首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We hypothesized that exercise training would lead to enhanced endothelium-dependent vasodilation in porcine pulmonary arteries. Pulmonary artery rings (2- to 3-mm OD) were obtained from female Yucatan miniature swine with surgically induced coronary artery occlusion (ameroid occluder). Exercise training was performed for 16 wk, and vasomotor responses were studied by using standard isometric techniques. Contractile responses to 80 mM KCl, isosmotic KCl (10-100 mM), and norepinephrine (10(-8) to 10(-4) M) did not differ between sedentary (Sed) and exercise-trained (Ex) pigs. Relaxation was assessed to endothelium-dependent and endothelium-independent vasodilators after norepinephrine contraction. Pulmonary arteries of Ex pigs exhibited greater maximal relaxation to ACh (61.9 +/- 3.5%) than did those of Sed pigs (52.3 +/- 3.9%; P < 0.05). Endothelium-independent relaxation to sodium nitroprusside did not differ. Inhibition of nitric oxide synthase significantly decreased acetylcholine-induced relaxation, with greater inhibition in arteries from Ex pigs (P < 0.05). Inhibition of cyclooxygenase enhanced relaxation to acetylcholine in arteries from Sed pigs. We conclude that exercise training enhances endothelium-dependent (ACh-mediated) vasorelaxation in pulmonary arteries by mechanisms of increased reliance on nitric oxide and reduced production of a prostanoid constrictor.  相似文献   

2.
Coronary arteries distal to chronic occlusion exhibit enhanced vasoconstriction and impaired relaxation compared with nonoccluded arteries. In this study, we tested the hypotheses that an increase in peak Ca(2+) channel current density and/or increased Ca(2+) sensitivity contributes to altered contractility in collateral-dependent coronary arteries. Ameroid occluders were surgically placed around the proximal left circumflex coronary artery (LCX) of female miniature swine. Segments of epicardial arteries ( approximately 1 mm luminal diameter) were isolated from the LCX and nonoccluded left anterior descending (LAD) arteries 24 wk after Ameroid placement. Contractile responses to depolarization (10-100 mM KCl) were significantly enhanced in LCX compared with size-matched LAD arterial rings [concentration of KCl causing 50% of the maximal contractile response (EC(50)); LAD = 41.7 +/- 2.3, LCX = 34.3 +/- 2.7 mM]. However, peak Ca(2+) channel current was not altered in isolated smooth muscle cells from LCX compared with LAD (-5.29 +/- 0.42 vs. -5.68 +/- 0.55 pA/pF, respectively). Furthermore, whereas half-maximal activation of Ca(2+) channel current occurred at nearly the same membrane potential in LAD and LCX, half-maximal inactivation was shifted to a more positive membrane potential in LCX cells. Simultaneous measures of contractile tension and intracellular free Ca(2+) (fura 2) levels in arterial rings revealed that significantly more tension was produced per unit change in fura 2 ratio in LCX compared with LAD in response to KCl but not during receptor-agonist stimulation with endothelin-1. Taken together, our data indicate that coronary arteries distal to chronic occlusion display increased Ca(2+) sensitivity in response to high KCl-induced depolarization, independent of changes in whole cell peak Ca(2+) channel current. Unaltered Ca(2+) sensitivity in endothelin-stimulated arteries suggests more than one mechanism regulating Ca(2+) sensitization in coronary smooth muscle.  相似文献   

