首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the links between developmental patterning mechanisms and force-producing cytoskeletal mechanisms is a central goal in studies of morphogenesis. Gastrulation is the first morphogenetic event in the development of many organisms. Gastrulation involves the internalization of surface cells, often driven by the contraction of actomyosin networks that are deployed with spatial precision—both in specific cells and in a polarized manner within each cell. These cytoskeletal mechanisms rely on different cell fate and cell polarity regulators in different organisms. Caenorhabditis elegans gastrulation presents an opportunity to examine the extent to which diverse mechanisms may be used by dozens of cells that are internalized at distinct times within a single organism. We identified 66 cells that are internalized in C. elegans gastrulation, many of which were not known previously to gastrulate. To gain mechanistic insights into how these cells internalize, we genetically manipulated cell fate, cell polarity and cytoskeletal regulators and determined the effects on cell internalization. We found that cells of distinct lineages depend on common actomyosin-based mechanisms to gastrulate, but different cell fate regulators, and, surprisingly, different cell polarity regulators. We conclude that diverse cell fate and cell polarity regulators control common mechanisms of morphogenesis in C. elegans. The results highlight the variety of developmental patterning mechanisms that can be associated with common cytoskeletal mechanisms in the morphogenesis of an animal embryo.  相似文献   

2.
Drosophila oogenesis is a complex developmental process involving the coordinated differentiation of germ line and somatic cells. Correct execution and timing of cell fate specification and patterning events is achieved during this process by the integration of different cell-cell signalling pathways, eventually leading to the generation of positional information inside the oocyte, that is instrumental for the establishment of embryonic polarity. The large body of data accumulated at both cellular and molecular levels in the last decade clearly demonstrated how Drosophila oogenesis is a genetically tractable system particularly suited for the investigation of key developmental biology questions. Our recent contribution to the field relies on the characterisation of three different mutants named tegamino (teg), hold hup (hup) and tulipano (tip), identifying novel gene functions required during oogenesis. Specifically, teg is implicated in the morphogenesis of the follicular epithelium surrounding the germ line cells in the egg chamber, hup is involved in the establishment of egg chamber polarity and tip in the regulation of the dynamic germ cell chromatin organisation.  相似文献   

3.
Emx2 is a homeodomain protein that plays a critical role in inner ear development. Homozygous null mice die at birth with a range of defects in the CNS, renal system and skeleton. The cochlea is shorter than normal with about 60% fewer auditory hair cells. It appears to lack outer hair cells and some supporting cells are either absent or fail to differentiate. Many of the hair cells differentiate in pairs and although their hair bundles develop normally their planar cell polarity is compromised. Measurements of cell polarity suggest that classic planar cell polarity molecules are not directly influenced by Emx2 and that polarity is compromised by developmental defects in the sensory precursor population or by defects in epithelial cues for cell alignment. Planar cell polarity is normal in the vestibular epithelia although polarity reversal across the striola is absent in both the utricular and saccular maculae. In contrast, cochlear hair cell polarity is disorganized. The expression domain for Bmp4 is expanded and Fgfr1 and Prox1 are expressed in fewer cells in the cochlear sensory epithelium of Emx2 null mice. We conclude that Emx2 regulates early developmental events that balance cell proliferation and differentiation in the sensory precursor population.  相似文献   

