首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of the human adenovirus proteinase (AVP) with various DNAs was characterized. AVP requires two cofactors for maximal activity, the 11-amino acid residue peptide from the C-terminus of adenovirus precursor protein pVI (pVIc) and the viral DNA. DNA binding was monitored by changes in enzyme activity or by fluorescence anisotropy. The equilibrium dissociation constants for the binding of AVP and AVP-pVIc complexes to 12-mer double-stranded (ds) DNA were 63 and 2.9 nM, respectively. DNA binding was not sequence specific; the stoichiometry of binding was proportional to the length of the DNA. Three molecules of the AVP-pVIc complex bound to 18-mer dsDNA and six molecules to 36-mer dsDNA. When AVP-pVIc complexes bound to 12-mer dsDNA, two sodium ions were displaced from the DNA. A Delta of -4.6 kcal for the nonelectrostatic free energy of binding indicated that a substantial component of the binding free energy results from nonspecific interactions between the AVP-pVIc complex and DNA. The cofactors altered the interaction of the enzyme with the fluorogenic substrate (Leu-Arg-Gly-Gly-NH)2-rhodamine. In the absence of any cofactor, the Km was 94.8 microM and the kcat was 0.002 s(-1). In the presence of adenovirus DNA, the Km decreased 10-fold and the kcat increased 11-fold. In the presence of pVIc, the Km decreased 10-fold and the kcat increased 118-fold. With both cofactors present, the kcat/Km ratio increased 34000-fold, compared to that with AVP alone. Binding to DNA was coincident with stimulation of proteinase activity by DNA. Although other proteinases have been shown to bind to DNA, stimulation of proteinase activity by DNA is unprecedented. A model is presented suggesting that AVP moves along the viral DNA looking for precursor protein cleavage sites much like RNA polymerase moves along DNA looking for a promoter.  相似文献   

2.
The roles of two conserved cysteine residues involved in the activation of the adenovirus proteinase (AVP) were investigated. AVP requires two cofactors for maximal activity, the 11-amino acid peptide pVIc (GVQSLKRRRCF) and the viral DNA. In the AVP-pVIc crystal structure, conserved Cys104 of AVP has formed a disulfide bond with conserved Cys10 of pVIc. In this work, pVIc formed a homodimer via disulfide bond formation with a second-order rate constant of 0.12 M(-1) s(-1), and half of the homodimer could covalently bind to AVP via thiol-disulfide exchange. Alternatively, monomeric pVIc could form a disulfide bond with AVP via oxidation. Regardless of the mechanism by which AVP becomes covalently bound to pVIc, the kinetic constants for substrate hydrolysis were the same. The equilibrium dissociation constant, K(d), for the reversible binding of pVIc to AVP was 4.4 microM. The K(d) for the binding of the mutant C10A-pVIc was at least 100-fold higher. Surprisingly, the K(d) for the binding of the C10A-pVIc mutant to AVP decreased at least 60-fold, to 6.93 microM, in the presence of 12mer ssDNA. Furthermore, once the mutant C10A-pVIc was bound to an AVP-DNA complex, the macroscopic kinetic constants for substrate hydrolysis were the same as those exhibited by wild-type pVIc. Although the cysteine in pVIc is important in the binding of pVIc to AVP, formation of a disulfide bond between pVIc and AVP was not required for maximal stimulation of enzyme activity by pVIc.  相似文献   

3.
Brown MT  Mangel WF 《FEBS letters》2004,563(1-3):213-218
Actin bound to the adenovirus proteinase (AVP) with a lower equilibrium dissociation constant, 4.2 nM, than those exhibited by two viral, nuclear cofactors for AVP, the 11-amino acid peptide pVIc and the viral DNA. The k(cat)/K(m) ratio for substrate hydrolysis by AVP increased 150,000-fold in the presence of actin. The 11-amino acid residue peptide corresponding to the C-terminus of actin, which is highly homologous to pVIc, bound to AVP and stimulated its activity in the presence of DNA. As a cellular cofactor for AVP, AVP(actin) complexes may facilitate the cleavage of cytoskeletal proteins, preparing the infected cell for lysis and release of nascent virions.  相似文献   

