首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sequences of the ITS1–5.8S–ITS2 region of nuclear ribosomal DNA were generated for 12 species from 9 genera of Lejeuneaceae and a single species of Jubulaceae (outgroup). The taxon sampling of Lejeuneaceae included representatives of the two widely recognized subfamilies, Lejeuneoideae and Ptychanthoideae. The molecular dataset was analysed independently and in combination with a morphological dataset. The nrITS dataset and the combined dataset resulted in identical topologies. The genus Bryopteris, sometimes treated as a separate family Bryopteridaceae, is nested within the Lejeuneaceae subfamily Ptychanthoideae. Lejeuneaceae subfamily Lejeuneoideae proved to be paraphyletic with the tribe Lejeuneeae sister to Ptychanthoideae, albeit without significant bootstrap support. The tribes Brachiolejeuneeae and Cheilolejeuneeae of Lejeuneoideae, established recently based on morphological evidence, are well supported in bootstrap analyses both of the ITS and the combined molecular–morphological datasets. The results support classifications of Lejeuneaceae based on morphological data and demonstrate the usefulness of the ITS region for phylogenetic studies within or among closely related genera of Lejeuneaceae.  相似文献   

2.
Nearly complete sequences were determined for small-subunit (18S) rRNA genes from seven species representative of four subfamilies of Mytilidae: Modiolus modiolus and M. auriculatus (Modiolinae); Lithophaga lithophaga and L. nigra (Lithophaginae); Musculus senhousie and M. discors (Crenellinae); and Hormomya domingensis (Mytilinae). Small-subunit rRNA gene sequences were also determined for Solemya reidi (Subclass Protobranchia), Mya arenaria (Subclass Heterodonta), and Elliptio complanata (Subclass Paleoheterodonta) as outgroup taxa. Phylogenetic analyses including these and other nearly complete bivalve small-subunit rRNA sequences demonstrate support for the monophyly of the family Mytilidae and the subfamilies Crenellinae and Lithophaginae. However, the subfamilies Mytilinae and Modiolinae appear polyphyletic. Likelihood, parsimony, and distance analyses support the placement of H. domingensis (Mytilinae) in a clade with G. demissa (Modiolinae). This clade is distinct from those containing other species traditionally assigned to these two subfamilies. Kishino-Hasegawa tests support these nontraditional relationships, suggesting that the mytiliform and/or modioliform body plans have evolved independently in at least two mytilid lineages.  相似文献   

3.
The Lejeuneaceae are the largest family of the liverworts (Hepaticae), with almost a thousand species in 91 currently accepted genera. We analysed phylogenetic relationships of 69 genera, representing all major subfamilies and tribes recognized in the family, by using 49 informative morphological characters (31 gametophytic, 18 sporophytic), one chemical character, and applying equal and successive weighting of characters and parsimony analysis. In all trees recovered, the Lejeuneaceae were monophyletic with Nipponolejeunea (subfam. Nipponolejeuneoideae) forming the basalmost lineage. The remaining genera clustered in two major groups, the monophyletic Lejeuneoideae (52 genera) and the paraphyletic Ptychanthoideae (16 genera). Within each, several multigeneric lineages corresponding in part to previously described taxa were recovered: the Acrolejeuneinae and Ptychanthinae clades in the Ptychanthoideae, and the Brachiolejeuneinae, Lejeuneeae and Tuyamaella–Cololejeunea clades in the Lejeuneoideae. Bryopteris , a genus sometimes treated as a separate family, was nested in the Ptychanthinae clade. The Tuyamaella–Cololejeunea lineage corresponded with three previously recognized subfamilies (Cololejeuneoideae, Myriocoleoideae and Tuyamaelloideae) and contained genera with neotenic features, in two subclades. These features seemed to have originated by multiple heterochronic events: single origins were detected for 'protonemal neoteny' and 'primary neoteny', whereas 'secondary neoteny' probably evolved twice. Relationships within the large Lejeuneeae clade (43 genera) remained largely unresolved, although several putative lineages were detected in majority rule trees. Additional characters such as DNA sequences may provide better phylogenetic resolution in this group.  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 143 , 391–410.  相似文献   

