首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A THE-1 sequence in intron 7 of the human dystrophin gene has been found to represent a new subfamily of THE-1 elements. The sequence is closely related to the MstII family of repetitive sequences and is more like single-copy sequences found in the galago genome than any other THE-1 sequence previously reported. This new THE-1 sequence has been compared with two other complete THE-1 sequences and three related long-terminal repeat elements that we have previously found in intron 7 of the dystrophin gene, and with members of the same family from elsewhere in the primate genome. Parsimony and deletion analysis show that the cluster of THE-1 sequences in intron 7 of the dystrophin gene has arisen from at least three individual insertion events, rather than from the insertion and duplication of a single progenitor sequence. Correspondence to: G.B. Petersen  相似文献   

2.
3.
The pattern of genome organization of Zea mays has been analyzed, and the relationship of maize to possible progenitor species assessed by DNADNA hybridization. Reassociation of 470 and 1,350 bp fragments of maize DNA to various C0t values demonstrates that the genome is composed of 3 major kinetic classes: highly repetitive, mid-repetitive, and unique. Mini-C0t curves of the repetitive sequences at short fragment length indicate that the highly repetitive sequence class is 20% of the genome and is present at an average reiteration frequency of 800,000 copies; the mid-repetitive sequence class is 40% of the genome and is present at an average reiteration frequency of 1,000 copies. Thermal denaturation studies show that the highly repetitive sequences are 12% divergent and mid-repetitive sequences are 6% divergent. Most of the genome is organized in two interspersion patterns. One, approximately one-third of the genome, is composed of unique sequences of average length 2,100 bp interspersed with mid-repetitive sequences; the other, also one-third of the genome, is mid-repetitive sequences interspersed with highly repetitive sequences. The repetitive sequences are 500 to 1,000 bp by electron microscopic measurement. The remaining third of the genome is unique sequences farther than 5,000 bp from a palindromic or repetitive sequence. Hybridization of maize DNA from Midwestern Dent to popcorn and related grasses indicates that both the unique and repetitive sequence elements have diverged. Teosinte and popcorn are approximately equally divergent from Midwestern Dent whereas Tripsacum is much more divergent. The divergence times calculated from the depression of Tm in heterologous duplexes indicate that the divergence within Zea mays and between maize and near relatives is at least an order of magnitude greater than expected. This high degree of divergence may reflect the pressures of domestication of maize.  相似文献   

4.
We have identified in an intron of an X. laevis alpha-tubulin gene a member of a novel family of short (226-431 bp) interspersed repetitive elements. We have isolated other members of this family, which we term Ocr, from ovary cDNA and genome libraries and have identified another two in the published sequences of an H1B histone gene cluster and an actin gene intron. The termini of the Ocr elements are formed by a 19 bp inverted repeat that has clear sequence homologies to those of certain large transposable elements, such as 1723 (Xenopus) and Ac (maize). However, the Ocr elements do not appear to be deletion derivatives of larger transposons. The internal regions of the Ocr elements contain multiple copies of the octamer motif (ATTTGCAT) arranged as divergently-orientated dyads. We have shown by a gel mobility shift assay that these octamer dyads specifically bind what is presumably an OTF-type activator protein in oocyte nuclear extracts. We speculate that short interspersed repetitive families of this type may be generated by a mechanism of replicative transposition that uses a DNA intermediate and involves the interaction of DNA-binding proteins also utilised in other cellular processes.  相似文献   

5.
Two overlapping genomic clones containing the fibroin light-chain (Fib-L)-encoding gene (Fib-L) were obtained from the cosmid library of the silkworm, Bombyx mori J-139, by hybridization with the Fib-L cDNA clone. Sequencing of the 14.6-kb region revealed that Fib-L was 13472 bp long containing seven exons, and that the gene contained a large first intron which occupied about 60% of the gene. Comparison of restriction patterns of the J-139 Fib-L with those of eight other B. mori breeds producing normal-level fibroin demonstrated that considerable restriction-fragment length polymorphisms were present in regions containing the first intron and the 3′-flanking sequence. However, sizes of the Fib-L mRNA and the Fib-L polypeptide were very similar among the nine breeds tested, suggesting that the exon sequences and the splice signals were all well conserved. 5′-Flanking regions of Fib-L and the fibroin heavy-chain (Fib-H)-encoding gene (Fib-H) compared in this study contained three 18-30-bp sequences of high similarity and many 8-10-bp common elements, six of which coincided with the binding sites of homeodomain proteins. Gel retardation assays with the nuclear extracts of the posterior and middle silk glands suggested that protein factors present in the posterior silk-gland nuclei could bind to a set of those common upstream elements.  相似文献   

