首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural gene (beta GALA) coding for lysosomal beta-galactosidase-A (EC 3.2.1.23) has been assigned to human chromosome 3 using man--mouse somatic cell hybrids. Human beta-galactosidase-A was identified in cell hybrids with a species-specific antiserum to human liver beta-galactosidase-A. The antiserum precipitates beta-galactosidase-A from human tissues, cultured cells, and cell hybrids, and recognizes cross-reacting material from a patient with GM1 gangliosidosis. We have analyzed 90 primary man--mouse hybrids derived from 12 separate fusion experiments utilizing cells from 9 individuals. Enzyme segregation analysis excluded all chromosomes for beta GALA assignment except chromosome 3. Concordant segregation of chromosomes and enzymes in 16 cell hybrids demonstrated assignment of beta GALA to chromosome 3; all other chromosomes were excluded. The evidence suggests that GM1 gangliosidosis is a consequence of mutation at this beta GALA locus on chromosome 3.  相似文献   

2.
The structural gene for human acid beta-glucosidase (GBA) has been assigned to chromosome 1 using somatic cell hybridization techniques for gene mapping. The human enzyme was detected in mouse RAG cell-human fibroblast cell hybrids by a sensitive double antibody immunoprecipitation assay using a mouse antihuman GBA antibody. No cross-reactivity between mouse beta-glucosidase and human GBA or neutral beta-glucosidase (GBN) was observed. Fifty-two primary, secondary, and tertiary manmouse hybrid lines, derived from three separate fusion experiments, were analyzed for human GBA and enzyme markers for the human chromosomes. Without exception, the presence of human GBA in these hybrid clones was correlated with the presence of human chromosome 1 or its enzymatic markers, phosphoglucomutase 1 (PGM1), and fumarate hydratase (FH). All other human chromosomes were eliminated by the independent segregation of GBA and their respective enzyme markers and/or chromosomes. Using a RAG X human fibroblast line with a mouse-human rearrangement of human chromosome 1, the locus for GBA was limited to the region 1p11 to 1qter.  相似文献   

3.
The adenylate kinase 1 (AK1), adenylate kinase3 (AK3), and aconitaseS (ACONS) genes have been assigned to chromosome 9 in man by employing an X/9 translocation segregating in man-mouse somatic cell hybrids. Segregation was controlled by taking advantage of the HAT/8-azaguanine selection-counterselection strategy directed at the X-linked HPRT locus. Assignment of AK1 to chromosome 9 has suggested the assignment of the ABO blood-group locus and the nail-patella (Np) locus to 9, since both loci are linked to AK1 by family studies.  相似文献   

4.
Skin fibroblasts (LNSV) derived from a hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficient patient with the Lesch-Nyhan syndrome, who has glucose-6-phosphate dehydrogenase (G6PD) type A, were transformed with SV40 and hybridized with WI38 human diploid fibroblasts derived from a female embryo which have normal HGPRT and G6PD type B activities. The hybrid clones selected in hypoxanthine, aminopterin and thymidine (HAT) medium, were essentially tetraploid and contained three X and one Y chromosomes. These hybrids contained HGPRT, types A and B and the AB heteropolymeric form of G6PD enzymes which were indicative that in these cells X linked genes of both parental cells were fully active. Hybrids back-selected in medium containing 8-azaguanine (8-AG) contained only two X chromosomes. They had no HGPRT activity and they contained only G6PD type A enzyme. It is concluded that the hybrid cells which grew in the presence of 8-AG retained the X chromosome of the LNSV parental cell and apparently the inactive X of the WI 38 cell.  相似文献   

5.
To develop an systematic in vitro approach for the study of genomic imprinting, we generated a new library of human/mouse A9 monochromosomal hybrids. We used whole cell fusion and microcell-mediated chromosome transfer to generate A9 hybrids containing a single, intact, bsr-tagged human chromosome derived from primary fibroblasts. A9 hybrids were identified that contained either human chromosome 1, 2, 4, 5, 7, 8, 10, 11, 15, 18, 20, or X. The parental origin of these chromosomes was determined by polymorphic analysis using microsatellite markers, and matched hybrids containing maternal and paternal chromosomes were identified for chromosomes 5, 10, 11 and 15. The imprinted gene KVLQT1 on human chromosome 11p15.5 was expressed exclusively from the maternal chromosome in A9 hybrids, and the parental-origin-specific expression patterns of several other imprinted genes were also maintained. This library of human monochromosomal hybrids is a valuable resource for the mapping and cloning of human genes and is a novel in vitro system for the screening of imprinted genes and for their functional analysis.  相似文献   