4.
Although in most species the polarity of the embryo takes its roots from the spatial patterning of the egg, mammals were viewed as an exception. This was because the anteroposterior polarity of the mouse embryo could not be seen until gastrulation, and no developmental cues were known that could define polarity at earlier stages. Why should we now re-consider this view? While mechanisms of axis formation in mammals could, in principle, be unique, the evolutionary conservation of numerous other developmental processes raises the question of why mammals would have evolved a different way or timing of organising their embryonic polarity. Indeed, recent evidence shows that well before the onset of gastrulation, the mouse embryo initiates asymmetric patterns of gene expression in its visceral endoderm. Although this extra-embryonic tissue does not contribute to the body itself, it is involved in axis formation. Other recent work has revealed that spatial distribution of cells in the visceral endoderm can be traced back to polarity present at the blastocyst stage. These insights have raised the possibility that embryonic polarity might also originate early during development of mammalian embryos. Indeed it now appears that there are at least two spatial cues that operate in the mouse egg to shape polarity of the blastocyst. One of these is at the animal pole, which is defined by the site of female meiosis, and another is associated with the position of sperm entry. In this review I discuss these recent findings, which have led to the recognition that mouse embryos initiate development of their polarity at the earliest stages of their life. This novel perspective raises questions about the nature of cellular and molecular mechanisms that could convert developmental cues in the zygote to axes of the blastocyst, and hence into polarity of the post-implantation embryo. It also brings to light the need to understand how such mechanisms could enable early mouse development to be so regulative.  相似文献   

5.
6.
Long-range coordination of planar polarity in Drosophila   总被引:3,自引:0,他引:3  
The mechanisms by which cells become polarised in the plane of an epithelium have been studied in Drosophila for many years. Work has focussed on two key questions: firstly, how individual cells adopt a defined polarity, and secondly how the polarity of each cell within a tissue is aligned with its neighbours. It has been established that asymmetric subcellular localisation of a number of polarity proteins is an essential mechanism underlying polarisation of single cells. The process by which this polarity is coordinated between cells however is less well understood, but is thought to involve gradients of activity of the atypical cadherins Dachsous and Fat. Subsequently, this long-range polarity signal is refined by local cell-cell interactions involving the transmembrane molecules Frizzled, Strabismus and Flamingo. The role of these factors in coordinating polarity will be discussed.  相似文献   

7.
A flowering plant generates many different organs such as leaves, petals, and stamens, each with a particular function and shape. These types of organ are thought to represent variations on a common underlying developmental program. However, it is unclear how this program is modulated under different selective constraints to generate the diversity of forms observed. Here we address this problem by analysing the development of Arabidopsis petals and comparing the results to models of leaf development. We show that petal development involves a divergent polarity field with growth rates perpendicular to local polarity increasing towards the distal end of the petal. The hypothesis is supported by the observed pattern of clones induced at various stages of development and by analysis of polarity markers, which show a divergent pattern. We also show that JAGGED (JAG) has a key role in promoting distal enhancement of growth rates and influences the extent of the divergent polarity field. Furthermore, we reveal links between the polarity field and auxin function: auxin-responsive markers such as DR5 have a broader distribution along the distal petal margin, consistent with the broad distal organiser of polarity, and PETAL LOSS (PTL), which has been implicated in the control of auxin dynamics during petal initiation, is directly repressed by JAG. By comparing these results with those from studies on leaf development, we show how simple modifications of an underlying developmental system may generate distinct forms, providing flexibility for the evolution of different organ functions.  相似文献   

8.
The centrosome is essential for the formation of the cilia and has been implicated in cell polarization and signaling during early embryonic development. A number of Wnt pathway components were found to localize at the centrosome, but how this localization relates to their signaling functions is unclear. In this study, we assessed a role for Diversin, a putative Wnt pathway mediator, in developmental processes that involve cilia. We find that Diversin is specifically localized to the basal body compartment near the base of the cilium in Xenopus multi-ciliated skin cells. Overexpression of Diversin RNA disrupted basal body polarization in these cells, suggesting that tightly regulated control of Diversin levels is crucial for this process. In cells depleted of endogenous Diversin, basal body structure appeared abnormal and this was accompanied by disrupted polarity, shortened or absent cilia and defective ciliary flow. These results are consistent with the involvement of Diversin in processes that are related to the acquisition of cell polarity and require ciliary functions.  相似文献   

9.
Planar polarisation of tissues is essential for many aspects of developmental patterning. It is regulated by a conserved group of core planar polarity proteins, which localise asymmetrically within cells prior to morphological signs of polarisation. A subset of these core proteins also interact across cell boundaries, mediating intercellular communication that co-ordinates polarity between neighbouring cells. Core protein localisation subsequently mediates changes in the actin cytoskeleton which lead to overt polarisation. In this review we discuss the mechanisms by which the core planar polarity proteins become asymmetrically localised, and the significance of this subcellular localisation for both intercellular communication and downstream effects on the cytoskeleton.  相似文献   