6.
We have analyzed a sequence of approximately 70 base pairs (bp) that shows a high degree of similarity to sequences present in the non-coding regions of a number of human and other mammalian genes. The sequence was discovered in a fragment of human genomic DNA adjacent to an integrated hepatitis B virus genome in cells derived from human hepatocellular carcinoma tissue. When one of the viral flanking sequences was compared to nucleotide sequences in GenBank, more than thirty human genes were identified that contained a similar sequence in their non-coding regions. The sequence element was usually found once or twice in a gene, either in an intron or in the 5' or 3' flanking regions. It did not share any similarities with known short interspersed nucleotide elements (SINEs) or presently known gene regulatory elements. This element was highly conserved at the same position within the corresponding human and mouse genes for myoglobin and N-myc, indicating evolutionary conservation and possible functional importance. Preliminary DNase I footprinting data suggested that the element or its adjacent sequences may bind nuclear factors to generate specific DNase I hypersensitive sites. The size, structure, and evolutionary conservation of this sequence indicates that it is distinct from other types of short interspersed repetitive elements. It is possible that the element may have a cis-acting functional role in the genome.  相似文献   

7.
Summary The major families of repeated DNA sequences in the genome of tomato (Lycopersicon esculentum) were isolated from a sheared DNA library. One thousand clones, representing one million base pairs, or 0.15% of the genome, were surveyed for repeated DNA sequences by hybridization to total nuclear DNA. Four major repeat classes were identified and characterized with respect to copy number, chromosomal localization by in situ hybridization, and evolution in the family Solanaceae. The most highly repeated sequence, with approximately 77000 copies, consists of a 162 bp tandemly repeated satellite DNA. This repeat is clustered at or near the telomeres of most chromosomes and also at the centromeres and interstitial sites of a few chromosomes. Another family of tandemly repeated sequences consists of the genes coding for the 45 S ribosomal RNA. The 9.1 kb repeating unit in L. esculentum was estimated to be present in approximately 2300 copies. The single locus, previously mapped using restriction fragment length polymorphisms, was shown by in situ hybridization as a very intense signal at the end of chromosome 2. The third family of repeated sequences was interspersed throughout nearly all chromosomes with an average of 133 kb between elements. The total copy number in the genome is approximately 4200. The fourth class consists of another interspersed repeat showing clustering at or near the centromeres in several chromosomes. This repeat had a copy number of approximately 2100. Sequences homologous to the 45 S ribosomal DNA showed cross-hybridization to DNA from all solanaceous species examined including potato, Datura, Petunia, tobacco and pepper. In contrast, with the exception of one class of interspersed repeats which is present in potato, all other repetitive sequences appear to be limited to the crossing-range of tomato. These results, along with those from a companion paper (Zamir and Tanksley 1988), indicate that tomato possesses few highly repetitive DNA sequences and those that do exist are evolving at a rate higher than most other genomic sequences.  相似文献   

8.
9.
Porcine SINEs: Characterization and use in species-specific amplification   总被引:1,自引:0,他引:1  
A porcine repetitive DNA sequence has been isolated from an intron of the glucose phosphate isomerase gene. The copy number of this and related sequences was estimated to be approximately 10(5) copies per genome. The sequence possesses all the characteristics of short interspersed elements (SINEs) described in other mammals: The repeat is 300 bp in length, has an poly(A)stretch, and contains insertion duplication sites. Homology to seven other porcine sequences, which also have the characteristics of SINEs, has been demonstrated. Primer oligonucleotides, based on conserved regions in the SINE sequences, have been synthesized. Using these primers, PCR-mediated specific amplification of porcine sequences was demonstrated from pig x mouse and pig x hamster hybrid cell lines. Cloning and sequencing of some amplified porcine sequences verify that the sites of priming are SINE sequences.  相似文献   

10.
KpnI families of long, interspersed repetitive DNAs are ubiquitous repetitive elements that occur in tens of thousands of copies in primate genomes. KpnI 1.2, 1.5 and two different KpnI 1.8-kb families were found within and flanking a 6.4-kb repeat beginning at 3 kb, 3' from the human β-globin gene. Thus, six different types of KpnI families have now been identified, and four of these are found next to each other in a specific 6.4-kb repeat. Clones of the distinct KpnI families were hybridized to clones of the 6.4-kb repeat and adjacent sequences encompassed within some 17.6 kb of DNA lying 3' to the β-globin gene cluster. The four KpnI families appear to make up the entire length of the 6.4-kb repeat. The linear order of the various cloned KpnI sequences in the repeat is 5'-pBK(1.8)26-pBK.(1.5)54-pBK(1.2)11-pBK(1.8)11-3'. KpnI 1.2-kb sequences were also detected downstream from the 6.4-kb repeat. As in the case of the KpnI 1.2 and 1.5-kb families, the two KpnI 1.8-kb sequence families described here each hybridized with about 15% of all plaques in two independently generated human genome libraries.  相似文献   