6.
Evidence is presented for the uptake of the human X chromosome by human-Chinese hamster cell hybrids which lack H P R T activity, following incubation with isolated human HeLa S3 chromosomes. Sixteen independent clonal cell lines were isolated in H A T medium, all of which contained a human X chromosome as determined by trypsin-Giemsa staining. The frequency of H A T-resistant clones was 32 x 10(-6) when 10(7) cells were incubated with 10(8) HeLa chromosomes. Potential reversion of the hybrid cells in H A T medium was less than 5 x 10(-7). The 16 isolated cell lines all contained activity of the human X-linked marker enzymes H P R T, P G K,alpha-Gal A, and G6PD, as determined by electrophoresis. The phenotype of G6PD was G6PD A, corresponding to G6PD A in HeLa cells. The human parental cells used in the fusion to form the hybrids had the G6PD B phenotype. The recipient cells gave no evidence of containing human X chromosomes. These results indicate that incorporation and expression of HeLa X chromosomes is accomplished in human-Chinese hamster hybrids which lack a human X chromosome.  相似文献   

7.
The chromosomal locus of the human corticotropin releasing hormone (hCRH) gene was assigned to chromosome 8 using Southern blot analysis of human x rodent cell hybrids and was localized to band 8q13 using in situ hybridization to metaphase chromosomes. The absence of secondary hybridization strongly suggests that hypothalamic and placental CRH are transcribed from the same gene.  相似文献   

8.
Using a panel of human/rodent somatic cell hybrids and human lymphoblast lines segregating 18 different human X-chromosome rearrangements and deletions, we have assigned 60 DNA markers to the physical map of the X chromosome from Xp21.1 to Xq21.3. Data from Southern blot hybridization and polymerase chain reaction (PCR) amplification assign these markers to 15 primary map intervals. This provides a basis for further long-range cloning and mapping of the pericentromeric region of the X chromosome.  相似文献   

9.
The Alu-polymerase chain reaction (Alu-PCR) was applied to selectively amplify DNA sequences from human chromosome 6 using a single primer (A1) directed to the human Alu consensus sequence. A specific amplification pattern was demonstrated for a panel of eight somatic cell hybrids containing different portions of chromosome 6. This PCR pattern permits the identification of submicroscopic DNA alterations and can be utilized as a reference for additional chromosome 6-specific hybrids. To obtain new chromosome 6-specific markers we established two libraries from PCR-amplified sequences using two somatic cell hybrids (MCH381.2D and 640-5A). Out of a total of 109 clones that were found to be chromosome 6 specific, 13 clones were regionally assigned. We also included a procedure that allows the isolation of chromosome 6-specific markers from hybrids that contain human chromosomes other than 6. Our results will contribute to the molecular characterization of chromosome 6 by fostering characterization of somatic cell hybrids and by the generation of new regionally assigned DNA markers.  相似文献   

10.
The structural gene encoding liver-specific tyrosine aminotransferase (TAT; EC 2.6.1.5) was assigned to mouse chromosome 8 by screening a series of hybrid cell lines for retention of murine Tat-1 gene sequences by genomic Southern blotting. This assignment demonstrated that the Tat-1 structural gene was not syntenic with Tse-1, a chromosome 11-linked locus that negatively regulates TAT expression in trans (A. M. Killary and R. E. K. Fournier, Cell 38:523-534, 1984). We also showed that the fibroblast Tat-1 gene was systematically activated in hepatoma X fibroblast hybrids retaining fibroblast chromosomes 8 in the absence of chromosome 11 but was extinguished in cells retaining both fibroblast chromosomes. Thus, the TAT structural genes of both parental cell types were coordinately regulated in the intertypic hybrids, and the TAT phenotype of the cells was determined by the presence or absence of fibroblast Tse-1.  相似文献   

11.
R S Lemons  S J O'Brien  C J Sherr 《Cell》1977,12(1):251-262
Somatic cell hybrids derived from seven independent fusions between mouse X human and hamster X human parental cells were examined for their ability to support the replication of the baboon endogenous type C virus. These hybrids preferentially segregated human chromosomes while retaining rodent chromosomes, as demonstrated by karyotypic and isozyme analysis. A total of 41 primary colonies and 33 secondary subclones were analyzed for viral replication, as well as for the presence of enzyme structural gene markers for 19 of 23 human chromosomes. A syntenic association was seen between the ability of the baboon type C virus to infect and replicate in hybrid cultures and the expression of human malic enzyme-1 (assigned to human chromosome 6). Analysis of 86 highly segregated subclones derived from cells preinfected with baboon type C virus showed that the continued production of baboon type C virus segregated concordantly with the expression of three enzyme genes assigned to human chromosome 6 (malic enzyme-1, phosphoglucomutase-3 and superoxide dismutase-2). Subclones of infected hybrids which lost chromosome 6 and failed to release virus also failed to synthesize the virus-coded major structural protein p30. No syntenic association between baboon virus expression and any of 18 other human chromosomes was observed. These studies define a new gene (designated Bevi) on human chromosome 6 which dominantly controls the replication of baboon type C virus. The data suggest that Bevi may be a preferred integration site for the baboon type C DNA provirus in the human genome.  相似文献   

