首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Tryptophan 2,3-dioxygenase (TDO) is expressed in endometrium and catabolizes tryptophan, a precursor in the biosynthesis of serotonin. Tryptophan metabolism is an important mechanism for regulation of serotonin levels. Preimplantation mouse embryos are known to express serotonin receptors, specifically the 5-HT1D and 5-HT7 serotonin receptor subtypes. Here we demonstrate that Hoxa10 regulates endometrial TDO expression and improves embryo viability through increased serotonin production. Transfection of pcDNA-Hoxa10 to the murine uterus increased total TDO expression. In vitro, epithelial cell TDO expression was decreased after transfection with Hoxa10. Decreased glandular TDO in response to HOXA10 may augment serotonin production by increasing tryptophan availability. Conversely, stromal TDO expression increased with constitutive Hoxa10 expression. In mice, epithelial serotonin was increased in response to constitutive expression of Hoxa10. Embryo quality was impaired after treatment with Hoxa10 antisense. Blockade of serotonin receptors 1D and 7 also resulted in impaired embryo development, indicating an essential role for Hoxa10 induction of TDO and subsequent serotonin production in embryo development. Transfection of pcDNA-TDO also decreased the number of T cells in the endometrial stroma. We have shown a novel mechanism by which HOXA10 regulates endometrial TDO expression. In the endometrial stroma, HOXA10 increases TDO mRNA, which may increase tryptophan catabolism, allowing for immune tolerance at the time of embryo implantation. In endometrial glands, HOXA10 decreases TDO mRNA leading to increased serotonin that in turn acts to promote normal embryo development.  相似文献   

5.
To further investigate the role of insulin during preimplantation embryo development, we compared the effects of insulin on the development of mouse and bovine preimplantation embryos and on cell proliferation during culture in vitro in simplex media. The influence of insulin on the development of mouse zygotes was determined during cultivation in mSOF medium, alone or supplemented with glucose. Similarly, the effects of insulin on the bovine preimplantation embryo development were studied in mSOF medium. The addition of insulin into mSOF medium enhanced significantly the number of cells per mouse blastocyst. Moreover, when mSOF medium was supplemented with insulin and 0.2 mmol x l(-1) glucose, the percentage of hatched blastocysts and the mean cell number of mouse blastocysts were significantly higher. Insulin had no significant effect on the development of bovine embryos, produced by in vitro fertilization of in vitro matured oocytes. Neither the rates of developing embryos nor the mean number of cells in blastocysts were different in comparison with control embryos. Our results suggest that the in vitro development of mouse embryos could be enhanced by the addition of insulin to the culture medium and is further improved by the addition of glucose. In contrast to this our results indicate that insulin has no detectable beneficial effect on the preimplantation development of bovine embryos in mSOF medium.  相似文献   

6.
Wang H  Luan L  Ding T  Brown N  Reese J  Paria BC 《Theriogenology》2011,76(4):678-686
The objective was to study the expression of zonula occludens-2, a tight junction protein, during preimplantation hamster embryonic development, to predict its possible localization, source, and roles in trophectoderm differentiation and blastocyst formation in this species. Comparison of zonula occludens-2 expression pattern between the hamster and mouse preimplantation embryos from the zygote up to the blastocyst stage was also an objective of this study. Zonula occludens-2 localization was noted in nuclei of blastomeres in all stages of hamster and mouse embryonic development. Compared to mice, where zonula occludens-2 was first localized in the interblastomere membrane at the morula stage, hamster embryos had membranous zonula occludens-2 localization from the 2-cell stage onwards. Based on combined results of immunolocalization study in parthenogenic embryos and ovarian and epididymal sections, and quantitative PCR done in oocytes and all developmental stages of preimplantation embryos, perhaps there was a carry-over of zonula occludens-2 proteins or mRNA from the dam to the embryo. Based on these findings, we inferred that maternally derived zonula occludens-2 was involved in nuclear functions, as well as differentiation of blastomeres and blastocoel formation during preimplantation embryonic development in the hamster.  相似文献   