4.
The nucleotide sequence of the complete mitochondrial cytochrome b gene has been determined and compared for 51 species of the family Bovidae and 10 potential pecoran and tragulid outgroups. A detailed saturation analysis at each codon position relative to the maximum parsimony procedure indicates that all transitions on third codon positions do not accumulate in a similar fashion: C-T are more saturated than A-G substitutions. The same trend is observed for second positions but not for first positions where A-G and C-T transitions exhibit roughly the same levels of saturation. Maximum parsimony reconstructions were weighted according to these observations. Maximum parsimony, maximum likelihood, and distance phylogenetic reconstructions all depict a major split within Bovidae. The subfamily Bovinae includes four multifurcating tribes and subtribes: Boselaphini, Tragelaphini, cattle-Bovini (Bos and Bison), and buffalo-Bovini (Bubalus and Syncerus). Its sister group is the subfamily Antilopinae, i.e., all non-Bovinae taxa, represented by seven lineages: Antilopini (including Saiga), Caprini sensu lato (i. e., Caprinae including Pantholops), Hippotragini, Alcelaphini, Reduncini (including Pelea), Aepyceros possibly linked to Neotragus, and Cephalophini possibly linked to Oreotragus (the suni and the klipspringer being members of a polyphyletic Neotragini). These various tribes and major lineages were produced by two noteworthy explosive radiations, which occurred simultaneously between 12.0 and 15.3 MY (Middle Miocene) in the subfamilies Bovinae and Antilopinae.  相似文献   

5.
An 8.4-kb genomic region spanning both the psi eta-globin gene locus and flanking DNA was sequenced from the common gibbon (Hylobates lar). In addition, sequencing of the entire orthologous region from galago (Galago crassicaudatus) was completed. The gibbon and galago sequences, along with published orthologous sequences from 10 other species, were aligned. These noncoding nucleotide sequences represented four human alleles, four apes (chimpanzee, gorilla, organgutan, and gibbon), an Old World monkey (rhesus monkey), two New World monkeys (spider and owl monkeys), tarsier, two strepsirhines (galago and lemur), and goat. Divergence and maximum parsimony analyses of the psi eta genomic region first groups humans and chimpanzees and then, at progressively more ancient branch points, successively joins gorillas, orangutans, gibbons, Old World monkeys, New World monkeys, tarsiers, and strepsirhines (the lemuriform-lorisiform branch of primates). This cladistic pattern supports the taxonomic grouping of all extant hominoids into family Hominidae, the division of Hominidae into subfamilies Hylobatinae (gibbons) and Homininae, the division of Homininae into tribes Pongini (orangutans) and Hominini, and the division of Hominini into subtribes Gorillina (gorillas) and Hominina (chimpanzees and humans). The additional gibbon and galago sequence data provide further support for the occurrence of a graded evolutionary-rate slowdown in the descent of simian primates, with the slowing rate being more pronounced in the great-ape and human lineages than in the gibbon or monkey lineages. A comparison of global versus local molecular clocks reveals that local clock predictions, when focused on a specific number of species within a narrow time frame, provide a more accurate estimate of divergence dates than do those of global clocks.  相似文献   

6.
Comparative restriction site mapping of the chloroplast genome was performed to examine phylogenetic relationships among 27 species representing 16 genera of the Berberidaceae and two outgroups. Chloroplast genomes of the species included in this study showed no major structural rearrangements (i.e., they are collinear to tobacco cpDNA) except for the extension of the inverted repeat in species of Berberis and Mahonia. Excluding several regions that exhibited severe length variation, a total of 501 phylogenetically informative sites was mapped for ten restriction enzymes. The strict consensus tree of 14 equally parsimonious trees indicated that some berberidaceous genera (Berberis, Mahonia, Diphylleia) are not monophyletic. To explore phylogenetic utility of different parsimony methods phylogenetic trees were generated using Wagner, Dollo, and weighted parsimony for a reduced data set that included 18 species. One of the most significant results was the recognition of the four chromosomal groups, which were strongly supported regardless of the parsimony method used. The most notable difference among the trees produced by the three parsimony methods was the relationships among the four chromosomal groups. The cpDNA trees also strongly supported a close relationship of several generic pairs (e.g., Berberis-Mahonia, Epimedium-Vancouveria, etc.). Maximum likelihood values were computed for the four different tree topologies of the chromosomal groups, two Wagner, one Dollo, and one weighted topology. The results indicate that the weighted tree has the highest likelihood value. The lowest likelihood value was obtained for the Dollo tree, which had the highest bootstrap and decay values. Separate analyses using only the Inverted Repeat (IR) region resulted in a tree that is identical to the weighted tree. Poor resolution and/or support for the relationships among the four chromosomal lineages of the Berberidaceae indicate that they may have radiated from an ancestral stock in a relatively short evolutionary time.  相似文献   