3.
Endothelial nitric oxide (NO) synthase (NOS) has been shown to contribute to enhanced vascular function after exercise training. Recent studies have revealed that relatively low concentrations of reactive oxygen species can contribute to endothelium-dependent vasodilation under physiological conditions. We tested the hypothesis that exercise training enhances endothelial function via endothelium-derived vasodilators, NO and superoxide/H(2)O(2), in the underlying setting of chronic coronary artery occlusion. An ameroid constrictor was placed around the proximal left circumflex coronary artery to induce gradual occlusion in Yucatan miniature swine. At 8 wk postoperatively, pigs were randomly assigned to sedentary (pen-confined) or exercise-training (treadmill-run: 5 days/wk for 14 wk) regimens. Exercise training significantly enhanced concentration-dependent, bradykinin-mediated dilation in cannulated collateral-dependent arterioles (~130 μm diameter) compared with sedentary pigs. NOS inhibition reversed training-enhanced dilation at low bradykinin concentrations in collateral-dependent arterioles, although increased dilation persisted at higher bradykinin concentrations. Total and phosphorylated (Ser(1179)) endothelial NOS protein levels were significantly increased in arterioles from collateral-dependent compared with the nonoccluded region, independent of exercise. The H(2)O(2) scavenger polyethylene glycol-catalase abolished the training-enhanced bradykinin-mediated dilation in collateral-dependent arterioles; similar results were observed with the SOD inhibitor diethyldithiocarbamate. Fluorescence measures of bradykinin-stimulated H(2)O(2) levels were significantly increased by exercise training, independent of occlusion. The NADPH inhibitor apocynin significantly attenuated bradykinin-mediated dilation in arterioles of exercise-trained, but not sedentary, pigs and was associated with significantly increased protein levels of the NADPH subunit p67phox. These data provide evidence that, in addition to NO, the superoxide/H(2)O(2) signaling pathway significantly contributes to exercise training-enhanced endothelium-mediated dilation in collateral-dependent coronary arterioles.  相似文献   

4.
We previously reported that canine collateral-dependent coronary arteries exhibit impaired relaxation to adenosine but not sodium nitroprusside. In contrast, exercise training enhances adenosine sensitivity of normal porcine coronary arteries. These results stimulated the hypothesis that chronic coronary occlusion and exercise training produce differential effects on cAMP- versus cGMP-mediated relaxation. To test this hypothesis, Ameroid occluders were surgically placed around the proximal left circumflex coronary artery (LCx) of female Yucatan miniature swine 8 wk before initiating sedentary or exercise training (treadmill run, 16 wk) protocols. Relaxation to the cAMP-dependent vasodilators adenosine (10(-7) to 10(-3) M) and isoproterenol (3 x 10(-8) to 3 x 10(-5) M) were impaired in collateral-dependent LCx versus nonoccluded left anterior descending (LAD) arterial rings isolated from sedentary but not exercise-trained pigs. Furthermore, adenosine-mediated reductions in simultaneous tension and myoplasmic free Ca(2+) were impaired in LCx versus LAD arteries isolated from sedentary but not exercise-trained pigs. In contrast, relaxation in response to the cAMP-dependent vasodilator forskolin (10(-9) to 10(-5) M) and the cGMP-dependent vasodilator sodium nitroprusside (10(-9) to 10(-4) M) was not different in LCx versus LAD arteries of sedentary or exercise-trained animals. These data suggest that chronic occlusion impairs receptor-dependent, cAMP-mediated relaxation; receptor-independent cAMP- and cGMP-mediated relaxation were unimpaired. Importantly, exercise training restores cAMP-mediated relaxation of collateral-dependent coronary arteries.  相似文献   