11.
Abstract While genome sequencing projects have discovered numerous types of transposable elements in diverse eukaryotes, there are many taxa of ecological and evolutionary significance that have received little attention, such as the molluscan class Bivalvia. Examination of a 0.7-MB genomic sequence database from the cupped oyster Crassostrea virginica revealed the presence of a common interspersed element, CvA. CvA possesses subterminal inverted repeats, a tandemly repeated core element, a tetranucleotide microsatellite region, and the ability to form stable secondary structures. Three other less abundant repetitive elements with a similar structure but little sequence similarity were also found in C. virginica. Ana-1, a repetitive element with similar features, was discovered in the blood ark Anadara trapezia by probing a genomic library with a dimeric repeat element contained in intron 2 of a minor globin gene in that species. All of these elements are flanked by the dinucleotide AA, a putative target-site duplication. They exhibit structural similarity to the sea urchin Tsp family and Drosophila SGM insertion sequences; in addition, they possess regions of sequence similarity to satellite DNA from several bivalve species. We suggest that the Crassostrea repetitive elements and Ana-1 are members of a new MITE-like family of nonautonomous transposable elements, named pearl. Pearl is the first putative nonautonomous DNA transposon to be identified in the phylum Mollusca.  相似文献   

12.
Summary Clones carrying thewhite andtopaz eye color genes have been isolated from genomic DNA libraries of the blowflyLucilia cuprina using cloned DNA from the homologouswhite andscarlet genes. respectively, ofDrosophila melanogaster as probes. On the basis of hybridization studies using adjacent restriction fragments, homologous fragments were found to be colinear between the genes from the two species. The nucleotide sequence of a short region of thewhite gene ofL. cuprina has been determined, and the homology to the corresponding region ofD. melanogaster is 72%; at the derived amino acid level the homology is greater (84%) due to a marked difference in codon usage between the species. A major difference in genome organization between the two species is that whereas the DNA encompassing theD. melanogaster genes is free of repeated sequences. that encompassing theirL. cuprina counterparts contains substantial amounts of repeated sequences. This suggests that the genome ofL. cuprina is organized on the short period interspersion pattern. Repeated sequence DNA elements, which appear generally to be short (less than 1 kb) and which vary in repetitive frequency in the genome from greater than 104 copies to less than 102 copies, are found in at least two different locations in the clones carrying these genes. One type of repeat structure, found by sequencing, consists of tandemly repeating short sequences. Restriction site and restriction fragment length polymorphisms involving both thewhite andtopaz gene regions are found within and between populations ofL. cuprina.  相似文献   

13.
We characterized a full-length gene encoding wild silkmoth Antheraea pernyi fibroin (Ap-fibroin) to clarify the conformation of repetitive sequences. The gene consisted of a first exon encoding 14 amino acid residues, a short intron (120 bp), and a long second exon encoding 2,625 amino acid residues. Three amino acids, alanine, glycine, and serine, amounted to 81% of the Ap-fibroin sequence. The Ap-fibroin, except for 155 residues of the amino terminus, was composed of 80 tandemly arranged polyalanine-containing units (motifs). A motif was a doublet of a polyalanine block (PAB) and a nonpolyalanine block (NPAB). Seventy-eight of the 80 motifs were classified into four types based on differences in the NPAB sequences. Although respective motifs were significantly conserved, many rearrangements were observed within the second exon, i.e., the triplication of a 558-bp-long sequence and other duplication events of shorter sequences. Chi-like sequences, GCTGGAG, might contribute to the rearrangement within the gene as described in human minisatellite loci, because they were found at specific sites of NPAB-encoding sequences in three of four types of motifs. The present results support the idea that the Ap-fibroin gene is unstable like minisatellite sequences and that the evolution of this gene is strongly associated with its instability. Received: 18 February 2000 / Accepted: 30 June 2000  相似文献   

14.
Qu L  Ma Q  Zhou Z  Ma H  Huang Y  Huang S  Zeng F  Zeng Y 《遗传学报》2012,39(5):217-224
The Streptomyces phage φC31 integrase can efficiently target attB-bearing transgenes to endogenous pseudo attP sites within mammalian genomes.To better understand the activity ofφC31 integrase in the bovine genome,DNA sequences of 44 integration events were analyzed,and 32 pseudo attP sites were identified.The majority of these sites share a sequence motif that contains inverted repeats and has similarities to wild-type attP site.Genomic DNA flanking these sites typically contained repetitive sequence elements,such as short and long interspersed repetitive elements.These sequence features indicate that DNA sequence recognition plays an important role in guidingφC31-mediated site-specific integration.In addition,BF27 integration hotspot sites were identified in the bovine genome, which accounted for 13.6%of all isolated integration events and mapped to an intron of the deleted in liver cancer 1(DLC1) gene.Also we found that the pseudo attP sites in the bovine genome had other features in common with those in the human genome.This study represents the first time that the sequence features of pseudo attP sites in the bovine genome were analyzed.We conclude that this site-specific integrase system has great potential for applied modifications of the bovine genome.  相似文献   