4.
The adenovirus proteinase (AVP), the first member of a new class of cysteine proteinases, is essential for the production of infectious virus, and here we report its structure at 0.98 Å resolution. AVP, initially synthesized as an inactive enzyme, requires two cofactors for maximal activity: pVIc, an 11-amino acid peptide, and the viral DNA. Comparison of the structure of AVP with that of an active form, the AVP-pVIc complex, reveals why AVP is inactive. Both forms have an α + β fold; the major structural differences between them lie in the β-sheet domain. In AVP-pVIc, the general base His-54 Nδ1 is 3.9 Å away from the Cys-122 Sγ, thereby rendering it nucleophilic. In AVP, however, His-54 Nδ1 is 7.0 Å away from Cys-122 Sγ, too far away to be able to abstract the proton from Cys-122. In AVP-pVIc, Tyr-84 forms a cation-π interaction with His-54 that should raise the pKa of His-54 and freeze the imidazole ring in the place optimal for forming an ion pair with Cys-122. In AVP, however, Tyr-84 is more than 11 Å away from its position in AVP-pVIc. Based on the structural differences between AVP and AVP-pVIc, we present a model that postulates that activation of AVP by pVIc occurs via a 62-amino acid-long activation pathway in which the binding of pVIc initiates contiguous conformational changes, analogous to falling dominos. There is a common pathway that branches into a pathway that leads to the repositioning of His-54 and another pathway that leads to the repositioning of Tyr-84.  相似文献   

5.
The interaction of the human adenovirus proteinase (AVP) and AVP-DNA complexes with the 11-amino acid cofactor pVIc was characterized. The equilibrium dissociation constant for the binding of pVIc to AVP was 4.4 microM. The binding of AVP to 12-mer single-stranded DNA decreased the K(d) for the binding of pVIc to AVP to 0.09 microM. The pVIc-AVP complex hydrolyzed the substrate with a Michaelis constant (K(m)) of 3.7 microM and a catalytic rate constant (k(cat)) of 1.1 s(-1). In the presence of DNA, the K(m) increased less than 2-fold, and the k(cat) increased 3-fold. Alanine-scanning mutagenesis was performed to determine the contribution of individual pVIc side chains in the binding and stimulation of AVP. Two amino acid residues, Gly1' and Phe11', were the major determinants in the binding of pVIc to AVP, while Val2' and Phe11' were the major determinants in stimulating enzyme activity. Binding of AVP to DNA greatly suppressed the effects of the alanine substitutions on the binding of mutant pVIcs to AVP. Binding of either or both of the cofactors, pVIc or the viral DNA, to AVP did not dramatically alter its secondary structure as determined by vacuum ultraviolet circular dichroism. pVIc, when added to Hep-2 cells infected with adenovirus serotype 5, inhibited the synthesis of infectious virus, presumably by prematurely activating the proteinase so that it cleaved virion precursor proteins before virion assembly, thereby aborting the infection.  相似文献   

6.
Identification of new repeating motifs in titin   总被引:2,自引:0,他引:2  
Greaser M 《Proteins》2001,43(2):145-149
Repeating motifs of 26-28 amino acids have been identified in the PEVK region of the giant elastic protein titin. These motifs, termed PPAK for the four amino acids that often constitute the beginning of the motif, occur 60 times in human soleus titin. PPAK motifs occur in groups of 2-12 that are separated by regions rich in glutamic acid (approximately 45%) and termed polyE segments. The fluctuation of the net charge between the PPAK and polyE regions suggests ionic interactions between these segments and their involvement in the elastic function of titin. Proteins 2001;43:145-149.  相似文献   

7.
The results of inhibition studies of soybean trypsin-like enzyme (STLE) by substrate analogues (derivative of arginine) suggested that a net negative charge exists at or near the substrate binding region of the enzyme. On hydrolysis of substrates, this negative charge seems to repel the products from the substrate binding region and facilitate the turn-over of substrates. From the data on inhibition by various amidines, guanidines, and amines, some information about the structure of the hydrophobic binding pocket of STLE was obtained. The inactivation of STLE by irreversible inhibitors, diisopropylfluorophosphate (DFP) and tosyl-lysine chloromethyl ketone (Tos-Lys-CH2Cl), was decreased by competitive inhibitors. This means that these irreversible inhibitors bind with residues at the substrate binding region, probably serine and histidine residues, respectively.  相似文献   