5.
Endurance exercise training increases basal active tone in coronary arteries and enhances myogenic tone in coronary arterioles of control animals. Paradoxically, exercise training has also been shown to augment nitric oxide production and nitric oxide-mediated relaxation in coronary arterioles. The purpose of the present study was to examine the effect of exercise training on basal active tone of arterioles (approximately 150 microm ID) isolated from the collateral-dependent region of hearts exposed to chronic coronary occlusion. Ameroid occluders were surgically placed around the proximal left circumflex coronary artery of miniature swine. Arterioles were isolated from both the collateral-dependent and nonoccluded myocardial regions of sedentary (pen confined) and exercise-trained (treadmill run; 14 wk) pigs. Coronary tone was studied in isolated arterioles using microvessel myographs and standard isometric techniques. Exposure to nominally Ca2+-free external solution reduced resting tension in all arterioles; decreases were most profound (P < 0.05) in arterioles from the collateral-dependent region of exercise-trained animals. Furthermore, nitric oxide synthase (NOS) inhibition (N(omega)-nitro-L-arginine methyl ester; 100 microM) unmasked markedly increased nitric oxide-sensitive tone in arterioles from the collateral-dependent region of exercise-trained swine. Blockade of K+ channels revealed significantly enhanced K+ channel contribution to basal tone in collateral-dependent arterioles of exercise-trained pigs. Protein content of endothelial NOS (eNOS) and phosphorylated eNOS (pS1179), determined by immunoblot, was elevated in arterioles from exercise-trained animals with the greatest effect in collateral-dependent vasculature. Taken together, we demonstrate the interaction of opposing exercise training-enhanced arteriolar basal active tone, nitric oxide production, and K+ channel activity in chronic coronary occlusion, potentially enhancing the capacity to regulate blood flow to collateral-dependent myocardium.  相似文献   

6.
Exercise training enhances endothelium-dependent coronary vasodilatation, improving perfusion and contractile function of collateral-dependent myocardium. Paradoxically, studies from our laboratory have revealed increased Ca(2+)-dependent basal active tone in collateral-dependent arteries of exercise-trained pigs. In this study, we tested the hypothesis that exercise training enhances agonist-mediated contractile responses of collateral-dependent arteries by promoting Ca(2+) sensitization. Ameroid constrictors were surgically placed around the proximal left circumflex coronary (LCX) artery of female Yucatan miniature pigs. Eight weeks postoperatively, pigs were randomized into sedentary (pen confined) or exercise-training (treadmill run; 5 days/wk; 14 wk) groups. Arteries (~150 μm luminal diameter) were isolated from the collateral-dependent and nonoccluded (left anterior descending artery supplied) myocardial regions, and measures of contractile tension or simultaneous tension and intracellular free Ca(2+) concentration levels (fura-2) were completed. Exercise training enhanced contractile responses to endothelin-1 in collateral-dependent compared with nonoccluded arteries, an effect that was more pronounced in the presence of nitric oxide synthase inhibition (N(ω)-nitro-l-arginine methyl ester; 100 μM). Contractile responses to endothelin-1 were not altered by coronary occlusion alone. Exercise training produced increased tension at comparable levels of intracellular free Ca(2+) concentration in collateral-dependent compared with nonoccluded arteries, indicative of exercise training-enhanced Ca(2+) sensitization. Inhibition of PKC (calphostin C; 1 μM), but not Rho-kinase (Y-27632, 10 μM; or hydroxyfasudil, 30 μM), abolished the training-enhanced endothelin-1-mediated contractile response. Exercise training also increased sensitivity to the PKC activator phorbol 12,13-dibutyrate in collateral-dependent compared with nonoccluded arteries. Taken together, these data reveal that exercise training enhances endothelin-1-mediated contractile responses in collateral-dependent coronary arteries likely via increased PKC-mediated Ca(2+) sensitization.  相似文献   

7.
Phase-contrast magnetic resonance imaging (PC-MRI) is useful for assessing coronary artery flow reserves (CFR) in man and acute animal models with intermediate coronary lesions. The present study examines the use of PC-MRI for assessing CFR in a model with critical stenosis and collateral dependence. PC-MRI quantitative flow measurements from the proximal left anterior descending (LAD) and left circumflex (LCX) coronary arteries were compared with myocardial tissue perfusion reserve measurements (microsphere techniques) after placement of a 2.25-mm ameroid constrictor on the proximal LCX in a porcine model; measurements were obtained at implantation (n = 4) and at 3 to 4 weeks (n = 4) and 6 weeks (n = 5) postimplantation. CFR is defined as the ratio of maximal hyperemic flow to baseline flow. Hyperemia was induced using intravenous adenosine (140 mg/kg/min). Collateral dependence in the LCX distri bution was evidenced by angiographic findings of critical stenosis with minimal myocardial histological changes and normal baseline myocardial perfusion (microsphere techniques). In this setting, PC-MRI CFR was correlated with microsphere measures of perfusion reserve. Collateral dependence was confirmed by Evan's blue dye injection. This study provides angiographic, myocardial perfusion, and histological correlates associated with PC-MRI epicardial CFR changes during chronic, progressive coronary artery constriction. It also demonstrates the disparity between epicardial and myocardial measures of coronary flow reserve with collateral dependence and the caveats for PC-MRI use in models of progressive coronary constriction.  相似文献   