12.
M. Schartl 《Genetics》1988,119(3):679-685
In Xiphophorus, the causative genetic information for melanoma formation has been assigned by classical genetics to chromosomal loci, which are located on the sex chromosomes. In our attempts to molecularly clone these melanoma-determining loci, named Tu, we have looked for restriction-fragment-length markers (RFLMs) linked to the Tu loci. These RFLMs should be useful in obtaining a physical map of a Tu locus, which will aid in the cloning of the corresponding sequences. DNA samples from various Xiphophorus strains and hybrids including those bearing different Tu wild-type, deletion and translocation chromosomes, were screened for the presence of random RFLMs using homologous or heterologous sequences as hybridization probes. We find an EcoRI restriction fragment which shows limited crosshybridization to the v-erb B gene--but not representing the authentic c-erb B gene of Xiphophorus--to be polymorphic with respect to different sex chromosomes. Linkage analysis revealed that a 5-kb fragment is linked to the Tu-Sd locus on the X chromosome, a 7-kb fragment is linked to the Tu-Sr locus on the Y chromosome, both of Xiphophorus maculatus, and that a 12-kb fragment is linked to the Tu-Li locus on the X chromosome of Xiphophorus variatus. Using different chromosomal mutants this RFLM has been mapped to a frequent deletion/translocation breakpoint of the X chromosome, less than 0.3 cM apart from the Tu locus.  相似文献   

13.
Human white blood cells with an X/22 translocation [46, XX, t(X;22)(q23;q13)] were fused with Chinese hamster cells. The isolated hybrids were analyzed for human chromosomes and 21 enzyme markers. An electrophoretic technique for studying the beta-galactosidase isoenzymes in man-Chinese hamster hybrid cells was developed. Immunological studies showed that the beta-galactosidase marker studied in these hybrids did contain immunological determinants of human origin. Furthermore the results provided evidence that a locus for beta-galactosidase is situated on chromosome 22 distal to the breakpoint in q13.  相似文献   

14.
Analysis of human-Chinese hamster somatic cell hybrids with spontaneously derived chromosome structural changes has provided data for the regional and subregional localization of gene loci which have previously been assigned to human chromosomes 2, 12, and X. Correlation of the expression of human gene loci with the human chromosome complements present in somatic cell hybrids indicates that the cytoplasmic malate dehydrogenase (MDH1) locus is in the 2p23yields2pter region, and red cell acid phosphatase (AcP1) is at or adjacent to 2p23. The cytoplasmic isocitrate dehydrogenase (IDH1) locus is at or adjacent to 2q11, peptidase B (Pep B) is at or adjacent to 12q21, lactate dehydrogenase B (LDH B) is in the 12q21yiedls12pter region, glucose-6-phosphate dehydrogenase (G6PD) is in the Xq24yieldsXqter region, and the gene loci for phosphoglycerate kinase (PGK), alpha-galactosidase (alpha-gal), and hypoxanthine guanine phosphoribosyltransferase (GPRT) are in the Xp21yieldsXq24 region.  相似文献   

15.
Somatic cell hybrids were derived from the fusion of (1) Chinese hamster cells deficient in hypoxanthine guanine phosphoribosyltransferase (HPRT) and human cells carrying an X/9 translocation and (2) Chinese hamster cells deficient in thymidine kinase (TK) and human cells carrying a 17/9 translocation. Several independent primary hybrid clones from these two series of cell hybrids were analyzed cytogenitically for human chromosome content and electrophoretically for the expression of human markers known to be on human chromosome 9. The results allow the assignment of the loci for the enzymes galactose-1-phosphate uridyltransferase (GALT), soluble aconitase (ACONs), and adenylate kinase-3 (AK3) to the short arm of chromosome 9 (p11 to pter) and the locus for the enzyme adenylate kinase-1 (AK1) to the distal end of the long arm of human chromosome 9 (hand q34). Earlier family studies have shown that the locus for AK1 is closely linked to the ABO blood group locus and to the locus of the nail-patella (Np) syndrome. Thus the regional localization of AK1 locus permits the localization of the AK1-Np-ABO linkage group.  相似文献   