8.
RSC (remodel the structure of chromatin) is an essential chromatin remodeler of Saccharomyces cerevisiae that has been shown to have DNA translocase properties. We studied the DNA binding properties of a "trimeric minimal RSC" (RSCt) of the RSC chromatin remodeling complex and the effect of nucleotides on this interaction using fluorescence anisotropy. RSCt binds to 20 bp fluorescein-labeled double-stranded DNA with a K(d) of ~100 nM. The affinity of RSCt for DNA is reduced in the presence of AMP-PNP and ADP in a concentration-dependent manner with the addition of AMP-PNP having more pronounced effect. These differences in the magnitude at which the binding of ADP and AMP-PNP affects the affinity of DNA binding by RSCt suggest that the physical movement of the enzyme along DNA begins between the binding of ATP and its subsequent hydrolysis. Furthermore, the fact that the highest affinity for DNA binding by RSCt occurs in the absence of bound nucleotide offers a mechanistic explanation for the apparent low processivity of DNA translocation by the enzyme.  相似文献   

9.
Konkol L  Hirai TJ  Adams JA 《Biochemistry》2000,39(1):255-262
Based on the X-ray structure of the insulin receptor kinase [Hubbard, S. R. (1997) EMBO J. 16, 5572-5581], Arg-1130 in the oncoprotein v-Fps, a nonreceptor tyrosine protein kinase, is predicted to interact with the P+1 glutamate in substrate peptides. To determine whether this residue is an important recognition element in v-Fps, Arg-1130 was substituted with leucine (R1130L) and glutamic acid (R1130E). The ability of these mutants to phosphorylate the peptide EAEIYXAIE, where X is glutamic acid, alanine, or lysine, was assessed. A comparison of the rates of peptide phosphorylation under limiting substrate concentrations (i.e., k(cat)/K(m) conditions) indicates that substrate specificity is altered by the electrostatic environment of the P+1 pocket. When the pocket displays a positive charge (Arg-1130; wild type), no charge (R1130L), or a negative charge (R1130E), v-Fps prefers to phosphorylate the glutamate peptide over the lysine peptide by a 200:1, 9:1, or 1:1 margin. While k(cat)/K(m) for the glutamate peptide is 50-fold higher for wild type compared to R1130E, k(cat)/K(m) for the lysine peptide is 3-fold higher for R1130E compared to wild type, a 150-fold change in relative substrate specificity. Analysis of the individual steps in the kinetic mechanism using viscosometric techniques indicates that the wild-type enzyme binds the glutamate peptide 3-fold better than the alanine peptide and, at least, 10-fold better than the lysine peptide. For R1130L, this margin range is reduced substantially, and for R1130E, no binding preference is observed. Nonetheless, the lysine peptide binds, at least, 4-fold better to R1130E than to wild type, and the glutamate peptide binds 3-fold poorer to R1130E than to wild type. The mutants lower the phosphoryl transfer rate by 4-30-fold for the three peptides, suggesting that Arg-1130 helps to position the tyrosine for optimum catalysis. The data indicate that a single mutation in v-Fps can alter significantly the relative substrate specificity by about 2 orders of magnitude with, at least, 50% of this effect occurring through relative changes in peptide binding affinity.  相似文献   

10.
The crystal structure of the human adenovirus proteinase (AVP), a cysteine proteinase covalently bound to its 11-amino-acid peptide cofactor pVIc, has been solved to 1.6-A resolution with a crystallographic R-factor of 0.136, R(free)=0.179. The fold of AVP-pVIc is new and the structural basis for it is described in detail. The polypeptide chain of AVP folds into two domains. One domain contains a five-strand beta-sheet with two peripheral alpha-helices; this region represents the hydrophobic core of the protein. A second domain contains the N terminus, several C-terminal alpha-helices, and a small peripheral anti-parallel beta-sheet. The domains interact through an extended polar interface. pVIc spans the two domains like a strap, its C-terminal portion forming a sixth strand on the beta-sheet. The active site is in a long, deep groove located between the two domains. Portions are structurally similar to the active site of the prototypical cysteine proteinase papain, especially some of the Calpha backbone atoms (r.m.s. deviation of 0.354 A for 12 Calpha atoms). The active-site nucleophile of AVP, the conserved Cys(122), was shown to have a pK(a) of 4.5, close to the pK(a) of 3.0 for the nucleophile of papain, suggesting that a similar ion pair arrangement with His(54) may be present in AVP-pVIc. The interactions between AVP and pVIc include 24 non-beta-strand hydrogen bonds, six beta-strand hydrogen bonds and one covalent bond. Of the 204 amino acid residues in AVP, 33 are conserved among the many serotypes of adenovirus, and these aid in forming the active site groove, are involved in substrate specificity or interact between secondary structure elements.  相似文献   

