not involve PG effects directly at the level of the hepatocyte. To define the ability of structurally distinct prostaglandins to affect hepatocyte metabolism directly, the regulation of glycogenolysis was studied in hepatocytes isolated from male Sprague-Dawley rats. PGF and PGB2 inhibited glucagon-stimulated glycogenolysis in the hepatocyte system. Pinane thromboxane A2 (PTA2) and PGD2 had no effect on glucagon-stimulated glycogenolysis. Consistent with their inhibition of glucagon-stimulated glycogenolysis, PGF2 and PGF2 alpha inhibited glucagon-stimulated hepatocyte cyclic AMP accumulation. These actions of PGB2 and PGF2 alpha are identical with those previously reported for PGE2. Additionally, PGE2, PGF2 alpha and PGB2 inhibited glucagon-stimulated adenylate cyclase activity in purified hepatic plasma membranes. In contrast, PGF2 alpha, PGD2 and PTA2 were all without affect on basal rates of hepatocyte glycogenolysis or hepatocyte cyclic AMP content. PGE2 also inhibited glycogenolysis stimulated by the alpha-adrenergic agonist phenylephrine. Exogenous arachidonic acid was not able to reproduce the affects of PGE2 or PGF2 alpha on hepatocyte glycogenolysis, consistent with an extra-hepatocyte source of the prostaglandins in the intact liver. Thus PGE2 and PGF2 alpha act specifically to inhibit glucagon-stimulated adenylate cyclase activity. No prostaglandin tested was found to stimulate glycogenolysis. PGE2 and PGF2 alpha may represent intra-hepatic modulators of hepatocyte glucose metabolism.  相似文献   

12.
Reactive oxygen species (ROS) have been implicated in the pathogenesis of cerebral injury after ischemia-reperfusion (I/R). Fish n-3 essential fatty acids (EFA), contain eicosapentaenoic acids (EPA) and docosahexoenoic acids (DHA), exhibit antioxidant properties. DHA is an important component of brain membrane phospholipids and is necessary for the continuity of neuronal functions. EPA prevents platelet aggregation and inhibits the conversion of arachidonic acid into thromboxane A(2) and prostaglandins. They have been suggested to be protective agents against neurological and neuropsychiatric disorders. In this study, the neuroprotective effects of fish n-3 EFA on oxidant-antioxidant systems and number of apoptotic neurons of the hippocampal formation (HF) subjected to cerebral I/R injury was investigated in Sprague-Dawley rats. Six rats were used as control (Group I). Cerebral ischemia was produced by occlusion of both the common carotid arteries combined with hypotension for 45 min, followed by reperfusion for 30 min, in rats either on a standard diet (Group II) or a standard diet plus fish n-3 EFA (Marincap((R)), 0.4 g/kg/day, by gavage) for 14 days (Group III). At the end of procedures, the rats were sacrificed and their brains were removed immediately. The levels of malonedialdehyde (MDA) and nitric oxide (NO) and activities of superoxide dismutase (SOD) and catalase (CAT) were measured in left HF. In addition, the number of apoptotic neurons was counted by terminal transferase dUTP nick end labelling (TUNEL) assay in histological samples of the right HF. We found that SOD activities and MDA levels increased in Group III rats compared with Group II rats. On the other hand, CAT activities and NO levels were found to be decreased in Group III rats compared with Group II rats. Additionally, the number of apoptotic neurons was lower in Group III in comparison with Group II rats. The present findings suggest that fish n-3 EFA could decrease the oxidative status and apoptotic changes in ischemic rat hippocampal formation. Dietary supplementation of n-3 EFA may be beneficial to preserve or ameliorate ischemic cerebral vascular disease.  相似文献   

13.
The effect of dietary hydrogenated fat (Indian vanaspati) high in trans fatty acids (6 en%) on lipid composition, fluidity and function of rat intestinal brush border membrane was studied at 2 and 8 en% of linoleic acid. Three groups of weanling rats were fed rice-pulse based diet containing 10% fat over a ten week period: Group I (groundnut oil), Group II (vanaspati), Group III (vanaspati + safflower oil). The functionality of the brush border membrane was assessed by the activity of membrane bound enzymes and transport of D-glucose and L-leucine. The levels of total cholesterol and phospholipids were similar in all groups. The data on fatty acid composition of membrane phospholipids showed that, at 2 en% of linoleic acid in the diet, trans fatty acids lowered arachidonic acid and increased linoleic acid contents indicating altered polyunsaturated fatty acid metabolism. Alkaline phosphatase activity was increased while the activities of sucrase, gamma-glutamyl transpeptidase and transport of D-glucose and L-leucine were not altered by dietary trans fatty acids. However at higher intake of linoleic acid in the diet, trans fatty acids have no effect on polyunsaturated fatty acid composition and alkaline phosphatase activity of intestinal brush border membrane. These data suggest that feeding dietary fat high in trans fatty acids is associated with alteration in intestinal brush border membrane polyunsaturated fatty acid composition and alkaline phosphatase activity only when the dietary linoleic acid is low.  相似文献   