7.
Abstract.  Nematinae is one of the largest subfamilies in the sawfly family Tenthredinidae, but internal relationships are unknown in the absence of any formal phylogenetic analysis. To understand the internal phylogeny of Nematinae, we sequenced a portion of the mitochondrial cytochrome oxidase I gene and the nuclear elongation factor-1α gene from thirteen outgroup taxa and sixty-eight nematine species, the ingroup taxa of which represent all major genera and subgenera within the subfamily. Maximum parsimony and Bayesian phylogenetic analyses of the DNA sequence data show that: (1) Nematinae are monophyletic in a broad sense which includes Hoplocampa , Susana and the tribe Cladiini, which have been classified often into separate subfamilies; together with Craterocercus , these taxa form a paraphyletic basal grade with respect to the remaining Nematinae, but among-group relationships within the grade remain weakly resolved; (2) the remainder of the ingroup, Nematinae s. str, is monophyletic in all combined-data analyses; (3) within Nematinae s. str, the 'Higher' Nematinae is divided into three groups, Mesoneura and the large tribes Nematini and Pristiphorini; (4) although the traditional classifications at the tribal level are largely upheld, some of the largest tribes and genera are obviously para- or polyphyletic; (5) according to rate-smoothed phylogenies dated with two fossil calibration points, Nematinae originated 50–120 million years ago. In addition, the results from all Bayesian analyses provide strong and consistent support for the monophyly of Tenthredinidae, which has been difficult to demonstrate in previous parsimony analyses of morphological and molecular data.  相似文献   

8.
Bayesian, maximum‐likelihood, and maximum‐parsimony phylogenies, constructed using nucleotide sequences from the plastid gene region trnK‐matK, are employed to investigate relationships within the Cactaceae. These phylogenies sample 666 plants representing 532 of the 1438 species recognized in the family. All four subfamilies, all nine tribes, and 69% of currently recognized genera of Cactaceae are sampled. We found strong support for three of the four currently recognized subfamilies, although relationships between subfamilies were not well defined. Major clades recovered within the largest subfamilies, Opuntioideae and Cactoideae, are reviewed; only three of the nine currently accepted tribes delimited within these subfamilies, the Cacteae, Rhipsalideae, and Opuntieae, are monophyletic, although the Opuntieae were recovered in only the Bayesian and maximum‐likelihood analyses, not in the maximum‐parsimony analysis, and more data are needed to reveal the status of the Cylindropuntieae, which may yet be monophyletic. Of the 42 genera with more than one exemplar in our study, only 17 were monophyletic; 14 of these genera were from subfamily Cactoideae and three from subfamily Opuntioideae. We present a synopsis of the status of the currently recognized genera.
© The Willi Hennig Society 2011.  相似文献   

9.
For many years, the ant subfamily Ponerinae was hypothesized to contain the basal (early branching) lineages of ants. Recently the Ponerinae were reclassified into six poneromorph subfamilies based on morphological analysis. We evaluate this new poneromorph classification using 1240 base pairs of DNA sequence data obtained from 28S rRNA gene sequences of 68 terminal taxa. The molecular tree supported the monophyly of the ant family Formicidae, with 100% parsimony bootstrap (PB) support and posterior probabilities (PP) of 1.00, with the ant subfamily Leptanillinae as a sister group to all other ants (PB=62, PP=93). However, our analyses strongly support the polyphyly of the Poneromorph subfamilies (sensu Bolton). The Ectatomminae and Heteroponerinae are more closely related to the Formicoid subfamilies than to the rest of the poneromophs (PB=96, PP=100). The Amblyoponinae (PB=52, PP=96), Paraponerinae (PB=100, PP=100), Ponerinae (PB<50, PP=71), and Proceratiinae (PB=98, PP=100) appear as distinct lineages at the base of the tree and are identified as a poneroid grade. Monophyletic origins for the poneroid subfamilies Amblyoponinae, Paraponerinae, Ponerinae and Proceratiinae are supported in our analysis. However, the genus Platythyrea forms a distinct sister group to the Ponerini within the Ponerinae. The Heteroponerinae, based on our sample of Heteroponera, are associated with the subfamily Ectatomminae (PB=98, PP=100). Furthermore, our data indicate the genus Probolomyrmex belongs to the Proceratiinae as suggested by recent morphological analysis (PB=98, PP=100).  相似文献   

