首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The atrioventricular junction of the fish heart, namely the segment interposed between the single atrium and the single ventricle, has been studied anatomically and histologically in several chondrichthyan and teleost species. Nonetheless, knowledge about myosin heavy chain (MyHC) in the atrioventricular myocardium remains scarce. The present report is the first one to provide data on the MyHC isoform distribution in the myocardium of the atrioventricular junction in chondrichthyans, specifically in the lesser spotted dogfish, Scyliorhinus canicula, a shark species whose heart reflects the primitive cardiac anatomical design in gnathostomes. Hearts from five dogfish were examined using histochemical and immunohistochemical techniques. The anti-MyHC A4.1025 antibody was used to detect differences in the occurrence of MyHC isoforms in the dogfish, as the fast-twitch isoforms MYH2 and MYH6 have a higher affinity for this antibody than the slow-twitch isoforms MYH7 and MYH7B. The histochemical findings show that myocardium of the atrioventricular junction connects the trabeculated myocardium of the atrium with the trabeculated layer of the ventricular myocardium. The immunohistochemical results indicate that the distribution of MyHC isoforms in the atrioventricular junction is not homogeneous. The atrial portion of the atrioventricular myocardium shows a positive reactivity against the A4.1025 antibody similar to that of the atrial myocardium. In contrast, the ventricular portion of the atrioventricular junction is not labelled, as is the case with the ventricular myocardium. This dual condition suggests that the myocardium of the atrioventricular junction has two contraction patterns: the myocardium of the atrial portion contracts in line with the atrial myocardium, whereas that of the ventricular portion follows the contraction pattern of the ventricular myocardium. Thus, the transition of the contraction wave from the atrium to the ventricle may be established in the atrioventricular segment because of its heterogeneous MyHC isoform distribution. The findings support the hypothesis that a distinct MyHC isoform distribution in the atrioventricular myocardium enables a synchronous contraction of inflow and outflow cardiac segments in vertebrates lacking a specialized cardiac conduction system.  相似文献   

2.
The outflow tract of the heart is recruited from a novel heart-forming field.   总被引:19,自引:0,他引:19  
As classically described, the precardiac mesoderm of the paired heart-forming fields migrate and fuse anteriomedially in the ventral midline to form the first segment of the straight heart tube. This segment ultimately forms the right trabeculated ventricle. Additional segments are added to the caudal end of the first in a sequential fashion from the posteriolateral heart-forming field mesoderm. In this study we report that the final major heart segment, which forms the cardiac outflow tract, does not follow this pattern of embryonic development. The cardiac outlet, consisting of the conus and truncus, does not derive from the paired heart-forming fields, but originates separately from a previously unrecognized source of mesoderm located anterior to the initial primitive heart tube segment. Fate-mapping results show that cells labeled in the mesoderm surrounding the aortic sac and anterior to the primitive right ventricle are incorporated into both the conus and the truncus. Conversely, if cells are labeled in the existing right ventricle no incorporation into the cardiac outlet is observed. Tissue explants microdissected from this anterior mesoderm region are capable of forming beating cardiac muscle in vitro when cocultured with explants of the primitive right ventricle. These findings establish the presence of another heart-forming field. This anterior heart-forming field (AHF) consists of mesoderm surrounding the aortic sac immediately anterior to the existing heart tube. This new concept of the heart outlet's embryonic origin provides a new basis for explaining a variety of gene-expression patterns and cardiac defects described in both transgenic animals and human congenital heart disease.  相似文献   

3.
4.
Probit frequency analysis, a graphic method for determining whether a population is normally distributed, skewed, or multinodal, was used to determine whether P cells are present in different regions of the AV junction in the ferret heart. This analysis indicated that at least 95% of the cells of the transitional zone, superficial AV node, deep AV node, and distal AV bundle of the ferret heart are morphologically homogeneous. In the proximal AV bundle a large cell population is found in addition to the AV bundle cells. The probit analysis was also used to characterize the shape of the cells of each region of the AV junction further. AV nodal cells are not as elongated as the atrial muscle cells and AV bundle cells. These nodal cells also do not branch as extensively as the AV bundle cells.  相似文献   

