首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bag shaped peptidoglycan layer of Rhizobium cell wall was isolated from intact cells after treatment with sodium dodecylsulfate and trypsin, chymotrypsin or pepsin digestion. Results of chemical analysis of acid hydrolyzed peptidoglycan revealed beside two amino sugars: glucosamine and muramic acid, three major amino acids; alanine, glutamic acid and 2,6-diaminopimelic acid and also significant amount of glucose. Evidence were provided that the polyglucose found in peptidoglycan preparations of three strains of Rhizobium trifolii, one of Rhizobium leguminosarum and one of Rhizobium meliloti consist of cellulose microfibrils. The content of cellulose present in Rhizobium peptidoglycans ranged from 60 to 80%. Methods of peptidoglycan purification from the cellulose microfibrils are described.  相似文献   

2.
T. Fujino  T. Itoh 《Protoplasma》1994,180(1-2):39-48
Summary The cell wall of a green alga,Oocystis apiculata, was visualized by electron microscopy after preparation of samples by rapid-freezing and deep-etching techniques. The extracellular spaces clearly showed a random network of dense fibrils of approximately 6.4 nm in diameter. The cell wall was composed of three distinct layers: an outer layer with a smooth appearance and many protuberances on its outermost surface; a middle layer with criss-crossed cellulose microfibrils of approximately 15–17 nm in diameter; and an inner layer with many pores between anastomosing fibers of 8–10 nm in diameter. Both the outer and the inner layer seemed to be composed of amorphous material. Cross-bridges of approximately 4.2 nm in diameter were visualized between adjacent microfibrils by the same techniques. The cross-bridges were easily distinguished from cellulose microfibrils by differences in their dimensions.  相似文献   

3.
Crystalline features of cellulose microfibrils in the cell walls of Glaucocystis (Glaucophyta) were studied by combined spectroscopy and diffraction techniques, and the results were compared with those of Oocystis (Chlorophyta). Although these algae are grouped into two different classes, by the composition of their chloroplasts for instance, their cell walls are quite similar in size and morphology. The most striking features of their cellulose crystallites are that they have the highest cellulose I(alpha) contents reported to date. In particular, the I(alpha) fraction of cellulose from Glaucocystis was found to be as high as 90% from (13)C NMR analysis. The mode of preferential orientation of cellulose crystallites in their cell walls is also interesting; equatorial 0.53-nm lattice planes were oriented parallel to the cell surface in the case of Glaucocystis, while the 0.62-nm planes were parallel to the Oocystis cell surface. Such a structural variation provides another link to the evolution of cellulose structure, biosynthesis, and its biocrystallization mechanism.  相似文献   

4.
Mine I  Okuda K 《Planta》2007,225(5):1135-1146
The mechanical strength of cell walls in the tip-growing cells of Vaucheria terrestris is weakened by treatment with proteolytic enzymes. To clarify the morphological characteristics of the components maintaining cell wall strength, the fine structures of the cell walls, with and without protease treatment, were observed by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Observations indicated that cellulose microfibrils were arranged in random directions and overlapped each other. Most of the microfibrils observed in the inner surface of the cell wall were embedded in amorphous materials, whereas in the outer surface of the cell wall, microfibrils were partially covered by amorphous materials. The matrix components embedding and covering microfibrils were almost completely removed by protease treatment, revealing layers of naked microfibrils deposited deeply in the cell wall. Topographic data taken from AFM observations provided some additional information that could not be obtained by TEM, including more detailed images of the granular surface textures of the matrix components and the detection of microfibrils in the interior of the cell wall. In addition, quantitative AFM data of local surface heights enabled us to draw three-dimensional renderings and to quantitatively estimate the extent of the exposure of microfibrils by the enzymatic treatment.  相似文献   

5.
Appearance of cellulose microfibrils in the medium of a suspension of cells of Acetobacter xylinum in buffered glucose solution was preceded by a stage during which the cellulose in the medium was amorphous within the available resolution. The size of the vertical axis of the microfibrils of the bacterial cellulose was found on the basis of measurement of shadow length to be only about 16 A. In good agreement with findings of earlier workers, the size of the lateral axis ("width") of the image of the metal-shadowed cellulose microfibrils was found to be 11 mµ. After correcting for a large part probably contributed by deposited metal in the observed width of the microfibrils, the real width is estimated roughly to be in the neighborhood of 3 mµ. To account for the occurrence of diverse morphological elements in the fields and for the fact that the cellulose fibrils are free entities rather than physical appendages of the cell, it is suggested that individual cellulose molecules are released at the cell surface and diffuse into the medium, wherein they finally enter into crystal-line patterns.  相似文献   