10.
A central question in developmental biology concerns the mechanism of generation and maintenance of cell polarity, because these processes are essential for many cellular functions and multicellular development. In plants, cell polarity has an additional role in mediating directional transport of the plant hormone auxin that is crucial for multiple developmental processes. In addition, plant cells have a complex extracellular matrix, the cell wall, whose role in regulating cellular processes, including cell polarity, is unexplored. We have found that polar distribution of PIN auxin transporters in plant cells is maintained by connections between polar domains at the plasma membrane and the cell wall. Genetic and pharmacological interference with cellulose, the major component of the cell wall, or mechanical interference with the cell wall disrupts these connections and leads to increased lateral diffusion and loss of polar distribution of PIN transporters for the phytohormone auxin. Our results reveal a plant-specific mechanism for cell polarity maintenance and provide a conceptual framework for modulating cell polarity and plant development via endogenous and environmental manipulations of the cellulose-based extracellular matrix.  相似文献   

11.
Polarity is one of the fundamental properties displayed by living organisms. In metazoans, cell polarity governs developmental processes and plays an essential role during maintenance of forms of tissues as well as their functions. The mechanisms of establishment and maintenance of cell polarity have been investigated extensively in the last two decades. This has resulted in identification of “core cell polarity modules” that control anterior–posterior, front–rear and apical–basal polarity across various cell types. Here, we review how these polarity modules interact closely with the cytoskeleton during establishment and maintenance of cytoskeletal polarity. We further suggest that reciprocal interactions between cell polarity modules and the cytoskeleton consolidate the initial weaker polarity, arising from an external cue, into a committed polarized system.  相似文献   

12.
The development and evolution of the inner ear sensory patches and their innervation is reviewed. Recent molecular developmental data suggest that development of these sensory patches is a developmental recapitulation of the evolutionary history. These data suggest that the ear generates multiple, functionally diverse sensory epithelia by dividing a single sensory primordium. Those epithelia will establish distinct identities through the overlapping expression of genes of which only a few are currently known. One of these distinctions is the unique pattern of hair cell polarity. A hypothesis is presented on how the hair cell polarity may relate to the progressive segregation of the six sensory epithelia. Besides being markers for sensory epithelia development, neurotrophins are also expressed in delaminating cells that migrate toward the developing vestibular and cochlear ganglia. These delaminating cells originate from multiple sites at or near the developing sensory epithelia and some also express neuronal markers such as NeuroD. The differential origin of precursors raises the possibility that some sensory neurons acquire positional information before they delaminate the ear. Such an identity of these delaminating sensory neurons may be used both to navigate their dendrites to the area they delaminated from, as well as to help them navigate to their central target. The navigational properties of sensory neurons as well as the acquisition of discrete sensory patch phenotypes implies a much more sophisticated subdivision of the developing otocyst than the few available gene expression studies suggest.  相似文献   

13.
Cell polarity is crucial for many functions including cell migration, tissue organization and asymmetric cell division. In animal cells, cell polarity is controlled by the highly conserved PAR (PARtitioning defective) proteins. par genes have been identified in Caenorhabditis elegans in screens for maternal lethal mutations that disrupt cytoplasmic partitioning and asymmetric division. Although PAR proteins were identified more than 20 years ago, our understanding on how they regulate polarity and how they are regulated is still incomplete. In this chapter we review our knowledge of the processes of cell polarity establishment and maintenance, and asymmetric cell division in the early C. elegans embryo. We discuss recent findings that highlight new players in cell polarity and/or reveal the molecular details on how PAR proteins regulate polarity processes.  相似文献   