5.
Cardiac neural crest contributes to cardiomyogenesis in zebrafish   总被引:2,自引:0,他引:2  
In birds and mammals, cardiac neural crest is essential for heart development and contributes to conotruncal cushion formation and outflow tract septation. The zebrafish prototypical heart lacks outflow tract septation, raising the question of whether cardiac neural crest exists in zebrafish. Here, results from three distinct lineage-labeling approaches identify zebrafish cardiac neural crest cells and indicate that these cells have the ability to generate MF20-positive muscle cells in the myocardium of the major chambers during development. Fate-mapping demonstrates that cardiac neural crest cells originate both from neural tube regions analogous to those found in birds, as well as from a novel region rostral to the otic vesicle. In contrast to other vertebrates, cardiac neural crest invades the myocardium in all segments of the heart, including outflow tract, atrium, atrioventricular junction, and ventricle in zebrafish. Three distinct groups of premigratory neural crest along the rostrocaudal axis have different propensities to contribute to different segments in the heart and are correspondingly marked by unique combinations of gene expression patterns. Zebrafish will serve as a model for understanding interactions between cardiac neural crest and cardiovascular development.  相似文献   

6.
Coordination between adjacent tissues plays a crucial role during the morphogenesis of developing organs. In the embryonic heart, two tissues - the myocardium and the endocardium - are closely juxtaposed throughout their development. Myocardial and endocardial cells originate in neighboring regions of the lateral mesoderm, migrate medially in a synchronized fashion, collaborate to create concentric layers of the heart tube, and communicate during formation of the atrioventricular canal. Here, we identify a novel transmembrane protein, Tmem2, that has important functions during both myocardial and endocardial morphogenesis. We find that the zebrafish mutation frozen ventricle (frv) causes ectopic atrioventricular canal characteristics in the ventricular myocardium and endocardium, indicating a role of frv in the regional restriction of atrioventricular canal differentiation. Furthermore, in maternal-zygotic frv mutants, both myocardial and endocardial cells fail to move to the midline normally, indicating that frv facilitates cardiac fusion. Positional cloning reveals that the frv locus encodes Tmem2, a predicted type II single-pass transmembrane protein. Homologs of Tmem2 are present in all examined vertebrate genomes, but nothing is known about its molecular or cellular function in any context. By employing transgenes to drive tissue-specific expression of tmem2, we find that Tmem2 can function in the endocardium to repress atrioventricular differentiation within the ventricle. Additionally, Tmem2 can function in the myocardium to promote the medial movement of both myocardial and endocardial cells. Together, our data reveal that Tmem2 is an essential mediator of myocardium-endocardium coordination during cardiac morphogenesis.  相似文献   

7.
8.
Monoclonal antibodies (McAb) against myosin from the pectoralis muscle of the adult chicken have been generated and shown to react specifically with the myosin heavy chain (MHC). The reactivities of two such McAbs with myosin from adult chicken atrial and ventricular myocardium were further analysed by immunoautoradiography, radioimmunoassay, and immunofluorescence microscopy. Monoclonal antibody MF 20 was found to bind both atrial and ventricular MHC and stain all striated muscle cells of the adult chicken heart. In contrast, McAb B1 bound specifically to atrial myocytes in immunofluorescence studies, while immunoautoradiography and radioimmunoassay demonstrated the specificity of this antibody for the atrial MHC. Upon reacting these McAbs with myosin isolated from embryonic hearts where definitive atria and ventricles were present, the same specificity of antibody binding was observed. Immunofluorescence studies demonstrated that all striated muscle cells of the embryonic heart contained MHCs recognized by MF 20, while only atrial muscle cells were bound by B1. When extracts of presumptive atrial and ventricular tissue were reacted with MF 20 and B1, significant reactivity of MF 20 was first observed at stage 10 in the presumptive ventricle and thereafter this McAb reacted with all regions of the developing myocardium. Binding of B1 was detected approximately 1 day later at stage 15 and was confined to atrial-forming tissues. These data demonstrate antigenic similarity between adult and embryonic MHC isolated from atrial myocardium and suggest the expression of an atrial-specific MHC early in the regional differentiation of the heart.  相似文献   