11.
M Thibonnier 《Life sciences》1987,40(5):439-445
The human platelet membrane receptor for vasopressin (AVP) has been solubilized with the cholic acid derivative detergent 3-( [3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate. Rapid and simple separation of free tritiated AVP ( [3H]AVP) from the solubilized receptor-hormone complex was done by filtration through polyethylenimine-treated filters. [3H]AVP binds to this soluble receptor with an equilibrium dissociation constant of 11.03 +/- 1.86 nM and a maximal number of binding sites = 288 +/- 66 fmol/mg protein while the corresponding values of the membrane-bound receptor are 1.62 +/- 0.21 nM and 237 +/- 38 fmol/mg of protein, respectively. The Ki value for native AVP derived from competition experiments is 11.02 +/- 2.05 nM for the soluble receptor. Competition experiments with specific vascular and renal antagonists confirm that the solubilized receptor belongs to the V1-vascular subtype.  相似文献   

12.
Abstract

The endonuclease from Serratia marcescens is a non-specific enzyme that cleaves single and double stranded RNA and DNA. It accepts a phosphorylated pentanucleotide as a minimal substrate which is cleaved in the presence of Mg2+ at the second phosphodiester linkage. The present study is aimed at understanding the role of electrostatic and hydrogen bond interactions in phosphodiester hydrolysis. Towards this objective, six pentadeoxyadenylates with single stereoregular methylphosphonate substitution within this minimal substrate (2a-4b) were synthesized following a protocol described here. These modified oligonucleotides were used as substrates for the Serratia nuclease. The enzyme interaction studies revealed that the enzyme failed to hydrolyze any of the methylphosphonate analogues suggesting the importance of negative charge and/or hydrogen bond acceptors in binding and cleavage of its substrate. Based on these results and available site-directed mutagenesis as well as structural data, a model for nucleic acid binding by Serratia nuclease is proposed.  相似文献   

13.
The endonuclease from Serratia marcescens is a non-specific enzyme that cleaves single and double stranded RNA and DNA. It accepts a phosphorylated pentanucleotide as a minimal substrate which is cleaved in the presence of Mg2+ at the second phosphodiester linkage. The present study is aimed at understanding the role of electrostatic and hydrogen bond interactions in phosphodiester hydrolysis. Towards this objective, six pentadeoxyadenylates with single stereoregular methylphosphonate substitution within this minimal substrate (2a-4b) were synthesized following a protocol described here. These modified oligonucleotides were used as substrates for the Serratia nuclease. The enzyme interaction studies revealed that the enzyme failed to hydrolyze any of the methylphosphonate analogues suggesting the importance of negative charge and/or hydrogen bond acceptors in binding and cleavage of its substrate. Based on these results and available site-directed mutagenesis as well as structural data, a model for nucleic acid binding by Serratia nuclease is proposed.  相似文献   

14.
We have recently demonstrated that methyl p-hydroxyphenyllactate (MeHPLA) is the endogenous ligand for nuclear type II binding sites in the rat uterus and other estrogen target and non-target tissues. MeHPLA binds to nuclear type II binding sites with a very high binding affinity (Kd approximately 4-5 nM), blocks uterine growth in vivo, and inhibits MCF-7 human breast cancer cell growth in vitro. Conversely, the free acid (p-hydroxyphenyllactic acid, HPLA) interacts with type II binding sites with a much lower affinity (Kd approximately 200 nM) and does not inhibit estrogen-induced uterine growth in vivo or MCF-7 cell growth in vitro. On the basis of these observations, we suggested that one way that estrogen may override MeHPLA inhibition of rat uterine growth may be to stimulate esterase hydrolysis of MeHPLA to HPLA. The present studies demonstrate that the rat uterus does contain an esterase (mol. wt approximately 50,000) which cleaves MeHPLA to HPLA, and that this enzyme is under estrogen regulation. This conclusion is supported by the observations that MeHPLA esterase activity is increased 2-3-fold above controls within 2-4 h following a single injection of estradiol, and is maintained at high levels for 16-24 h following hormone administration. This sustained elevation of MeHPLA esterase activity correlates with estradiol stimulation of true uterine growth and DNA synthesis.  相似文献   