8.
Exercise training increases acetylcholine-induced pulmonary vasorelaxation in pigs with coronary occlusion. The present study tested the hypothesis that chronic exercise training enhances endothelium-mediated vasorelaxation in pulmonary arteries from normal pigs. Yucatan miniswine exercised for 16 wk on a treadmill (Ex); control pigs (Sed) remained in pens. Pulmonary artery rings (2- to 3-mm OD) were studied using standard isometric techniques. Contractile responses to 80 mM KCl and norepinephrine (NE) were determined. Vessels were constricted with levels of NE that resulted in half-maximal contraction to examine endothelium-dependent relaxation to ACh and endothelium-independent relaxation to sodium nitroprusside in the presence and absence of nitric oxide synthase inhibition, cyclooxygenase inhibition, and endothelial denudation. Arteries from Ex pigs developed increased contraction to 80 mM KCl, but the response to NE did not differ between groups. Endothelium-dependent and endothelium-independent responses did not differ between Sed and Ex in the presence or absence of pharmacological inhibitors or denudation. We conclude that chronic exercise training does not alter endothelium-dependent or endothelium-independent vasorelaxation responses of pulmonary arteries from normal pigs.  相似文献   

9.
Current literature suggests that chronic nitric oxide synthase (NOS) inhibition has differential effects on endothelium-dependent dilation (EDD) of conduit arteries vs. arterioles. Therefore, we hypothesized that chronic inhibition of NOS would impair EDD of porcine left anterior descending (LAD) coronary arteries but not coronary arterioles. Thirty-nine female Yucatan miniature swine were included in the study. Animals drank either tap water or water with N(G)-nitro-L-arginine methyl ester (L-NAME; 100 mg/l), resulting in control and chronic NOS inhibition (CNI) groups, respectively. Treatment was continued for 1-3 mo (8.3 +/- 0.6 mg x kg(-1) x day(-1)). In vitro EDD of coronary LADs and arterioles was assessed via responses to ADP (LADs only) and bradykinin (BK), and endothelium-independent function was assessed via responses to sodium nitroprusside (SNP). Chronic NOS inhibition diminished coronary artery EDD to ADP and BK. Incubating LAD rings with L-NAME decreased relaxation responses of LADs from control pigs but not from CNI pigs such that between-group differences were abolished. Neither indomethacin (Indo) nor sulfaphenazole incubation significantly affected relaxation responses of LAD rings to ADP or BK. Coronary arteries from CNI pigs showed enhanced relaxation responses to SNP. In contrast to coronary arteries, coronary arterioles from CNI pigs demonstrated preserved EDD to BK and no increase in dilation responses to SNP. L-NAME, Indo, and L-NAME + Indo incubation did not result in significant between-group differences in arteriole dilation responses to BK. These results suggest that although chronic NOS inhibition diminishes EDD of LAD rings, most likely via a NOS-dependent mechanism, it does not affect EDD of coronary arterioles.  相似文献   