9.
10.
Summary The caprine sinoatrial node (SAN) and atrioventricular node (AVN) were studied by freeze-fracture techniques, and their nexus or gap junction structure were compared with that of ordinary atrial and ventricular muscle cells. The general features of the nexus in both the SAN and AVN were essentially identical. Approximately two-thirds of the nexuses observed in the nodal cells consisted of typical macular arrangements of nexal particles, and the remaining third, of atypical configurations of either circular arrangements or linear arrays of particles in continuity with the macular nexuses. Such atypical nexuses were never observed in the ordinary adult myocardial cells. Quantitative analysis revealed that all of the nexuses in the nodal cells measured, were less than 0.1 m2, whereas the majority of the nexuses in ordinary myocardial cells (64% in the atrium and 76% in the ventricle) were larger than 0.1 m2. No significant differences in diameter and center-to-center distance of nexal particle were found between the nodal cells and ordinary myocardial cells.  相似文献   

11.
In the 8-, 9-, and 10-day-old mouse embryos, the primitive atria are interconnected with the ventricles via the atrioventricular (A-V) canal. Due to the twisting process of the tubular heart, the wall of the A-V canal establishes continuity not only with the left ventricle but also with the bulbus and truncus arteriosus. At this stage of heart development, the A-V node and bundle have not yet appeared, and, thus, the atrial impulse must be conveyed to the ventricle by the muscle tissue of the wall of the A-V canal, in which two muscle cell layers have been observed. The inner layer extends deep into the left ventricular cavity and is interconnected with both the trabecular system and the ventricular (IV) septum, which begins to develop on the tenth day. In the inner dorsal wall of the A-V canal, the cells are large (~ 20 μm in diameter) and show a strong PAS reaction. It is likely that these large glycogen-rich cells from which the A-V node primordium develops on the eleventh day play the main role in the A-V impulse conduction. The muscle cells at the ventrolateral walls of the canal are small and form a loose spongy myocardium into which the connective tissue cells begin to penetrate on the tenth day, ultimately to form the annulus fibrosus. At the same time, the outer cell layer of the dorsal wall begins to deteriorate; the cells show vacuolar degeneration, myolysis, and shrinkage necrosis. This process appears to represent a programmed cell death, as was described in the bird heart (Pexieder, 1975). On the basis of morphological data, the sequence of atrioventricular activation before the appearance of the A-V node and bundle is discussed.  相似文献   

12.
Goosecoid (gsc)is expressed in the organizer region of vertebrate embryos undergoing the movements of gastrulation. Likewise, the early heart tube (8.5-9.5 dpc) undergoes a similar process of looping to bring the atrial region cranial and dorsal to the ventricular region, eventually giving rise to the four chambered heart. In order to determine whether gsc is similarly involved in heart morphogenesis, in situ hybridization and RT-PCR were used to detect gsc expression in the embryonic mouse heart. We have shown, for the first time, that gsc mRNA is expressed in the developing mouse heart, and is localized to the sites that divide the primitive heart tube into a four chambered heart.  相似文献   

13.
The anatomic relationship of the aortic and mitral valves is a useful landmark in assessing congenital heart malformations. The atrioventricular and semilunar valve regions originate in widely separated parts of the early embryonic heart tube, and the process by which the normal fibrous continuity between the aortic and mitral valves is acquired has not been clearly defined. The development of the aortic and mitral valve relationship was studied in normal human embryos in the Carnegie Embryological Collection, and specimens of Carnegie stages 13, 15, 17, 19, and 23, prepared as serial histologic sections cut in the sagittal plane, were selected for reconstruction. In stage 13, the atrioventricular valve area is separated from the semilunar valve area by the large bend between the atrioventricular and outflow-tract components of the single lumen heart tube created by the left interventricular sulcus. In stages 15 and 17, the aortic valve rotates into a position near the atrioventricular valves with development of four chambers and a double circulation. In stage 19, there is fusion of aortic and mitral endocardial cushion material along the endocardial surface of the interventricular flange, and this relationship is maintained in subsequent stages. Determination of three-dimensional Cartesian coordinates of the midpoints of valve positions shows that, while there is growth of intervalvular distances up to stage 17, the aortic to mitral distance is essentially unchanged thereafter. During the period studied, the left ventricle increases in length over threefold. The relative lack of growth in the saddle-shaped fold between the atrioventricular and outflow tract components of the heart, contrasting with the rapid growth of the outwardly convex components of most of the atrial and ventricular walls, may be attributed to the different mechanical properties of the two configurations. It is postulated that the pathogenesis of congenital heart malformations, which characteristically have failure of development of aortic and mitral valve continuity, may involve abnormalities of rotation of the aortic region or malpositioning of the fold in the heart tube.  相似文献   