6.
Arrangements of cortical microtubules (MTs) and of cellulose microfibrils at the surface of the vegetative shoot apex ofVinca major L. were examined by immunofluorescence microscopy and polarizing microscopy, respectively. Cortical MTs adjacent to the outermost walls of the apex were arranged more or less randomly in individual cells: especially in cells in the central region of the apex the arrangement was almost completely random. However, in the peripheral region MTs tended to show parallel alignment in individual cells, and an overall pattern that was roughly concentric around the apical dome was discerned. Observations of birefringence of cell walls indicated that cellulose microfibrils in the peripheral region of the apex were also arranged in a pattern which was roughly concentric around the apical dome. These patterns of arrangements of MTs and microfibrils are understood to be perpendicular to the radial cell files observed in the peripheral region of the apex, and can be related to the radial expansion of the surface of the apex.  相似文献   

7.
Hosoo Y  Yoshida M  Imai T  Okuyama T 《Planta》2002,215(6):1006-1012
The differences between cell wall formation at night, when the tangential strain used as an index of the volumetric changes in differentiating cells is high, and in the day, when the tangential strain is low, were investigated in Cryptomeria japonica D. Don. Samples containing differentiating xylem were collected at 0500 hours and 1400 hours. The innermost surface of developing secondary walls in differentiating tracheids was observed by field emission scanning electron microscopy. In the specimens collected at 0500 hours, an amorphous material was observed covering the cellulose microfibrils. The cell wall surface was immunogold-labeled with an anti-glucomannan antiserum. After chlorite treatment, the amorphous material disappeared, and immunogold labeling was rarely observed. In the specimens collected at 1400 hours, cellulose microfibrils were clearly evident, and amorphous material and immunogold labeling were rarely observed. We thus confirmed that much amorphous material containing glucomannans is observed at night, when differentiating tracheids are turgid due to the increase in their volume, while the amorphous material was rarely observed during the day when cellulose microfibrils are clearly observed.  相似文献   

8.
Cellulose microfibrils are critical for plant cell specialization and function. Recent advances in live cell imaging of fluorescently tagged cellulose synthases to track cellulose synthesis have greatly advanced our understanding of cellulose biosynthesis. Nevertheless, cellulose deposition patterns remain poorly described in many cell types, including those in the process of division or differentiation. In this study, we used field emission scanning electron microscopy analysis of cryo-planed tissues to determine the arrangement of cellulose microfibrils in various faces of cells undergoing cytokinesis or specialized development, including cell types in which cellulose cannot be imaged by conventional approaches. In dividing cells, we detected microfibrillar meshworks in the cell plates, consistent with the concentration at the cell plate of cellulose synthase complexes, as detected by fluorescently tagged CesA6. We also observed a loss of parallel cellulose microfibril orientation in walls of the mother cell during cytokinesis, which corresponded with the loss of fluorescently tagged cellulose synthase complexes from these surfaces. In recently formed guard cells, microfibrils were randomly organized and only formed a highly ordered circumferential pattern after pore formation. In pit fields, cellulose microfibrils were arranged in circular patterns around plasmodesmata. Microfibrils were random in most cotyledon cells except the epidermis and were parallel to the growth axis in trichomes. Deposition of cellulose microfibrils was spatially delineated in metaxylem and protoxylem cells of the inflorescence stem, supporting recent studies on microtubule exclusion mechanisms.  相似文献   