10.
The order Thysanoptera (Paraneoptera), commonly known as thrips, displays a wide range of behaviours, and includes several pest species. The classification and suggested relationships among these insects remain morphologically based, and have never been evaluated formally with a comprehensive molecular phylogenetic analysis. We tested the monophyly of the suborders, included families and the recognized subfamilies, and investigated their relationships. Phylogenies were reconstructed based upon 5299 bp from five genetic loci: 18S ribosomal DNA, 28S ribosomal DNA, Histone 3, Tubulin‐alpha I and cytochrome oxidase c subunit I. Ninety‐nine thrips species from seven of the nine families, all six subfamilies and 70 genera were sequenced. Maximum parsimony, maximum likelihood and Bayesian analyses all strongly support a monophyletic Tubulifera and Terebrantia. The families Phlaeothripidae, Aeolothripidae, Melanthripidae and Thripidae are recovered as monophyletic. The relationship of Aeolothripidae and Merothripidae to the rest of Terebrantia is equivocal. Molecular data support previous suggestions that Aeolothripidae or Merothripidae could be a sister to the rest of Terebrantia. Four of the six subfamilies are recovered as monophyletic. The two largest subfamilies, Phlaeothripinae and Thripinae, are paraphyletic and require further study to understand their internal relationships.  相似文献   

11.
It is widely accepted that mitochondrial DNA (mtDNA) control region evolves faster than protein encoding genes with few exceptions. In the present study, we sequenced the mitochondrial cytochrome b gene (cyt b) and control region (CR) and compared their rates in 93 specimens representing 67 species of loaches and some related taxa in the Cobitoidea (Order Cypriniformes). The results showed that sequence divergences of the CR were broadly higher than those of the cyt b (about 1.83 times). However, in considering only closely related species, CR sequence evolution was slower than that of cyt b gene (ratio of CR/cyt b is 0.78), a pattern that is found to be very common in Cypriniformes. Combined data of the cyt b and CR were used to estimate the phylogenetic relationship of the Cobitoidea by maximum parsimony, neighbor-joining, and Bayesian methods. With Cyprinus carpio and Danio rerio as outgroups, three analyses identified the same four lineages representing four subfamilies of loaches, with Botiinae on the basal-most clade. The phylogenetic relationship of the Cobitoidea was ((Catostomidae+Gyrinocheilidae)+(Botiinae+(Balitorinae+(Cobitinae+Nemacheilinae)))), which indicated that Sawada's Cobitidae (including Cobitinae and Botiinae) was not monophyletic. Our molecular phylogenetic analyses are in very close agreement with the phylogenetic results based on the morphological data proposed by Nalbant and Bianco, wherein these four subfamilies were elevated to the family level as Botiidae, Balitoridae, Cobitidae, and Nemacheilidae.  相似文献   