16.
S Brown  H K Oie  A F Gazdar  J D Minna  U Francke 《Cell》1979,18(1):135-143
The replication pattern of the endogenous baboon type C virus M7 was studied in 29 primary Chinese hamster × human hybrid clones generated with leukemic cells from two different patients with acute lymphoblastic or myeloblastic leukemia. There was no evidence of viral particulate RDDP or M7 antigen before viral infection. M7 virus replicated in human and some hybrid cells but not in Chinese hamster cells, indicating that M7 requires dominantly expressed human gene(s) for replication. Enzyme and cytogenetic analyses show that a gene(s) coded for by human chromosome 19 is necessary for M7 infection of these hybrids. Detailed cytogenetic correlations revealed, however, that the chromosome 19+/M7 + hybrid clones with intact chromosomes also had copies of chromosomes 3 and 6. Previously, Bevi, the putative integration site for M7 virus, has been assigned to human chromosome 6. Many clones with various combinations of chromosomes 3 and 6 lacked chromosome 19, however, and failed to replicate exogenously applied M7 virus, while tests of 27 secondary clones showed that M7 markers co-segregated with chromosome 19 markers. These findings all confirm the need for a chromosome 19-coded function in Chinese hamster × human hybrids. In addition, the yield of viral particulate RDDP produced into the culture fluid was 50–100 fold less per viral antigen-positive cell in the hybrids compared with human cells. Thus some form of regulation of viral components exists in the hybrid cells. When the virus replicating in hybrid cells was transferred back to human cells, this regulation was relaxed and the yield of RDDP per FA(+) cell greatly increased. We conclude that human chromosomes 6 and 19 code for functions involved in M7 virus metabolism, and we cannot exclude a function coded for by chromosome 3.  相似文献   

17.
By hybridizing a tritiated human genomic probe (pGD3) to metaphase chromosomes in situ, we have localized the gene for glucose-6-phosphate dehydrogenase (G6PD) in both the human and mouse complement. The locus on the intact human X chromosome is close to the telomere on the long arm, confirming the assignment based on studies of an X/autosome translocation in human-mouse hybrids. Although the signal:background ratio was reduced for the heterologous hybridization of the human probe to mouse metaphases, 20% of the grains were on the X chromosome and 93% of these were in the A region, relatively close to the centromere. The location of G6PD in mouse and man reflects intrachromosomal transposition of these homologous X loci. Genomic DNAs from mouse and man and from hybrids with human X/autosome translocations were digested with several restriction enzymes including EcoRI, PstI, and HpaII, and Southern blots were probed with 32P-pGD3. The results of the analysis also confirm the human G6PD assignment and are consistent with a single copy of the locus in the haploid genome of both species.  相似文献   

18.
Analysis of a group of human/rodent somatic cell hybrids with nucleic acid probes prepared from cloned human variable region (VH), junctional (JH), and constant region (C epsilon) heavy chain immunoglobulin genes indicates that all of these IgH genes are localized on the subtelomeric (q32) band of chromosome 14. Somatic cell hybrids were isolated in selective medium after fusing human fibroblasts with hprt- Chinese hamster cells. The human parental cells contained two translocation chromosomes representing a reciprocal translocation between chromosomes X and 14. Only those hybrid cell lines retaining a complete human autosome 14 or the X/14 translocation chromosome (i.e. containing band 14q32) retained the human IgH genes. Retention of these genes did not correlate with the presence of the other translocation chromosome, 14/X. These results indicate that all human IgH genes (VH, JH, and CH) map to the same chromosomal band (14q32) which is commonly involved in reciprocal translocations with human chromosome 8 (8q24) in B-cell neoplasms.  相似文献   

19.
Ninety-nine loci have been assigned to river buffalo chromosomes, 67 of which are coding genes and 32 of which are anonymous DNA segments (microsatellites). Sixty-seven assignments were based on cosegregation of cellular markers in somatic cell hybrids (synteny), whereas 39 were based on in situ hybridization of fixed metaphase chromosomes with labeled DNA probes. Seven loci were assigned by both methods. Of the 67 assignments in somatic cell hybrids, 38 were based on polymerase chain reaction (PCR), 11 on isozyme electrophoresis, 10 on restriction endonuclease digestion of DNA, 4 on immunofluorescence, and 4 on chromosomal identification. A genetic marker or syntenic group has been assigned to each arm of the five submetacentric buffalo chromosomes as well as to the 19 acrocentric autosomes, and the X and Y chromosomes. These same markers map to the 29 cattle autosomes and the X and Y chromosomes, and without exception, cattle markers map to the buffalo chromosome or chromosomal region predicted from chromosome banding similarity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号