9.
The cellulose system of the cell wall ofMicrasterias denticulataandMicrasterias rotatawas analyzed by diffraction contrast transmission electron microscopy, electron diffraction, and X-ray analysis. The studies, achieved on disencrusted cell ghosts, confirmed that the cellulose microfibrils occurred in crisscrossed bands consisting of a number of parallel ribbon-like microfibrils. The individual microfibrils had thicknesses of 5 nm for a width of around 20 nm, but in some instances, two or three microfibrils merged into one another to yield larger monocrystalline domains reaching up to 60 nm in lateral size. The orientation of the cellulose ofMicrasteriasis very unusual, as it was found that in the cell wall, the equatorial crystallographic planes of cellulose having ad-spacing of 0.60 nm [(110) in the Iβ cellulose unit cell defined by Sugiyamaet al.,1991,Macromolecules24, 4168–4175] were oriented perpendicular to the cell wall surface. Up to now, such orientation has been found only inSpirogyra,another member of the Zygnemataceae group. The unusual structure of the secondary wall cellulose ofMicrasteriasmay be tentatively correlated with the unique organization of the terminal complexes, which in this alga occur as hexagonal arrays of rosettes.  相似文献   

10.
Summary By quantitative analysis of cellulose microfibril orientation at different levels in the primary cell wall of a number of cell types, the development of wall texture was studied. Meristematic, isodiametric and cylindrical parenchyma cells and cells of a suspension culture were used. Within the newly deposited microfibril population, various orientations were recognized on the micrographs. Within subpopulations the orientation of undercrossing and overcrossing microfibrils were measured. These measurements showed a gradual shift in cellulose microfibril orientation in the different levels. Microfibrils showed predominant orientations at particular levels but microfibrils of intermediate orientation also occurred, although at a much lower density. As cellulose microfibrils of intermediate orientation were not closely packed, lamellae were not formed. Interwoven microfibrils were occasionally present, indicating that differently orientated microfibrils are occasionally deposited simultaneously. Also gradual changes in orientation over the entire inner cell wall surface were observed. From these observations it was inferred that microfibril deposition occurs with a small but regular and progressive change in orientation, the rotational motion, related to that of a helicoidal system.Dedicated to Professor Dr. M. M. A. Sassen on the occasion of his 65th birthday  相似文献   

11.
This article explores root epidermal cell elongation and its dependence on two structural elements of cells, cortical microtubules and cellulose microfibrils. The recent identification of Arabidopsis morphology mutants with putative cell wall or cytoskeletal defects demands a procedure for examining and comparing wall architecture and microtubule organization patterns in this species. We developed methods to examine cellulose microfibrils by field emission scanning electron microscopy and microtubules by immunofluorescence in essentially intact roots. We were able to compare cellulose microfibril and microtubule alignment patterns at equivalent stages of cell expansion. Field emission scanning electron microscopy revealed that Arabidopsis root epidermal cells have typical dicot primary cell wall structure with prominent transverse cellulose microfibrils embedded in pectic substances. Our analysis showed that microtubules and microfibrils have similar orientation only during the initial phase of elongation growth. Microtubule patterns deviate from a predominantly transverse orientation while cells are still expanding, whereas cellulose microfibrils remain transverse until well after expansion finishes. We also observed microtubule-microfibril alignment discord before cells enter their elongation phase. This study and the new technology it presents provide a starting point for further investigations on the physical properties of cell walls and their mechanisms of assembly.  相似文献   

12.
Cellulose and xyloglucan (XG) assemble to form the cellulose/XG network, which is considered to be the dominant load-bearing structure in the growing cell walls of non-graminaceous land plants. We have extended the most commonly accepted model for the macromolecular organization of XG in this network, based on the structural and quantitative analysis of three distinct XG fractions that can be differentially extracted from the cell walls isolated from etiolated pea stems. Approximately 8% of the dry weight of these cell walls consists of XG that can be solubilized by treatment of the walls with a XG-specific endoglucanase (XEG). This material corresponds to an enzyme-susceptible XG domain, proposed to form the cross-links between cellulose microfibrils. Another 10% of the cell wall consists of XG that can be solubilized by concentrated KOH after XEG treatment. This material constitutes another XG domain, proposed to be closely associated with the surface of the cellulose microfibrils. An additional 3% of the cell wall consists of XG that can be solubilized only when the XEG- and KOH-treated cell walls are treated with cellulase. This material constitutes a third XG domain, proposed to be entrapped within or between cellulose microfibrils. Analysis of the three fractions indicates that metabolism is essentially limited to the enzyme-susceptible domain. These results support the hypothesis that enzyme-catalyzed modification of XG cross-links in the cellulose/XG network is required for the growth and development of the primary plant cell wall, and demonstrate that the structural consequences of these metabolic events can be analyzed in detail.  相似文献   