15.
The kinetic mechanism of homogeneous human glutamic-gamma-semialdehyde dehydrogenase (EC 1.5.1.12) with glutamic gamma-semialdehyde as substrate was determined by initial-velocity, product-inhibition and dead-end-inhibition studies to be compulsory ordered with rapid interconversion of the ternary complexes (Theorell-Chance). Product-inhibition studies with NADH gave a competitive pattern versus varied NAD+ concentrations and a non-competitive pattern versus varied glutamic gamma-semialdehyde concentrations, whereas those with glutamate gave a competitive pattern versus varied glutamic gamma-semialdehyde concentrations and a non-competitive pattern versus varied NAD+ concentrations. The order of substrate binding and release was determined by dead-end-inhibition studies with ADP-ribose and L-proline as the inhibitors and shown to be: NAD+ binds to the enzyme first, followed by glutamic gamma-semialdehyde, with glutamic acid being released before NADH. The Kia and Kib values were 15 +/- 7 microM and 12.5 microM respectively, and the Ka and Kb values were 374 +/- 40 microM and 316 +/- 36 microM respectively; the maximal velocity V was 70 +/- 5 mumol of NADH/min per mg of enzyme. Both NADH and glutamate were product inhibitors, with Ki values of 63 microM and 15,200 microM respectively. NADH release from the enzyme may be the rate-limiting step for the overall reaction.  相似文献   

16.
Propidium iodide is used as a structural probe for alternating and non-alternating DNA polymers containing guanine and the results are compared to experiments with poly[d(A-T)2], poly(dA . dT) and random DNA sequences. Viscometric titrations indicate that propidium binds to all polymers and to DNA by intercalation. The binding constant and binding site size are quite similar for all alternating polymers, non-alternating polymers containing guanine and natural DNA. Poly(dA . dT) is unusual with a lower binding constant and positive cooperativity in its propidium binding isotherms. Poly(dA . dT) and poly(dG . dC) have similar salt effects but quite different temperature effects in propidium binding equilibria. Polymers and natural DNA have similar rate constants in their SDS driven dissociation reactions. The association rate constants are similar for the alternating polymers and poly(dG . dC) but are significantly reduced for poly(dA . dT). These results suggest that natural DNA, the alternating polymers, and non-alternating polymers containing guanine convert to an intercalated conformation with bound propidium in a very similar manner.  相似文献   

17.
The ATP-dependent Lon protease belongs to a unique group of proteases that bind DNA. Eukaryotic Lon is a homo-oligomeric ring-shaped complex localized to the mitochondrial matrix. In vitro, human Lon binds specifically to a single-stranded GT-rich DNA sequence overlapping the light strand promoter of human mitochondrial DNA (mtDNA). We demonstrate that Lon binds GT-rich DNA sequences found throughout the heavy strand of mtDNA and that it also interacts specifically with GU-rich RNA. ATP inhibits the binding of Lon to DNA or RNA, whereas the presence of protein substrate increases the DNA binding affinity of Lon 3.5-fold. We show that nucleotide inhibition and protein substrate stimulation coordinately regulate DNA binding. In contrast to the wild type enzyme, a Lon mutant lacking both ATPase and protease activity binds nucleic acid; however, protein substrate fails to stimulate binding. These results suggest that conformational changes in the Lon holoenzyme induced by nucleotide and protein substrate modulate the binding affinity for single-stranded mtDNA and RNA in vivo. Co-immunoprecipitation experiments show that Lon interacts with mtDNA polymerase gamma and the Twinkle helicase, which are components of mitochondrial nucleoids. Taken together, these results suggest that Lon participates directly in the metabolism of mtDNA.  相似文献   