12.
The labrid tribe Odacini comprises four genera and 12 species of fishes that inhabit shallow kelp forest and seagrass areas in temperate waters of Australia and New Zealand. Odacines are morphologically disparate, but share synapomorphies in fin structure and fusion of teeth into a beak-like oral jaw. A phylogenetic analysis of odacines was conducted to investigate their relationships to other labrid fishes, the relationships of species within the tribe, and the evolution of herbivory within the group. Fragments from two mitochondrial genes, 12S rDNA and 16S rDNA, and two nuclear genes, Tmo4C4 and RAG2, were sequenced for seven odacine species (representing all four genera), eight species representing the other major labrid lineages, and three outgroup species. Maximum likelihood and maximum parsimony analyses on the resulting 2338 bp of DNA sequence produced nearly identical topologies differing only in the placement of a clade containing the cheiline Cheilinus fasciatus and the scarine Cryptotomus roseus. The remaining clades received strong bootstrap support under maximum parsimony, and all clades in the maximum likelihood analysis received high bootstrap proportions and high posterior probabilities. The hypsigenyine labrid Choerodon anchorago formed the sister group to the odacines. Within the odacines, Odax cyanoallix+Odax pullus formed the sister to the remaining odacines, with Odax acroptilus, Odax cyanomelas, and Siphonognathus argyrophanes forming successively closer sister groups to the clade Haletta semifasciatus+Neoodax balteatus. Either herbivory evolved twice in the odacines, or herbivory evolved once with two reversions to carnivory. The latter hypothesis appears more likely in the light of odacine feeding biology.  相似文献   

13.
In this study, the phylogenetic trees of jacks and pompanos (Carangidae), an ecologically and morphologically diverse, globally distributed fish family, are inferred from a complete, concatenated data set of two mitochondrial (cytochrome c oxidase I, cytochrome b) loci and one nuclear (myosin heavy chain 6) locus. Maximum likelihood and Bayesian inferences are largely congruent and show a clear separation of Carangidae into the four subfamilies: Scomberoidinae, Trachinotinae, Naucratinae and Caranginae. The inclusion of the carangid sister lineages Coryphaenidae (dolphinfishes) and Rachycentridae (cobia), however, render Carangidae paraphyletic. The phylogenetic trees also show with high statistical support that the monotypic vadigo Campogramma glaycos is the sister to all other species within the Naucratinae.  相似文献   

14.
Phylogenetic analyses of Meliaceae, including representatives of all four currently recognized subfamilies and all but two tribes (32 genera and 35 species, respectively), were carried out using DNA sequence data from three regions: plastid genes rbcL, matK (partial), and nuclear 26S rDNA (partial). Individual and combined phylogenetic analyses were performed for the rbcL, matK, and 26S rDNA data sets. Although the percentage of informative characters is highest in the segment of matK sequenced, rbcL provides the greatest number of informative characters of the three regions, resulting in the best resolved trees. Results of parsimony analyses support the recognition of only two subfamilies (Melioideae and Swietenioideae), which are sister groups. Melieae are the only tribe recognized previously that are strongly supported as monophyletic. The members of the two small monogeneric subfamilies, Quivisianthe and Capuronianthus, fall within Melioideae and Swietenioideae, respectively, supporting their taxonomic inclusion in these groups. Furthermore, the data indicate a close relationship between Aglaieae and Guareeae and a possible monophyletic origin of Cedreleae of Swietenioideae. For Trichilieae (Melioideae) and Swietenieae (Swietenioideae) lack of monophyly is indicated.  相似文献   

15.
Tipuloidea, the crane flies, are a diverse lineage of true flies (Insecta: Diptera) whose phylogenetic classification and taxonomy remain a challenge. Here we present the results of a quantitative phylogenetic analysis of Tipuloidea based on combined morphological characters (adult, larvae and pupae) and nuclear gene sequence data (28S rDNA and CAD). Forty‐five species, from 44 genera and subgenera, were sampled, representing the four putative families of Tipuloidea (Cylindrotomidae, Limoniidae, Pediciidae and Tipulidae sensu stricto). Analyses of individual datasets, although differing in overall topology, support the monophyly of several major lineages within Tipuloidea. Parsimony and Bayesian analyses using individual morphological and molecular datasets resulted in incongruent topologies. Increased resolution and tree support was obtained when both datasets (morphology and genes) were combined, in both combined evidence parsimony and Bayesian analyses, than when analysed separately. The recovered consensus phylogeny was not consistent with any previously proposed Tipuloidea classification, with previous importance assigned to character states shown here to represent losses and reversals seen as a major factor influencing erroneous classification. The results provided here, together with evidence from previous analyses, were used to append the Tipuloidea classification to supported evolutionary lineages. Tipuloidea is presented as two families: Pediciidae and Tipulidae. Pediciidae is recovered as the sister group to all remaining Tipuloidea. Our current phylogenetic hypothesis is not consistent with the existing subfamilial classification of the ‘Limoniidae’, which is paraphyletic with respect to a well‐supported Tipulinae + Cylindrotominae clade, whereas the three ‘limoniid’ subfamilies are para‐ or polyphyletic. The recognition of ‘Limoniidae’ as a valid monophyletic family is discouraged and the subfamilies of ‘Limoniidae’ are amended and placed within Tipulidae. A revised phylogenetic classification is proposed for the crane flies based on a synthesis of evidence from multiple genes and morphology.  相似文献   