10.
Gradual occlusion (O) of the swine left circumflex coronary artery (LCX) with an ameroid occluder results in complete O within 3 weeks, collateral vessel development, and compensatory hypertrophy. The purpose of this investigation was to determine the independent and combined effects of O and exercise training (E) on gene expression in the swine heart. Adult Yucatan miniature swine were assigned to one of the following groups (n = 6–9/group): sedentary control (S), exercise-trained (E), sedentary swine subjected to LCX occlusion (SO), and exercise-trained swine with LCX occlusion (EO). Exercise consisted of progressive treadmill running conducted 5 d/wk for 16 weeks. Gene expression was studied in myocardium isolated from the collateral-dependent left ventricle free wall (LV) and the collateral-independent septum (SEP) by RNA blotting. E and O each stimulated cardiac hypertrophy independently (p < 0.001) with no interaction. O but not E increased atrial natriuretic factor expression in the LV, but not in the SEP. E decreased the expression of β-myosin heavy chain in the LV, but not in the SEP. E retarded the expression of collagen III mRNA in SEP; but not in the LV. Exercise training and coronary artery occlusion each stimulate cardiac hypertrophy independently and induce different patterns of gene expression.  相似文献   

11.
A new technique induces localized myocardial infarction in closed-chest dogs by placing discrete plugs in coronary arteries without using cumbersome coaxial catheters or guide wires. Flexible plugs, essential to this method, are formed by extruding a dental impression polymer, rendered radiopaque with sodium iodide, into spaghetti-like strands. Segments of these strands can be injected through a catheter into a selected coronary artery. Contact with blood or saline causes plugs to swell. The mean increase in plug diameter due to swelling was 27 +/- 20%. Eight anesthetized dogs were embolized via carotid approach [6 left anterior descending (LAD), 1 left circumflex (LCX), and 1 LAD and LCX]. Plug positions were monitored fluoroscopically. One animal died at 2 days postembolization. The remaining seven dogs were killed after 14-37 days. Autopsies showed complete vessel occlusion and localized infarction. Infarcts resulting from coronary artery occlusion with one, two, or three plugs involved 2-26% of the left ventricular mass.  相似文献   

12.
We tested the hypothesis that exercise training (Ex) attenuates hypercholesterolemia-induced impairment of endothelium-dependent relaxation (EDR) in male porcine coronary arteries [left anterior descending coronary arteries (LAD)] by increasing nitric oxide (NO) release [due to increased endothelial NO synthase (NOS) expression] and/or increased bioactivity of NO. Adult male pigs were fed a normal-fat (NF) or high-fat (HF) diet for 20-24 wk. Pigs were Ex or remained sedentary (Sed) for 16-20 wk, beginning after 4 wk on diet. Four groups of pigs were used: NF-Sed, NF-Ex, HF-Sed, and HF-Ex. HF enhanced LAD contractions induced by KCl, aggregating platelets (AP), and serotonin (5-HT). AP and 5-HT produced EDR after blockade of cyclooxygenase with indomethacin (Indo) and smooth-muscle 5-HT(2) receptors with ketanserin. HF impaired EDR induced by AP, 5-HT, and bradykinin. Results indicate a decreased contribution of NO to EDR in HF-Sed LADs, because the percentage of bradykinin-induced EDR inhibited by N(G)-nitro-L-arginine methyl ester was 27% in NF-Sed and 34% in NF-Ex but only 17% in HF-Sed. Also, N(G)-nitro-L-arginine methyl ester + Indo results indicate that release of an Indo-sensitive vasoconstrictor contributes to blunted EDR in HF-Sed LAD. Immunoblot and immunohistochemistry results indicate the following: 1) LAD endothelial NOS protein content was similar among groups; 2) HF decreased LAD superoxide dismutase (SOD) but increased caveolin-1 content; and 3) Ex increased SOD content of HF LADs. We conclude that HF impairs EDR by impairing the contribution of NO released from NOS (due to decreased SOD and increased caveolin-1 protein content) and by production of an Indo-sensitive vasoconstrictor. Ex preserves EDR in HF LADs by decreasing the production of the constrictor and increasing NO-release by NOS and/or NO bioactivity and bioavailability.  相似文献   