15.
We have identified a new family of interspersed, moderately repetitive DNA elements, termed the RSg-1 family, in the genome of the rainbow trout. Two of the elements examined here are situated upstream of sequences which code for trout nuclear proteins; a protamine gene (p101) and the clustered histone H4 gene. Sequence comparison of various RSg-1 elements indicated a high degree of nucleotide sequence homology between different members of the family. These repetitive elements exhibit well defined 3' ends which contain poly(A) segments preceded by the consensus polyadenylation signal AATAAA. Sequences flanking the 3' end of the poly(A) tract also conform to a consensus sequence. A similar sequence is also found flanking the 5' terminus of the element in the protamine clone p101, and thus may represent a target-site duplication generated upon insertion of the element into the genome. These characteristics, together with the heterogeneous nature of the 5' ends of the elements, are reminiscent of processed pseudogenes and retroposons such as the mammalian L1 family of interspersed repetitive elements.  相似文献   

16.
The nucleotide sequences containing an entire genomic region and 5 upstream region of Antheraea yamamai fibroin gene have been determined. The gene consists of an initial exon encoding 14 amino acids, an intron (150 bp), and a long second exon coding for 2641 amino acids. The fibroin coding sequence shows a specialized organization with a highly repetitive region flanked by non repetitive 5 and 3 ends. Northern blot analyses confirmed that fibroin gene is actively expressed in the posterior silk gland of the final instar larvae of Antheraea yamamai.  相似文献   

17.
R Kraft  L Kadyk  L A Leinwand 《Genomics》1992,12(3):555-566
The rodent 4.5 S RNA is an RNA polymerase III product with a sequence related to the Alu family of interspersed repeated DNA. A previous study identified a tandem array of 4.2-kb repeating units that contain the 4.5 S RNA coding sequence as well as many short repetitive sequences. To understand the genomic organization of this gene family, we have isolated and characterized 4.5 S RNA sequences that are part of the tandem array as well as identified members that are not part of the array. One variant 4.5 S RNA gene family member exhibits length polymorphisms in its minisatellite sites relative to the single previously reported gene. The 4.5 S RNA sequences that are not part of the tandem array possess many of the features of processed pseudogenes and are found adjacent to other interspersed repeated elements. These findings suggest that the mouse 4.5 S RNA can behave as a retroposon, resulting in the accumulation of 4.5 S RNA-like elements at many sites in the genome.  相似文献   

18.
Oparina  N. Yu.  Lacroix  M.-H.  Rychkov  A. A.  Mashkova  T. D. 《Molecular Biology》2003,37(2):200-204
Intrachromosomal and interchromosomal segmental duplications account for more than 5% of the human genome. To analyze the processes resulting in the complex mosaic structure of duplicons, a draft human genome sequence was searched for duplicated segments of a genomic fragment of the pericentric region of the chromosome 21 short arm. The duplicons found consist of modules having paralogs in various genome regions. Module ends are flanked with various tandem or interspersed repeats, which are more unstable as compared with unique sequences. In most cases, the boundaries of duplicated segments exactly coincide with or are in close proximity to hot spots of various rearrangements within repeats or boundaries between repeats and unique sequences or between two different repeats. Homologous recombination between repetitive elements was assumed to be the major mechanism contributing to the mosaic structure of duplicons.  相似文献   

19.
Repetitive sequences constitute a significant component of most eukaryotic genomes, and the isolation and characterization of repetitive DNA sequences provide an insight into the organization of the genome of interest. Here, we report the isolation and the molecular analysis and methylation status of a novel tandemly organized repetitive DNA sequence from the genome of Poncirus trifoliata. Digestion of P. trifoliata DNA with Afa I produced a prominent fragment of approximately 400 bp. Southern blotting analysis of genomic DNA digested with the same enzyme revealed a ladder composed of DNA fragments that are multimers of the 400-bp Afa I band, indicating that the repetitive DNA is arrayed in tandem. This suggests that Afa I isolated a novel satellite that we have called Poncirus trifoliata satellite DNA 400 (PN400). This satellite composes 25% of the genome and it is also present in lemon, sour orange and kumquat. Analysis of the methylation status demonstrated that the cytosines in CCGG sequences in this satellite were methylated.  相似文献   

20.
We have characterised a new family of repetitive sequences that we have named Mrs (maize repetitive sequences). Mrs elements are associated with different maize genes and seem to be specific for the genome of Zea species. Mrs elements are short, AT-rich and contain terminal inverted repeats (TIRs). The sequence of their TIRs, as well as the fact that they are flanked by short repetitions that tend to be TAA, allows us to propose Mrs as a new subfamily of Tourist transposable elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号