16.
To provide a robust phylogeny of Pezizaceae, partial sequences from two nuclear protein-coding genes, RPB2 (encoding the second largest subunit of RNA polymerase II) and beta-tubulin, were obtained from 69 and 72 specimens, respectively, to analyze with nuclear ribosomal large subunit RNA gene sequences (LSU). The three-gene data set includes 32 species of Peziza, and 27 species from nine additional epigeous and six hypogeous (truffle) pezizaceous genera. Analyses of the combined LSU, RPB2, and beta-tubulin data set using parsimony, maximum likelihood, and Bayesian approaches identify 14 fine-scale lineages within Pezizaceae. Species of Peziza occur in eight of the lineages, spread among other genera of the family, confirming the non-monophyly of the genus. Although parsimony analyses of the three-gene data set produced a nearly completely resolved strict consensus tree, with increased confidence, relationships between the lineages are still resolved with mostly weak bootstrap support. Bayesian analyses of the three-gene data, however, show support for several more inclusive clades, mostly congruent with Bayesian analyses of RPB2. No strongly supported incongruence was found among phylogenies derived from the separate LSU, RPB2, and beta-tubulin data sets. The RPB2 region appeared to be the most informative single gene region based on resolution and clade support, and accounts for the greatest number of potentially parsimony informative characters within the combined data set, followed by the LSU and the beta-tubulin region. The results indicate that third codon positions in beta-tubulin are saturated, especially for sites that provide information about the deeper relationships. Nevertheless, almost all phylogenetic signal in beta-tubulin is due to third positions changes, with almost no signal in first and second codons, and contribute phylogenetic information at the "fine-scale" level within the Pezizaceae. The Pezizaceae is supported as monophyletic in analyses of the three-gene data set, but its sister-group relationships is not resolved with support. The results advocate the use of RPB2 as a marker for ascomycete phylogenetics at the inter-generic level, whereas the beta-tubulin gene appears less useful.  相似文献   

17.
A widely held view of land plant relationships places liverworts as the first branch of the land plant tree, whereas some molecular analyses and a cladistic study of morphological characters indicate that hornworts are the earliest land plants. To help resolve this conflict, we used parsimony and likelihood methods to analyze a 6, 095-character data set composed of four genes (chloroplast rbcL and small-subunit rDNA from all three plant genomes) from all major land plant lineages. In all analyses, significant support was obtained for the monophyly of vascular plants, lycophytes, ferns (including PSILOTUM: and EQUISETUM:), seed plants, and angiosperms. Relationships among the three bryophyte lineages were unresolved in parsimony analyses in which all positions were included and weighted equally. However, in parsimony and likelihood analyses in which rbcL third-codon-position transitions were either excluded or downweighted (due to apparent saturation), hornworts were placed as sister to all other land plants, with mosses and liverworts jointly forming the second deepest lineage. Decay analyses and Kishino-Hasegawa tests of the third-position-excluded data set showed significant support for the hornwort-basal topology over several alternative topologies, including the commonly cited liverwort-basal topology. Among the four genes used, mitochondrial small-subunit rDNA showed the lowest homoplasy and alone recovered essentially the same topology as the multigene tree. This molecular phylogeny presents new opportunities to assess paleontological evidence and morphological innovations that occurred during the early evolution of terrestrial plants.  相似文献   