14.
We transiently expressed a proapoptotic protein, Nip3a, by a heart-specific BMP4 promoter in zebrafish embryos and generated two variants of embryos with abnormal heart phenotypes (A and B). Embryos with phenotype A heart defects showed hypoplastic or elongated ventricles, elongated or enlarged atriums with no normal cardiac looping resulting a significant longer SV-BA distance, and bradycardia at 48 h post-fertilization (hpf). Embryos with phenotype B heart defects showed an enlarged fluid-filled pericardium, severe hypoplasia, non-contracting ventricles, and elongated or enlarged slowly beating atriums with no normal looping. Histological sections further revealed the absence of a proper atrioventricular boundary and no endocardial cells lining this region in both 48- and 72-hpf Nip3a-overexpressing embryos, implicating defective endocardial cushion formation. These phenotypes are reminiscent of atrioventricular canal defects in humans. In addition, induced apoptotic myocardium cells were clustered in the presumptive atrioventricular boundary as well as in the adjacent ventricle and atrium of 48- and 72-hpf Nip3a-overexpressing embryos. Nip3a expression was readily detected in 80% epiboly BMP4-Nip3a-injected embryos, and defects in heart development were observed in both the linear heart tube and subsequent chamber formation stages. These results showed that myocyte apoptosis is a universal pathogenic factor for congenital heart failure using zebrafish as a model organism.  相似文献   

15.
During cardiogenesis the epicardium, covering the surface of the myocardial tube, has been ascribed several functions essential for normal heart development of vertebrates from lampreys to mammals. We investigated a novel function of the epicardium in ventricular development in species with partial and complete septation. These species include reptiles, birds and mammals. Adult turtles, lizards and snakes have a complex ventricle with three cava, partially separated by the horizontal and vertical septa. The crocodilians, birds and mammals with origins some 100 million years apart, however, have a left and right ventricle that are completely separated, being a clear example of convergent evolution. In specific embryonic stages these species show similarities in development, prompting us to investigate the mechanisms underlying epicardial involvement. The primitive ventricle of early embryos becomes septated by folding and fusion of the anterior ventricular wall, trapping epicardium in its core. This folding septum develops as the horizontal septum in reptiles and the anterior part of the interventricular septum in the other taxa. The mechanism of folding is confirmed using DiI tattoos of the ventricular surface. Trapping of epicardium-derived cells is studied by transplanting embryonic quail pro-epicardial organ into chicken hosts. The effect of decreased epicardium involvement is studied in knock-out mice, and pro-epicardium ablated chicken, resulting in diminished and even absent septum formation. Proper folding followed by diminished ventricular fusion may explain the deep interventricular cleft observed in elephants. The vertical septum, although indistinct in most reptiles except in crocodilians and pythonidsis apparently homologous to the inlet septum. Eventually the various septal components merge to form the completely septated heart. In our attempt to discover homologies between the various septum components we aim to elucidate the evolution and development of this part of the vertebrate heart as well as understand the etiology of septal defects in human congenital heart malformations.  相似文献   

16.
SMAD4 acts as the converging point for TGFβ and BMP signaling in heart development. Here, we investigated the role of SMAD4 in heart development using a novel α skeletal muscle actin Cre recombinase (MuCre) transgenic mouse strain. Lineage tracing using MuCre/ROSA26LacZ reporter mice indicated strong Cre-recombinase expression in developing and adult heart and skeletal muscles. In heart development, significant MuCre expression was noted at E11.5 in the atrial, ventricular, outflow tract and atrioventricular canal myocardium, but not in the endocardial cushions. MuCre-driven conditional deletion of Smad4 in mice caused double outlet right ventricle (DORV), ventricular septal defect (VSD), impaired trabeculation and thinning of ventricular myocardium, and mid-gestational embryonic lethality. In conclusion, MuCre mice effectively delete genes in both heart and skeletal muscles, thus enabling the discovery that myocardial Smad4 deletion causes misalignment of the outflow tract and DORV.  相似文献   