13.
We tested the hypothesis that exercise training (Ex) attenuates the effects of hypercholesterolemia on endothelium-dependent relaxation in left anterior descending coronary arteries. Adult female pigs were fed a normal-fat (NF) or high-fat (HF) diet for 20 wk. Four weeks after the diet was initiated, pigs were trained or remained sedentary (Sed) for 16 wk, yielding four groups of pigs: 1) NF-Sed, 2) NF-Ex, 3) HF-Sed, and 4) HF-Ex. Sensitivity (EC(50)) to bradykinin (BK) was impaired in HF-Sed arteries. Ex improved BK-induced relaxation such that the EC(50) and maximal response to BK in HF-Ex arteries was not different from that in NF-Sed and NF-Ex. ACh-induced constriction was less in HF-Ex arteries than in HF-Sed, NF-Sed, and NF-Ex. To determine the mechanism(s) by which HF and Ex affected responses to BK and ACh, vasoactive responses were assessed in the presence of N(G)-nitro-L-arginine methyl ester [L-NAME; to inhibit nitric oxide (NO) synthase], indomethacin (Indo; to inhibit cyclooxygenase), and L-NAME + Indo. L-NAME inhibited BK-induced relaxation in NF (not HF) arteries. Indo did not significantly alter relaxation to BK in NF arteries; however, relaxation was enhanced in HF-Sed arteries. Double blockade with L-NAME + Indo attenuated BK-induced relaxation in NF arteries and eliminated relaxation in HF arteries. Neither L-NAME nor Indo altered constrictor responses to ACh in NF or HF arteries; however, double blockade with L-NAME + Indo attenuated constriction to ACh in NF-Ex arteries. Endothelium-independent relaxation to sodium nitroprusside was enhanced in HF-Sed and HF-Ex arteries. Collectively, these results indicate that HF impaired endothelial function in coronary arteries by impairing production of NO and by enhancing production of a constrictor that was inhibited by Indo. Ex attenuated the effects of hypercholesterolemia by improving NO-mediated, endothelium-dependent relaxation and by reducing the influence of the Indo-sensitive constrictor.  相似文献   

14.
Exercise training produces enhanced nitric oxide (NO)-dependent, endothelium-mediated vasodilator responses of porcine coronary arterioles but not conduit coronary arteries. The purpose of this study was to test the hypothesis that exercise training increases the amount of endothelial NO synthase (eNOS) in the coronary arterial microcirculation but not in the conduit coronary arteries. Miniature swine were either exercise trained or remained sedentary for 16--20 wk. Exercise-trained pigs exhibited increased skeletal muscle oxidative capacity, exercise tolerance, and heart weight-to-body weight ratios. Content of eNOS protein was determined with immunoblot analysis in conduit coronary arteries (2- to 3-mm ID), small arteries (301- to 1,000-microm ID), resistance arteries (151- to 300-microm ID), and three sizes of coronary arterioles [large (101- to 150-microm ID), intermediate (51- to 100-microm ID), and small (<50-microm ID)]. Immunoblots revealed increased eNOS protein in some sizes of coronary arteries and arterioles but not in others. Content of eNOS was increased by 60--80% in small and large arterioles, resistance arteries, and small arteries; was increased by 10--20% in intermediate-sized arterioles; and was not changed or decreased in conduit arteries. Immunohistochemistry revealed that eNOS was located in the endothelial cells in all sizes of coronary artery. We conclude that exercise training increases eNOS protein expression in a nonuniform manner throughout the coronary arterial tree. Regional differences in shear stress and intraluminal pressures during exercise training bouts may be responsible for the distribution of increased eNOS protein content in the coronary arterial tree.  相似文献   