13.
Xyloglucans (XG) with different mobilities were identified in the primary cell walls of mung beans (Vigna radiata L.) by solid-state 13C-NMR spectroscopy. To improve the signal:noise ratios compared with unlabelled controls, Glc labelled at either C-1 or C-4 with 13C-isotope was incorporated into the cell-wall polysaccharides of mung bean hypocotyls. Using cell walls from seedlings labelled with d-[1-13C]glucose and, by exploiting the differences in rotating-frame and spin-spin proton relaxation, a small signal was detected which was assigned to Xyl of XGs with rigid glucan backbones. After labelling seedlings with d-[4-13C]glucose and using a novel combination of spin-echo spectroscopy with proton spin relaxation-editing, signals were detected that had 13C-spin relaxations and chemical shifts which were assigned to partly-rigid XGs surrounded by mobile non-cellulosic polysaccharides. Although quantification of these two mobility types of XG was difficult, the results indicated that the partly-rigid XGs were predominant in the cell walls. The results lend support to the postulated new cell-wall models in which only a small proportion of the total surface area of the cellulose microfibrils has XG adsorbed on to it. In these new models, the partly-rigid XGs form cross-links between adjacent cellulose microfibrils and/or between cellulose microfibrils and other non-cellulosic polysaccharides, such as pectic polysaccharides.  相似文献   

14.
The surface are and crystallinity was measured on a cellulose powder made from Cladophora sp. algae. The algae cellulose powder was found to have a very high surface area (63.4 m2/g, N2 gas adsorption) and build up of cellulose with a high crystallinity (approximately 100%, solid state NMR). The high surface area was confirmed by calculations from atomic force microscope imaging of microfibrils from Cladophora sp. algae.  相似文献   

15.
Detergent extracts of microsomal fractions from suspension cultured cells of Rubus fruticosus (blackberry) were tested for their ability to synthesize in vitro sizable quantities of cellulose from UDP-glucose. Both Brij 58 and taurocholate were effective and yielded a substantial percentage of cellulose microfibrils together with (1-->3)-beta-d-glucan (callose). The taurocholate extracts, which did not require the addition of Mg(2+), were the most efficient, yielding roughly 20% of cellulose. This cellulose was characterized after callose removal by methylation analysis, electron microscopy, and electron and x-ray synchrotron diffractions; its resistance toward the acid Updegraff reagent was also evaluated. The cellulose microfibrils synthesized in vitro had the same diameter as the endogenous microfibrils isolated from primary cell walls. Both polymers diffracted as cellulose IV(I), a disorganized form of cellulose I. Besides these similarities, the in vitro microfibrils had a higher perfection and crystallinity as well as a better resistance toward the Updegraff reagent. These differences can be attributed to the mode of synthesis of the in vitro microfibrils that are able to grow independently in a neighbor-free environment, as opposed to the cellulose in the parent cell walls where new microfibrils have to interweave with the already laid polymers, with the result of a number of structural defects.  相似文献   

16.
Burk DH  Ye ZH 《The Plant cell》2002,14(9):2145-2160
It has long been hypothesized that cortical microtubules (MTs) control the orientation of cellulose microfibril deposition, but no mutants with alterations of MT orientation have been shown to affect this process. We have shown previously that in Arabidopsis, the fra2 mutation causes aberrant cortical MT orientation and reduced cell elongation, and the gene responsible for the fra2 mutation encodes a katanin-like protein. In this study, using field emission scanning electron microscopy, we found that the fra2 mutation altered the normal orientation of cellulose microfibrils in walls of expanding cells. Although cellulose microfibrils in walls of wild-type cells were oriented transversely along the elongation axis, cellulose microfibrils in walls of fra2 cells often formed bands and ran in different directions. The fra2 mutation also caused aberrant deposition of cellulose microfibrils in secondary walls of fiber cells. The aberrant orientation of cellulose microfibrils was shown to be correlated with disorganized cortical MTs in several cell types examined. In addition, the thickness of both primary and secondary cell walls was reduced significantly in the fra2 mutant. These results indicate that the katanin-like protein is essential for oriented cellulose microfibril deposition and normal cell wall biosynthesis. We further demonstrated that the Arabidopsis katanin-like protein possessed MT-severing activity in vitro; thus, it is an ortholog of animal katanin. We propose that the aberrant MT orientation caused by the mutation of katanin results in the distorted deposition of cellulose microfibrils, which in turn leads to a defect in cell elongation. These findings strongly support the hypothesis that cortical MTs regulate the oriented deposition of cellulose microfibrils that determines the direction of cell elongation.  相似文献   