14.
15.
In plants, cell polarity is an issue more recurring than in other systems, because plants, due to their adaptive and flexible development, often change cell polarity postembryonically according to intrinsic cues and demands of the environment. Recent findings on the directional movement of the plant signalling molecule auxin provide a unique connection between individual cell polarity and the establishment of polarity at the tissue, organ, and whole-plant levels. Decisions about the subcellular polar targeting of PIN auxin transport components determine the direction of auxin flow between cells and consequently mediate multiple developmental events. In addition, mutations or chemical interference with PIN-based auxin transport result in abnormal cell divisions. Thus, the complicated links between cell polarity establishment, auxin transport, cytoskeleton, and oriented cell divisions now begin to emerge. Here we review the available literature on the issues of cell polarity in both plants and animals to extend our understanding on the generation, maintenance, and transmission of cell polarity in plants.  相似文献   

16.
The segmented ectoderm and mesoderm of the leech arise via a stereotyped cell lineage from embryonic stem cells called teloblasts. Each teloblast gives rise to a column of primary blast cell daughters, and the blast cells generate descendant clones that serve as the segmental repeats of their particular teloblast lineage. We have examined the mechanism by which the leech primary blast cell clones acquire segment polarity - i.e. a fixed sequence of positional values ordered along the anteroposterior axis of the segmental repeat. In the O and P teloblast lineages, the earliest divisions of the primary blast cell segregate anterior and posterior cell fates along the anteroposterior axis. Using a laser microbeam, we ablated single cells from both o and p blast cell clones at stages when the clone was two to four cells in length. The developmental fate of the remaining cells was characterized with rhodamine-dextran lineage tracer. Twelve different progeny cells were ablated, and in every case the ablation eliminated the normal descendants of the ablated cell while having little or no detectable effect on the developmental fate of the remaining cells. This included experiments in which we specifically ablated those blast cell progeny that are known to express the engrailed gene, or their lineal precursors. These findings confirm and extend a previous study by showing that the establishment of segment polarity in the leech ectoderm is largely independent of cell interactions conveyed along the anteroposterior axis. Both intercellular signaling and engrailed expression play an important role in the segment polarity specification of the Drosophila embryo, and our findings suggest that there may be little or no conservation of this developmental mechanism between those two organisms.  相似文献   

17.
The planar cell polarity (PCP) pathway, a noncanonical Wnt signaling pathway, is crucial for embryonic development in all animals as it is responsible for the regulation of coordinated orientation of structures within the plane of the various epithelia. In the mammalian cochlea, one of the best examples of planar polarity in vertebrates, stereociliary bundles located on mechanosensory hair cells within the sensory epithelium are all uniformly polarized. Generation of this polarity is important for hair cell mechanotransduction and auditory perception as stereociliary bundles are only sensitive to vibrations in their single plane of polarization. We describe the two step developmental process that results in the generation of planar polarity in the mammalian inner ear. Furthermore, we review evidence for the role of Wnt signaling, and the possible generation of a Wnt gradient, in planar polarity.  相似文献   

18.
A compelling amount of data is accumulating about the polyphonic role of neuronal cadherins during brain development throughout all developmental stages, starting from the involvement of cadherins in the organization of neurulation up to synapse development and plasticity. Recent work has confirmed that specifically N-cadherins play an important role in asymmetrical cellular processes in developing neurons that are at the basis of polarity. In this review we will summarize recent data, which demonstrate how N-cadherin orchestrates distinct processes of polarity establishment in neurons.  相似文献   

19.
20.
Epithelial cells are polarized along their apical-basal axis. Much of the cellular machinery that goes into establishing and maintaining epithelial cell polarity is evolutionarily conserved. Model organisms, including the fruit fly, Drosophila melanogaster, are thus particularly useful for the study of cell polarity. Work in Drosophila has identified several important components of the polarity machinery and has also established the surprising existence of a secondary cell polarity pathway required only under conditions of energetic stress. This work has important implications for the understanding of human cancer. Most cancers are epithelial in origin, and the loss of cell polarity is a critical step towards malignancy. Thus a better understanding of how polarity is established and maintained in epithelial cells will help us to understand the process of malignant transformation and may lead to improved therapies. In the present chapter we discuss the current understanding of how epithelial cell polarity is regulated and the known associations between polarity factors and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号