15.
We tested the hypothesis that short-term exercise (STEx) training and the associated increase in pulmonary blood flow during bouts of exercise cause enhanced endothelium-dependent vasorelaxation in porcine pulmonary arteries and increased expression of endothelial cell nitric oxide synthase (eNOS) and superoxide dismutase-1 (SOD-1) protein. Mature, female Yucatan miniature swine exercised 1 h twice daily on a motorized treadmill for 1 wk (STEx group, n = 7); control pigs (Sed, n = 6) were kept in pens. Pulmonary arteries were isolated from the left caudal lung lobe, and vasomotor responses were determined in vitro. Arterial tissue from the distal portion of this pulmonary artery was processed for immunoblot analysis. Maximal endothelium-dependent (ACh-stimulated) relaxation was greater in STEx (71 +/- 5%) than in Sed (44 +/- 6%) arteries (P < 0.05), and endothelium-independent (sodium nitroprusside-mediated) responses did not differ. Sensitivity to ACh was not altered by STEx training. Immunoblot analysis indicated a 3.9-fold increase in eNOS protein in pulmonary artery tissue from STEx pigs (P < 0.05) with no change in SOD-1 or glyceraldehyde-3-phosphate dehydrogenase protein levels. We conclude that STEx training enhances ACh-stimulated vasorelaxation in pulmonary arterial tissue and that this adaptation is associated with increased expression of eNOS protein.  相似文献   

16.
Hajnal A  Nagy O  Litvai A  Papp J  Parratt JR  Végh A 《Life sciences》2005,77(16):1960-1971
We have shown previously that a single period of treadmill exercise in dogs protects the heart against the severe ventricular arrhythmias that arise when a major (anterior descending) branch of the left coronary artery is occluded following anaesthesia 24 h later. This protection is aminoguanidine sensitive, suggesting a role for nitric oxide (NO) in this exercise-induced delayed antiarrhythmic effect. The present study has further examined the possible role of NO as a mediator and/or as a trigger using the selective induced (iNOS) inhibitor S-(2-aminoethyl)-methyl-isothiourea (AEST) and the specific but not selective nitric oxide synthase inhibitor N(omega)-nitro-L-arginine-methyl-ester (L-NAME). Exercise markedly reduced the severity of ischaemia and reperfusion-induced ventricular arrhythmias 24 h later. Thus, only one of the dogs (8%) so exercised fibrillated on occlusion (contrast 46% in the control, non-exercised dogs; P<0.05) and the marked changes in the inhomogeneity of electrical activation that occur in the ischaemic region following occlusion were much reduced (P<0.05 compared to controls). This delayed exercise-induced cardioprotection was significantly attenuated by the nitric oxide synthase (NOS) inhibitors L-NAME, given prior to the exercise protocol and by AEST given prior to the coronary artery occlusion. For example, survival from the ischaemia-reperfusion insult was 54% in the exercise dogs, 0% in the controls and 14% in those dogs given a NOS inhibitor. We conclude that nitric oxide (NO) is both the trigger and the mediator of this delayed protection against ischaemia and reperfusion-induced arrhythmias.  相似文献   

17.
Therapeutic stimulation of collateral artery growth is a promising approach for treatment of cardiovascular diseases. Unfortunately, translation into clinical practice yet remains cumbersome. Cardiovascular physiology and anatomy are major determinants of vascular growth processes. Hence, large-animal models are needed to improve clinical translatability of preclinical research. Furthermore, acute complete occlusions are mostly applied in experimental research, whereas stepwise occlusions are more often observed in human disease. We developed a model of coronary collateral artery growth in which 1) the artery is occluded in a step wise approach, and 2) effects of local treatment can be measured individually for each supplying coronary vessel. A hemodynamically relevant stenosis was created by implantation of a tapered stent at day 0 (d0) in the left circumflex artery (LCX), followed by complete arterial occlusion at day 14 (d14). Fluorescent microspheres were injected for demarcation of perfusion territories at each time point. Three and four weeks after induction of stenosis, collateral conductance measurements were performed for each coronary artery separately using differently labeled fluorescent microspheres. Postmortem angiography after acute LCX occlusion confirmed the presence of preexistent coronary anastomoses in the pig. The tapered stent created a hemodynamically significant stenosis immediately postplacement (fractional flow reserve, 0.70 ± 0.03). Between day 21 and 28, collateral conductance significantly increased in both the left anterior descending (LAD) and the right coronary artery (RCA)-supplied, collateral-dependent territories (LAD d21, 0.77 ± 0.14; LAD d28, 1.35 ± 0.12; RCA d21, 0.88 ± 0.29; RCA d28, 1.70 ± 0.16 ml · min(-1) · g(-1) · 100 mmHg(-1)), indicating collateral artery growth. We here describe a new translational minimally invasive model of coronary collateral artery growth in pigs, according to a defined protocol of LCX-stenosis and subsequent occlusion, allowing preclinical evaluation of arteriogenic therapies.  相似文献   