7.
Activation of Akt/Protein Kinase B (PKB) by phosphatidylinositol-3-kinase (PI3K) controls several cellular functions largely studied in mammalian cells, including preimplantation embryos. We previously showed that early mouse embryos inherit active Akt from oocytes and that the intracellular localization of this enzyme at the two-cell stage depends on the T-cell leukemia/lymphoma 1 oncogenic protein, Tcl1. We have now investigated whether Akt isoforms, namely Akt1, Akt2 and Akt3, exert a specific role in blastomere proliferation during preimplantation embryo development. We show that, in contrast to other Akt family members, Akt2 enters male and female pronuclei of mouse preimplantation embryos at the late one-cell stage and thereafter maintains a nuclear localization during later embryo cleavage stages. Depleting one-cell embryos of single Akt family members by microinjecting Akt isoform-specific antibodies into wild-type zygotes, we observed that: (a) Akt2 is necessary for normal embryo progression through cleavage stages; and (b) the specific nuclear targeting of Akt2 in two-cell embryos depends on Tcl1. Our results indicate that preimplantation mouse embryos have a peculiar regulation of blastomere proliferation based on the activity of the Akt/PKB family member Akt2, which is mediated by the oncogenic protein Tcl1. Both Akt2 and Tcl1 are essential for early blastomere proliferation and embryo development.  相似文献   

8.
9.
Aneuploidy underlies failed development and possibly apoptosis of some preimplantation embryos. We employed a haploid model in the mouse to study the effects of aneuploidy on apoptosis in preimplantation embryos. Mouse metaphase II oocytes that were activated with strontium formed haploid parthenogenetic embryos with 1 pronucleus, whereas activation of oocytes with strontium plus cytochalasin D produced diploid parthenogenetic embryo controls with 2 pronuclei. Strontium induced calcium transients that mimic sperm-induced calcium oscillations, and ploidy was confirmed by chromosomal analysis. Rates of development and apoptosis were compared between haploid and diploid parthenogenetic embryos (parthenotes) and control embryos derived from in vitro fertilization (IVF). Haploid mouse parthenotes cleaved at a slower rate, and most arrested before the blastocyst stage, in contrast to diploid parthenotes or IVF embryos. Developmentally retarded haploid parthenotes exhibited apoptosis at a significantly higher frequency than did diploid parthenotes or IVF embryos. However, diploid parthenotes exhibited rates of preimplantation development and apoptosis similar to those of IVF embryos, indicating that parthenogenetic activation itself does not initiate apoptosis during preimplantation development. These results suggest that haploidy can lead to an increased incidence of apoptosis. Moreover, the initiation of apoptosis during preimplantation development does not require the paternal genome.  相似文献   

10.
11.
The step-wise assembly of a functional nucleolus, which occurs over the first few cell cycles during preimplantation development, is poorly understood. In this study, we examined the function of the evolutionary conserved nucleolar protein SURF6 in preimplantation mouse embryo development. Immunocytochemical analyses revealed that the localization of SURF6 was similar but not identical to those of fibrillarin and B23/nucleophosmin 1, which are involved in rRNA processing and ribosome biogenesis in mammalian somatic cells. Surf6 mRNA, which is expressed in oocytes and maternally inherited in the zygote, reached a peak level of expression during the 8-cell stage of embryo development, at which time rDNA is highly transcribed. Knock-down of Surf6 mRNA by RNAi led to a decrease in both the mRNA and protein levels, and resulted in developmental arrest at the 8-cell/morula stage, as well as a decrease in the level of 18S rRNA. These results suggest that Surf6 is essential for mouse preimplantation development, presumably by regulating ribosome biogenesis.  相似文献   