18.
Phylogenetic studies based on different types and treatment of data provide substantially conflicting hypotheses of relationships among seed plants. We conducted phylogenetic analyses of sequences of two highly conserved chloroplast genes, psaA and psbB, for a comprehensive taxonomic sample of seed plants and land plants. Parsimony analyses of two different codon position partitions resulted in well-supported, but significantly conflicting, phylogenetic trees. First and second codon positions place angiosperms and gymnosperms as sister clades and Gnetales as sister to Pinaceae. Third positions place Gnetales as sister to all other seed plants. Maximum likelihood trees for the two partitions are also in conflict. Relationships among the main seed plant clades according to first and second positions are similar to those found in parsimony analysis for the same data, but the third position maximum likelihood tree is substantially different from the corresponding parsimony tree, although it agrees partially with the first and second position trees in placing Gnetales as the sister group of Pinaceae. Our results document high rate heterogeneity among lineages, which, together with the greater average rate of substitution for third positions, may reduce phylogenetic signal due to long-branch attraction in parsimony reconstructions. Whereas resolution of relationships among major seed plant clades remains pending, this study provides increased support for relationships within major seed plant clades.  相似文献   

19.
Phylogenetic analysis of large datasets using complex nucleotide substitution models under a maximum likelihood framework can be computationally infeasible, especially when attempting to infer confidence values by way of nonparametric bootstrapping. Recent developments in phylogenetics suggest the computational burden can be reduced by using Bayesian methods of phylogenetic inference. However, few empirical phylogenetic studies exist that explore the efficiency of Bayesian analysis of large datasets. To this end, we conducted an extensive phylogenetic analysis of the wide-ranging and geographically variable Eastern Fence Lizard (Sceloporus undulatus). Maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses were performed on a combined mitochondrial DNA dataset (12S and 16S rRNA, ND1 protein-coding gene, and associated tRNA; 3,688 bp total) for 56 populations of S. undulatus (78 total terminals including other S. undulatus group species and outgroups). Maximum parsimony analysis resulted in numerous equally parsimonious trees (82,646 from equally weighted parsimony and 335 from weighted parsimony). The majority rule consensus tree derived from the Bayesian analysis was topologically identical to the single best phylogeny inferred from the maximum likelihood analysis, but required approximately 80% less computational time. The mtDNA data provide strong support for the monophyly of the S. undulatus group and the paraphyly of "S. undulatus" with respect to S. belli, S. cautus, and S. woodi. Parallel evolution of ecomorphs within "S. undulatus" has masked the actual number of species within this group. This evidence, along with convincing patterns of phylogeographic differentiation suggests "S. undulatus" represents at least four lineages that should be recognized as evolutionary species.  相似文献   

20.
Basal relationships in the Chrysomelidae (leaf beetles) were investigated using two nuclear (small and partial large subunits) and mitochondrial (partial large subunit) rRNA (≈ 3000 bp total) for 167 taxa covering most major lineages and relevant outgroups. Separate and combined data analyses were performed under parsimony and model‐based tree building algorithms from dynamic (direct optimization) and static (Clustal and BLAST) sequence alignments. The performance of methods differed widely and recovery of well established nodes was erratic, in particular when using single gene partitions, but showed a slight advantage for Bayesian inferences and one of the fast likelihood algorithms (PHYML) over others. Direct optimization greatly gained from simultaneous analysis and provided a valuable hypothesis of chrysomelid relationships. The BLAST‐based alignment, which removes poorly aligned sequence segments, in combination with likelihood and Bayesian analyses, resulted in highly defensible trees obtained in much shorter time than direct optimization, and hence is a viable alternative when data sets grow. The main taxonomic findings include the recognition of three major lineages of Chrysomelidae, including a basal “sagrine” clade (Criocerinae, Donaciinae, Bruchinae), which was sister to the “eumolpine” (Spilopyrinae, Eumolpinae, Cryptocephalinae, Cassidinae) plus “chrysomeline” (Chrysomelinae, Galerucinae) clades. The analyses support a broad definition of subfamilies (i.e., merging previously separated subfamilies) in the case of Cassidinae (cassidines + hispines) and Cryptocephalinae (chlamisines + cryptocephalines + clytrines), whereas two subfamilies, Chrysomelinae and Eumolpinae, were paraphyletic. The surprising separation of monocot feeding Cassidinae (associated with the eumolpine clade) from the other major monocot feeding groups in the sagrine clade was well supported. The study highlights the need for thorough taxon sampling, and reveals that morphological data affected by convergence had a great impact when combined with molecular data in previous phylogenetic analyses of Chrysomelidae. © The Willi Hennig Society 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号