18.
The development of new coronary artery constitutive models is of critical importance in the design and analysis of coronary replacement grafts. In this study, a two-parameter logarithmic complementary energy function, with normalized measured force and internal pressure as the independent variables and strains as the dependent variables, was developed for healthy porcine coronary arteries. Data was collected according to an experimental design with measured force ranging from 9.8 to 201 mN and internal pressure ranging from 0.1 to 16.1 kPa (1 to 121 mmHg). Comparisons of the estimated constitutive parameters showed statistically significant differences between the left anterior descending [LAD] and right coronary artery [RCA], but no differences between the LAD and left circumflex [LCX] or between the LCX and RCA. Point-by-point strain comparisons confirm the findings of the model parameter study and isolate the difference to the axial strain response. Average axial strains for the LAD, LCX, and RCA are 0.026 +/- 0.009, 0.015 +/- 0.005, and 0.011 +/- 0.009, respectively, at all physiologic loads, suggesting that the axial strains in the LAD are significantly higher than in the other regions.  相似文献   

19.
We tested the hypothesis that chronic high-altitude (3,820 m) hypoxia during pregnancy was associated with the upregulation of endothelial nitric oxide (NO) synthase (eNOS) protein and mRNA in ovine uterine artery endothelium and enhanced endothelium-dependent relaxation. In pregnant sheep, norepinephrine-induced dose-dependent contractions were increased by removal of the endothelium in both control and hypoxic uterine arteries. The increment was significantly higher in hypoxic tissues. The calcium ionophore A23187-induced relaxation of the uterine artery was significantly enhanced in hypoxic compared with control tissues. However, sodium nitroprusside- and 8-bromoguanosine 3',5'-cyclic monophosphate-induced relaxations were not changed. Accordingly, chronic hypoxia significantly increased basal and A23187-induced NO release. Chronic hypoxia increased eNOS protein and mRNA levels in the endothelium from uterine but not femoral or renal arteries. In nonpregnant animals, chronic hypoxia increased eNOS mRNA in uterine artery endothelium but had no effects on eNOS protein, NO release, or endothelium-dependent relaxation. Chronic hypoxia selectively augments pregnancy-associated upregulation of eNOS gene expression and endothelium-dependent relaxation of the uterine artery.  相似文献   

20.
We investigated the possible contribution of inducible nitric oxide synthase (iNOS) to postischemic heart dysfunction and injuries in stroke-prone spontaneously hypertensive rats (SHRSP). SHRSP, 13-14 wk of age, had significantly higher systolic blood pressure and greater heart weight than age-matched Wistar-Kyoto rats (WKY). Permanent occlusion of the left anterior descending coronary artery (LAD) caused significant and long-lasting increases in the activity and mRNA expression of myocardial iNOS in SHRSP compared with WKY. However, there was no significant difference in the LAD occlusion-induced expression of interleukin-1beta mRNA between SHRSP and WKY. Hemodynamic deterioration and myocardial fibrosis were also observed in SHRSP at 4 wk after LAD occlusion. Continuous administration of 2-amino-5,6-dihydro-6-methyl-4H-1,2-thiazin (AMT) completely blocked the LAD occlusion-induced increase in the myocardial iNOS activity of SHRSP. Moreover, postischemic heart dysfunction and injuries were also significantly ameliorated by 2-amino-5,6-dihydro-6-methyl-4H-1,2-thiazin (AMT). These results suggest that the increased activity of myocardial iNOS plays a pivotal role in the development of postischemic cardiac dysfunction and injuries in SHRSP with the hypertensive and hypertrophic heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号