17.
Expansins are plant cell wall-loosening proteins that promote cell growth and are essential for many critical developmental processes and stress responses. The molecular basis for expansin action is uncertain. Recently, it has been proposed that expansins loosen the wall by means of the generation of mobile conformational defects at the surface of cellulose microfibrils. The present work addresses this hypothesis by elaborating three assumptions: (1) microfibril–matrix interfaces cause steep stress gradients on the microfibril surface, (2) stress gradients drive the motion of conformational defects along the microfibril surface toward the microfibril–matrix interfaces, and (3) the approach of the defects to the microfibril–matrix interfaces facilitates the dissociation of matrix polysaccharides from cellulose microfibrils.  相似文献   

18.
Complete cellulase, an endoglucanase (EGV) with cellulose-binding domain (CBD) and a mutant endoglucanase without CBD (EGI) were utilized for the hydrolysis of a fully bleached reed Kraft pulp sample. The changes of microfibrils on the fiber surface were examined with tapping mode atomic force microscopy (TM–AFM) phase imaging. The results indicated that complete cellulase could either peel the fibrillar bundles along the microfibrils (peeling) or cut microfibrils into short length across the length direction (cutting) during the process. After 24 h treatment, most orientated microfibrils on the cellulose fiber surface were degraded into fragments by the complete cellulase. Incubation with endoglucanase (EGV or EGI) also caused peeling action. But no significant size reduction of microfibrils length was observed, which was probably due to the absence of cellobiohydrolase. The AFM phase imaging clearly revealed that individual EGV particles were adsorbed onto the surface of a cellulose fiber and may be bound to several microfibrils.  相似文献   

19.
Summary The marine red algaErythrocladia subintegra synthesizes cellulose microfibrils as determined by CBH I-gold labelling, X-ray and electron diffraction analyses. The cellulose microfibrils are quite thin, ribbon-like structures, 1–1.5 nm in thickness (constant), and 10–33 nm in width (variable). Several laterally associated minicrystal components contribute to the variation in microfibrillar width. Electron diffraction analysis suggested a uniplanar orientation of the microfibrils with their (101) lattice planes parallel to the plasma membrane surface of the cell. The linear particle arrays bound in the plasma membrane and associated with microfibril impressions recently demonstrated inErythrocladia have been shown in this study to be the cellulose-synthesizing terminal complexes (TCs). The TCs appear to be organized by a repetition of transverse rows consisting of four TC subunits, rather than by four rows of longitudinallyarranged TC subunits. The number of transverse rows varied between 8–26, corresponding with variation in the length of the TCs and the width of the microfibrils. The spacings between the neighboring transverse rows are almost constant being 10.5–11.5 nm. Based on the knowledge thatAcetobacter, Vaucheria, andErythrocladia synthesize similar thin, ribbon-like cellulose microfibrils, the structural characteristics common to the organization of distinctive TCs occurring in these three organisms has been discussed, so that the mode of cellulose microfibril assembly patterns may be deciphered.  相似文献   

20.
H. Chanzy  K. Imada  R. Vuong 《Protoplasma》1978,94(3-4):299-306
Summary Electron diffraction patterns have been obtained from selected areas of disencrusted microfibrils isolated from the primary cell wall of cotton fibers. The resultant fiber diagram has the same meridional repeat distance as a corresponding pattern of secondary wall microfibrils but differs markedly in the equatorial reflections. The primary wall diagram displays only two strong equatorial reflections centered at 0.570 nm and 0.416 nm. The similarity of these spacings with those of cellulose IV suggests that the crystalline structure of the primary wall cellulose is similar to that of cellulose IVI and is best explained in term of native cellulose I crystals having good longitudinal coherence (i.e., coherence along the length of the microfibrils) but with poor lateral organization of the network of inter chain hydrogen bonds. Similar results were also obtained for other primary wall specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号