14.
The effects of insulin on the metabolism of U14C-glucose in uteri isolated from ovariectomized and non-ovariectomized rats receiving a restricted diet (50% of the normal food intake) for 25 days, were studied. As a result of food restriction, the production of 14CO2 diminishes in intact rats, while results are reversed in ovariectomized ones. Various concentrations of insulin were added to the medium, but only 0.50 IU. ml(-1)was effective in increasing glucose metabolism in intact rats receiving a restricted diet; neither underfed castrated animals nor control ones receiving a normal diet, reacted to this concentration. The increase of 14CO2 produced by insulin is not affected by acetyl salicylic acid. Insulin does not alter the effect of underfeeding over arachidonic acid metabolism. On the contrary, the increase in glucose metabolism was blocked by N(G)methyl-L-arginine or by hemoglobin, increased with the addition of L arginine and is not affected by acetyl salicylic acid. Hemoglobin and L-arginine show no effects without insulin. We can conclude that the stimulating effect of insulin on glucose metabolism in uteri isolated from intact rats subjected to dietary restriction, is nitric oxide dependent.  相似文献   

15.
Isolated pancreatic islets of the rat were either prelabeled with [3H]arachidonic acid, or were incubated over the short term with the concomitant addition of radiolabeled arachidonic acid and a stimulatory concentration of glucose (17mM) for prostaglandin (PG) analysis. In prelabeled islets, radiolabel in 6-keto-PGF1 alpha, PGE2, and 15-keto-13,14-dihydro-PGF2 alpha increased in response to a 5 min glucose (17mM) challenge. In islets not prelabeled with arachidonic acid, label incorporation in 6-keto-PGF1 alpha increased, whereas label in PGE2 decreased during a 5 min glucose stimulation; after 30-45 min of glucose stimulation labeled PGE levels increased compared to control (2.8mM glucose) levels. Enhanced labelling of PGF2 alpha was not detected in glucose-stimulated islets prelabeled or not. Isotope dilution with endogenous arachidonic acid probably occurs early in the stimulus response in islets not prelabeled. D-Galactose (17mM) or 2-deoxyglucose (17mM) did not alter PG production. Indomethacin inhibited islet PG turnover and potentiated glucose-stimulated insulin release. Islets also converted the endoperoxide [3H]PGH2 to 6-keto-PGF1 alpha, PGF2 alpha, PGE2 and PGD2, in a time-dependent manner and in proportions similar to arachidonic acid-derived PGs. In dispersed islet cells, the calcium ionophore ionomycin, but not glucose, enhanced the production of labeled PGs from arachidonic acid. Insulin release paralleled PG production in dispersed cells, however, indomethacin did not inhibit ionomycin-stimulated insulin release, suggesting that PG synthesis was not required for secretion. In confirmation of islet PGI2 turnover indicated by 6-keto-PGF1 alpha production, islet cell PGI2-like products inhibited platelet aggregation induced by ADP. These results suggest that biosynthesis of specific PGs early in the glucose secretion response may play a modulatory role in islet hormone secretion, and that different pools of cellular arachidonic acid may contribute to PG biosynthesis in the microenvironment of the islet.  相似文献   

16.
We studied the contractile activity and glucose metabolism, in terms of production of 14CO2 from [14C] glucose, in isolated uteri of immature rats. Immaturity was due to age or exposure to a restricted diet. The contractile activity in both prepubertal groups persisted for a period of 60 minutes and fell when indomethacin was added to the KRB medium. The production of 14CO2 was greater than for adult rats and fell as a result of the addition of indomethacin. The metabolism of [14C] arachidonic acid showed that the percentage of eicosanoids released in age related immature uteri was greater than that in restricted diet related immature uteri. In animals that are immature as a result of exposure to a restricted diet, 14CO2 fell due to the effect of NAME. Sodium nitroprusside and L-arginine increased the production of 14CO2. This effect was reverted by NAME and indomethacin. Conversely, the uteri of age related prepubertal rats were not affected. The level of activity of nitric oxide synthase was higher in restricted diet related immature animals and fell following the addition of NS-398. We may conclude that in rats exposed to a restricted diet, NO and COX-2 participate in glucose metabolism whereas they would not be involved in age related prepubertal animals.  相似文献   