12.
13.
14.
15.
This study investigated the effects on fertilized embryo development of somatic cytoplasm after its injection into intact mouse oocytes. Mature oocytes collected from female B6D2F1 mice were injected with cumulus cell cytoplasm of different volumes and from different mouse strains (B6D2F1, ICR, and C57BL/6), or with embryonic cytoplasm. After culture for 1 h, B6D2F1 sperm were injected into those oocytes by intracytoplasmic sperm injection (ICSI). The oocytes were examined for pre- and postimplantation developmental competence. Increases in the volume of the somatic cytoplasm from onefold to fourfold resulted in an impairment of blastocyst development and full-term development (28% and 7%, respectively, vs. 96% and 63%, respectively, in the control group; P < 0.01). An increase in the volume of somatic cytoplasm reduced the expression of POU5F1 (more commonly known as OCT4) in expanded blastocysts. The frequency of embryos that developed to the blastocyst stage did not differ when B6D2F1 or ICR somatic cytoplasm was injected, but injection of C57BL/6 somatic cytoplasm induced a two-cell block in embryo development. Injection of the cytoplasm from fertilized embryos did not reduce the frequency of embryos attaining full-term development. Interestingly, somatic cytoplasm significantly increased the placental weight of ICSI embryos, even the injection of onefold cytoplasm (0.20 +/- 0.02 [n = 32] vs. 0.12 +/- 0.02 in the control group [n = 87]; P < 0.01). These findings indicate that the injection of somatic cytoplasm into oocytes before ICSI causes a decrease in preimplantation development, clearly impairs full-term development, and causes placental overgrowth in fertilized embryos. To our knowledge, placental overgrowth phenotypes are only caused by interspecies hybridization and cloning, and in genetically modified mice. Here, we report for the first time that somatic cytoplasm causes abnormal placentas in fertilized embryos. This study suggests that somatic cell cytoplasmic material is one cause of the low rate of full-term development in cloned mammals.  相似文献   

16.
Amphiregulin (Ar) is an EGF receptor ligand that functions to modulate the growth of both normal and malignant epithelial cells. We asked whether mouse preimplantation embryos express Ar, and if so, what the function of Ar is during preimplantation development. We used RT-PCR to show expression of Ar mRNA in mouse blastocysts, and using a polyclonal anti-Ar antibody and indirect immunofluorescence, we detected the presence of Ar protein in morula- and blastocyst-stage embryos. Ar protein was present in both the cytoplasm and nucleus in both morulae- and blastocyst-stage embryos, which is similar to Ar distribution in other cell types. Embryos cultured in Ar developed into blastocysts more quickly and also exhibited increased cell numbers compared to control embryos. In addition, 4-cell stage embryos cultured in an antisense Ar phosphorothioate-modified oligodeoxynucleotide (S-oligo) for 48 hr exhibited slower rates of blastocyst formation and reduced embryo cell numbers compared to embryos exposed to a random control S-oligo. TGF-α significantly improved blastocyst formation, but not cell numbers, for embryos cultured in the antisense Ar S-oligo. From these observations, we propose that Ar may function as an autocrine growth factor for mouse preimplantation embryos by promoting blastocyst formation and embryo cell number. We also propose that blastocyst formation is stimulated by Ar and TGF-α, while Ar appears to exert a greater stimulatory effect on cell proliferation than does TGF-α in these embryos. Mol. Reprod. Dev. 47:271–283, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Kim HS  Lee GS  Kim JH  Kang SK  Lee BC  Hwang WS 《Theriogenology》2006,65(4):831-844
The present study investigated the expression of ligand and receptor for leptin, and the effect of leptin supplementation on preimplantation development of porcine in vitro fertilized (IVF) and somatic cell nuclear transfer (SCNT) embryos. The IVF embryos were produced using frozen boar semen and SCNT embryos were obtained by nuclear transfer of fetal fibroblasts into enucleated oocytes. The protein expression of leptin ligand and receptor was investigated in in vitro matured oocytes, 2-, 4- and 8-cell embryos, morulae and blastocysts derived from IVF and SCNT using immunofluorescence. Both the ligand and receptor were detected in in vitro matured oocytes and all stage of IVF and SCNT embryos. The IVF and SCNT embryos were cultured in modified North Carolina State University (mNCSU)-23 medium supplemented with various concentrations (0, 1, 10, 100 or 1000 ng/mL) of leptin. The rates of cleavage at day 2 and blastocyst formation at day 7, and cell number of blastocysts were monitored as experimental parameters. In SCNT embryos, supplementing with 1000 ng/mL leptin significantly (P<0.05) increased the rate of blastocysts formation (20.2% versus 12.9%) and total cell number (54.6+/-17.4 versus 45.1+/-15.2) compared to the control group. In IVF embryos, leptin supplementation did not affect preimplantation embryo development and cell number in blastocysts. In conclusion, the present study demonstrated the expression of leptin ligand and receptor and the embryotropic effect of leptin in SCNT embryos.  相似文献   