18.
The binding of SeqA protein to hemimethylated GATC sequences is important in the negative modulation of chromosomal initiation at oriC, and in the formation of SeqA foci necessary for Escherichia coli chromosome segregation. Using gel-filtration chromotography and glycerol gradient sedimentation, we demonstrate that SeqA exists as a homotetramer. SeqA tetramers are able to aggregate or multimerize in a reversible, concentration-dependent manner. Using a bacterial two-hybrid system, we demonstrate that the N-terminal region of SeqA, especifically the 9th amino acid residue, glutamic acid, is required for functional SeqA-SeqA interaction. Although the SeqA(E9K) mutant protein, containing lysine rather than glutamic acid at the 9th amino acid residue, exists as a tetramer, the mutant protein binds to hemimethylated DNA with altered binding patterns as compared with wild-type SeqA. Aggregates of SeqA(E9K) are defective in hemimethylated DNA binding. Here we demonstrate that proper interaction between SeqA tetramers is required for both hemimethylated DNA binding and formation of active aggregates. SeqA tetramers and aggregates might be involved in the formation of SeqA foci required for the segregation of chromosomal DNA as well as the regulation of chromosomal initiation.  相似文献   

19.
Yeast enolase is inhibited under certain conditions by DNA. The enzyme binds to single-stranded DNA-cellulose. Inhibition was used for routine characterization of the interaction. The presence of the substrate 2-phospho-D-glycerate reduces inhibition and binding. Both yeast enolase isozymes behave similarly. Impure yeast enolase was purified by adsorption onto a single-stranded DNA-cellulose column followed by elution with substrate. Interaction with RNA, double-stranded DNA, or degraded DNA results in less inhibition, suggesting that yeast enolase preferentially binds single-stranded DNA. However, yeast enolase is not a DNA-unwinding protein. The enzyme is inhibited by the short synthetic oligodeoxynucleotides G6, G8 and G10 but not T8 or T6, suggesting some base specificity in the interaction. The interaction is stronger at more acid pH values, with an apparent pK of 5.6. The interaction is prevented by 0.3 M KCl, suggesting that electrostatic factors are important. Histidine or lysine reverse the inhibition at lower concentrations, while phosphate is still more effective. Binding of single-stranded DNA to enolase reduces the reaction of protein histidyl residues with diethylpyrocarbonate. The inhibition of yeast enolase by single-stranded DNA is not total, and suggests the active site is not directly involved in the interaction. Binding of substrate may induce a conformational change in the enzyme that interferes with DNA binding and vice versa.  相似文献   

20.
The TaqI restriction endonuclease recognizes and cleaves the duplex DNA sequence T decreases CGA. Steady state kinetic analysis with a small oligodeoxyribonucleotide substrate showed that the enzyme obeyed Michaelis-Menten kinetics (Km = 53 nM, kcat = 1.3 min-1 at 50 degrees C and Km = 0.5 nM, kcat = 2.9 min-1 at 60 degrees C). At 0 degree C, the enzyme was completely inactive, while at 15 degrees C, turnover produced nicked substrate as the major product in excess of enzyme indicating dissociation between nicking events. Above 37 degrees C, both strands in the duplex were cleaved prior to dissociation. In contrast to the tight, temperature-dependent binding of substrate, binding of the Mg2+ cofactor was weak (Kd = 2.5 mM) and the same at either 50 degrees C or 60 degrees C. Single-turnover experiments using oligonucleotide substrate showed that hydrolysis of duplex DNA occurred via two independent nicking events, each with a first order rate constant (kst) of 5.8 min-1 at 60 degrees C and 3.5 min-1 at 50 degrees C. The pH dependence of Km (pKa = 9) and kst (pKa = 7) suggests Lys/Arg and His, respectively, as possible amino acids influencing these constants. Moreover, although kst increased significantly with pH, kcat did not, indicating that at least two steps can be rate-controlling in the reaction pathway. Binding of protein to canonical DNA in the presence of Mg2+ at 0 degree C or in the absence of Mg2+ at 50 degrees C was weak (Kd = 2.5 microM or 5,000-fold weaker than the optimal measured Km) and equal to the binding of noncanonical DNA as judged by retention on nitrocellulose. Similar results were seen in gel retardation assays. These results suggest that both Mg2+ and high temperature are required to attain the correct protein conformation to form the tight complex seen in the steady state analysis. In the accompanying paper (Zebala, J. A., Choi, J., Trainor, G. L., and Barany, F. (1992) J. Biol. Chem. 267, 8106-8116), we report how these kinetic constants are altered using substrate analogues and propose a model of functional groups involved in TaqI endonuclease recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号