17.
A vitamin E (alpha-tocopherol) deficient diet stimulated prostaglandin biosynthesis in coagulating rat blood. Prostaglandins were extracted from serum, purified and bioassayed. The identity of prostaglandin E2 was confirmed by gas chromatography-mass spectrometry. Withholding vitamin E from the diet caused a marked increase in PGE2 and a lesser increase in PGF2alpha production in serum. In rats maintained on diets containing different concentrations of vitamin E, serum concentrations of PGE2 and PGF2alpha were inversely related to serum concentrations of alpha-tocopherol. These data suggest that in vitro alpha-tocopherol inhibits the endogenous conversion of arachidonic acid into PGE2 and PGF2alpha. The possibility that alpha-tocopherol may inhibit the formation of endoperoxide intermediates of PGE2 and PGF2alpha biosynthesis and subsequent induction of platelet aggregation is discussed.  相似文献   

18.
Previous reports have shown that selenium (Se) nutrition alters the lipoxygenase pathway and mitogenic responses in bovine lymphocytes. In order to further understand how Se may alter lymphocyte function, we examined the effects of Se nutrition on arachidonic acid (AA) metabolism and phospholipase D (PLD) activation. Lymphocytes were isolated from the lymph nodes of rats fed either Se-deficient diet (-Se) or Se-supplemented diet (+Se) for 12 weeks. Our results revealed that calcium ionophore A23187-stimulated lymphocytes derived from -Se rats produced significantly less prostaglandins (PGs) than those obtained from +Se rats. Phospholipase D (PLD) activation by 12-O-tetradecanoylphorbol-13-acetate (TPA) was significantly lower in lymphocytes obtained from -Se rats when compared to cells from +Se rats. Furthermore, the addition of PGE2, PGD2 or PGF2alpha to suspended lymphocytes from -Se rats significantly enhanced PLD activity. The effects of TPA and PGE2 on PLD activation were additive. However, the addition of PGE2 abolished the significant difference in PLD activation between -Se and +Se cells observed in response to TPA alone. Based on these results, we postulate that dietary Se status plays an important role in the regulation of AA metabolism that subsequently affects PLD activation.  相似文献   

19.
Lung cells have been isolated by enzymatic digestion of guinea pig lungs and mechanical dispersion to obtain a suspension of viable cells (approximately 500 X 10(6) cells). Type II pneumocytes have been purified to approximately 92% by centrifugal elutriation (2000 rpm, 15 ml/min) followed by a plating in plastic dishes coated with guinea pig IgG (500 micrograms/ml). We have investigated the arachidonic acid metabolism through the cyclooxygenase pathway in this freshly isolated type II cells (2 x 10(6) cells/ml). Purified type II pneumocytes produced thromboxane B2 (TxB2) predominantly and to a smaller extent the 6-keto prostaglandin PGF1 alpha (6-keto-PGF1 alpha) and prostaglandin E2 (PGE2) after incubation with 10 microM arachidonic acid. The stimulation of pneumocytes with 2 microM calcium ionophore A23187 released less eicosanoids than were produced when cells were incubated with 10 microM arachidonic acid. There was no additive effect when the cells were treated with both arachidonic acid and the ionophore A23187. Guinea pig type II pneumocytes failed to release significant amounts of TxB2, 6-keto-PGF1 alpha and PGE2 after stimulation with 10 nM leukotriene B4, 10 nM leukotriene D4, 10 nM platelet-activating factor, 5 microM formyl-methionyl-leucyl-phenylalanine, 0.2 microM bradykinin and 10 nM phorbol myristate acetate. Our findings indicate that guinea pig type II pneunomocytes possess the enzymatic machinery necessary to convert arachidonic acid to specific cyclooxygenase products, which may suggest a role for these cells in lung inflammatory processes.  相似文献   

20.
In resting mesangial cells, angiotensin II and the calcium ionophore A23187 stimulated prostaglandin E2 (PGE2) formation. After pretreatment with interleukin 1 beta (IL-1 beta) or tumor necrosis factor alpha (TNF alpha), which are themselves potent stimuli for PGE2 synthesis, mesangial cells displayed an amplified response to angiotensin II and A23187. The cytokine-induced effects occurred in a time- and dose-dependent manner and were attenuated by actinomycin D, cycloheximide and dexamethasone. IL-1 beta and TNF alpha treatment also increased the amount of arachidonic acid released after stimulation of cells with angiotensin II and A23187. In addition, IL-1 beta but not TNF alpha treatment augmented the formation of PGE2 from exogenous arachidonic acid by mesangial cells. Furthermore, the conversion of prostaglandin H2 to PGE2 was not changed by IL-1 beta and TNF alpha. These results suggest that IL-1 beta and TNF alpha exert a priming effect on PGE2 production in mesangial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号