18.
Ribonuclease protection assays have been used to quantitatively assess changes in steady-state levels of specific mRNAs during oogenesis and early embryogenesis in mice. The mRNAs encode ZP3 (a glycoprotein that serves as a sperm receptor), LDH-B (heart-type lactate dehydrogenase), and MOM-1 (a protein of unknown function). MOM-1 and LDH-B are expressed in a variety of adult mouse tissues and midgestation embryos, whereas ZP3 expression is restricted completely to oocytes. All three mRNAs are expressed by growing mouse oocytes and accumulate to unusually high levels in fully grown oocytes as compared to somatic cells; 240,000, 200,000 and 74,000 copies mRNA per fully grown oocyte for ZP3, LDH-B and MOM-1, respectively. Steady-state levels of LDH-B and MOM-1 mRNA undergo a modest decline (approximately 20-40%) during ovulation when fully grown oocytes become unfertilized eggs and, in general, mirror the reported change in poly(A)+RNA levels during this period of development. On the other hand, the level of ZP3 mRNA declines dramatically (approximately 98%) during ovulation, from approximately 240,000 copies per oocyte to approximately 5000 copies per unfertilized egg, and ZP3 mRNA is undetectable in fertilized eggs (less than 1000 copies per fertilized egg). MOM-1 mRNA is expressed at relatively low levels in morulae (approximately 2000 copies per embryo) and blastocysts (approximately 5000 copies per embryo), whereas ZP3 mRNA remains undetectable (less than 1000 copies per embryo) at these stages of preimplantation development. These findings are discussed in the context of overall gene expression during oocyte growth, meiotic maturation and early embryogenesis in mice.  相似文献   

19.
JY Zhang  YF Diao  HR Kim  DI Jin 《PloS one》2012,7(7):e40433
X-box binding protein-1 (XBP-1) is an important regulator of a subset of genes during endoplasmic reticulum (ER) stress. In the current study, we analyzed endogenous XBP-1 expression and localization, with a view to determining the effects of ER stress on the developmental competency of preimplantation embryos in mice. Fluorescence staining revealed that functional XBP-1 is localized on mature oocyte spindles and abundant in the nucleus at the germinal vesicle (GV) stage. However, in preimplantation embryos, XBP-1 was solely detected in the cytoplasm at the one-cell stage. The density of XBP-1 was higher in the nucleus than the cytoplasm at the two-cell, four-cell, eight-cell, morula, and blastocyst stages. Furthermore, RT-PCR analysis confirmed active XBP-1 mRNA splicing at all preimplantation embryo stages, except the one-cell stage. Tunicamycin (TM), an ER stress inducer used as a positive control, promoted an increase in the density of nuclear XBP-1 at the one-cell and two-cell stages. Similarly, culture medium supplemented with 25 mM sorbitol displayed a remarkable increase active XBP-1 expression in the nuclei of 1-cell and 2-cell embryos. Conversely, high concentrations of TM or sorbitol led to reduced nuclear XBP-1 density and significant ER stress-induced apoptosis. Tauroursodeoxycholic acid (TUDCA), a known inhibitor of ER stress, improved the rate of two-cell embryo development to blastocysts by attenuating the expression of active XBP-1 protein in the nucleus at the two-cell stage. Our data collectively suggest that endogenous XBP-1 plays a role in normal preimplantation embryonic development. Moreover, XBP-1 splicing is activated to generate a functional form in mouse preimplantation embryos during culture stress. TUDCA inhibits hyperosmolar-induced ER stress as well as ER stress-induced apoptosis during mouse preimplantation embryo development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号