17.
The functionally important effects on the heart of ACh released from vagal nerves are principally mediated by the muscarinic K+ channel. The aim of this study was to determine the abundance and cellular location of the muscarinic K+ channel subunits Kir3.1 and Kir3.4 in different regions of heart. Western blotting showed a very low abundance of Kir3.1 in rat ventricle, although Kir3.1 was undetectable in guinea pig and ferret ventricle. Although immunofluorescence on tissue sections showed no labeling of Kir3.1 in rat, guinea pig, and ferret ventricle and Kir3.4 in rat ventricle, immunofluorescence on single ventricular cells from rat showed labeling in t-tubules of both Kir3.1 and Kir3.4. Kir3.1 was abundant in the atrium of the three species, as shown by Western blotting and immunofluorescence, and Kir3.4 was abundant in the atrium of rat, as shown by immunofluorescence. Immunofluorescence showed Kir3.1 expression in SA node from the three species and Kir3.4 expression in the SA node from rat. The muscarinic K+ channel is activated by ACh via the m2 muscarinic receptor and, in atrium and SA node from ferret, Kir3.1 labeling was co-localized with m2 muscarinic receptor labeling throughout the outer cell membrane.  相似文献   

18.
The formation of a four-chambered heart with ventricular chambers aligned in a left-right orientation begins with the rightward looping of the linear heart tube in accordance with the left-right embryonic axis. The functional specification of the ventricular chambers in the looped heart occurs with the formation of a trabeculated myocardium along the outer curvature of the realigned heart tube. Two major signal transduction pathways are involved in this process, the retinoic acid and neuregulin signaling pathways, with the retinoic acid pathway also participating in rightward heart tube looping. With the establishment of the atrial and ventricular chambers, maintenance of a unidirectional flow of blood between the two chambers must be ensured. To achieve this, heart valves develop at the atrioventricular juncture. This process begins with formation of endocardial cushions, the primordia of heart valves, and ends with formation of heart valve leaflets. Underlying this process is a complex network of signal transduction pathways that mediate communication between the endocardial and myocardial cell layers to form the endocardial cushions and nascent heart valve. Some of the signaling molecules involved are vascular endothelial growth factor, Wnts, bone morphogenetic proteins, epidermal growth factor, hyaluronic acid, neurofibromin, and calcium.  相似文献   

19.
Using electron microscope autoradiography, a study was made of the ultrastructure of early stages of muscle differentiation and 3H-thymidine (3H-T) labelled cells in the wall of the developing lymph heart of larvae of Rana temporaria L. The mononucleated postmitotic myoblasts with small bundles of thin and thick myofilaments deprived of Z-bodies were found in the lymph heart wall. No thin or intermediate-sized subsarcolemmal filaments were detected in the cytoplasm of these myoblasts. Myosatellites occurred under the basal lamina of muscle cells at stages 41-42. The primitive muscle-nerve junction was found at stages 44-45. Four hours after a single 3H-T administration only mononuclear cells without myofilaments were labelled. If the fixation was made 72 hours after a single 3H-T administration, the label was found, in addition, on the muscle cell nuclei. These data evidence that at the early stages of muscle differentiation in the developing lymph heart wall DNA synthesis and muscle specific protein synthesis are incompatible.  相似文献   

20.
Abstract The epicardium is embryologically formed by outgrowth of proepicardial cells over the naked heart tube. Epicardium-derived cells (EPDCs) migrate into the myocardium, contributing to myocardial architecture, valve development, and the coronary vasculature. Defective EPDC formation causes valve malformations, myocardial thinning, and coronary defects. In the atrioventricular (AV) valves and the fibrous heart skeleton isolating atrial from ventricular myocardium, EPDCs colocalize with periostin, a matrix molecule involved in remodeling. We investigated whether proepicardial outgrowth inhibition affected periostin expression and how this related to development of the AV valves and fibrous heart skeleton.
Periostin expression by epicardium and EPDCs was confirmed in vitro in primary cultures of human and quail EPDCs. Disturbing EPDC formation in quail embryos reduced periostin expression in the endocardial cushions and AV junction. Disturbed fibrous tissue development resulted in AV myocardial connections reflected by preexcitation electrocardiographic patterns.
We conclude that EPDCs are local producers of periostin. Disturbance of EPDC formation results in decreased cardiac periostin levels and hampers the development of fibrous tissue in AV junction and the developing AV valves. The resulting cardiac anomalies might link to Wolff–Parkinson White syndrome with persistent AV myocardial connections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号