首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FMRF-NH2-like immunoreactivity was localized in the pancreatic polypeptide containing cells of the rat islet. FMRF-NH2 was investigated with regard to its effect on insulin, somatostatin and glucagon secretion from the isolated perfused rat pancreas. FMRF-NH2 (1 microM) significantly inhibited glucose stimulated (300 mg/dl) insulin release (p less than 0.005) and somatostatin release (p less than 0.01) from the isolated perfused pancreas. FMRF-NH2 (1 and 10 microM) was without effect on glucagon secretion, either in low glucose (50 mg/dl), high glucose (300 mg/dl), or during arginine stimulation (5 mM). These findings indicate that these FMRF-NH2 antisera recognize a substance in the pancreatic polypeptide cells of the islet which may be capable of modulating islet beta and D cell activity.  相似文献   

2.
Vesicular monoamine transporter 2 (VMAT2) is expressed in pancreatic beta cells and has recently been proposed as a target for measurement of beta cell mass in vivo. We questioned, (1) What proportion of beta cells express VMAT2? (2) Is VMAT2 expressed by other pancreatic endocrine or non-endocrine cells? (3) Is the relationship between VMAT2 and insulin expression disturbed in type 1 (T1DM) or type 2 diabetes (T2DM)? Human pancreas (7 non-diabetics, 5 T2DM, 10 T1DM) was immunostained for insulin, VMAT2 and other pancreatic hormones. Most beta cells expressed VMAT2. VMAT2 expression was not changed by the presence of diabetes. In tail of pancreas VMAT2 immunostaining closely correlated with insulin staining. However, VMAT2 was also expressed in some pancreatic polypeptide (PP) cells. Although VMAT2 was not excluded as a target for beta cell mass measurement, expression of VMAT2 in PP cells predicts residual VMAT2 expression in human pancreas even in the absence of beta cells.  相似文献   

3.
Ghrelin attenuates the development of acute pancreatitis in rat.   总被引:12,自引:0,他引:12  
BACKGROUND: Ghrelin, a circulating growth hormone-releasing peptide isolated from human and rat stomach, stimulates growth hormone secretion, food intake and exhibits gastroprotective properties. Ghrelin is predominantly produced by a population of endocrine cells in the gastric mucosa, but its presence in bowel, pancreas, pituitary and hypothalamus has been reported. In human fetal pancreas, ghrelin is expressed in a prominent endocrine cell population. In adult pancreatic islets the population of these cell is reduced. The aim of present study was to investigate the influence of ghrelin administration on the development of acute pancreatitis. METHODS: Acute pancreatitis was induced in rat by caerulein injection. Ghrelin was administrated twice (30 min prior to the first caerulein or saline injection and 3 h later) at the doses: 2, 10 or 20 nmol/kg. Immediately after cessation of caerulein or saline injections the following parameters were measured: pancreatic blood flow, plasma lipase activity, plasma interleukin-1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, and morphological signs of pancreatitis. RESULTS: Administration of ghrelin without induction of pancreatitis did not affect significantly any parameter tested. Caerulein led to the development of acute edematous pancreatitis. Treatment with ghrelin at the dose 2 nmol/kg, during induction of pancreatitis, was without effect on pancreatic histology or biochemical and functional parameters. Treatment with ghrelin at the dose 10 and 20 nmol/kg attenuated the development of pancreatitis and the effects of both doses were similar. Administration of ghrelin (10 or 20 nmol/kg) reduced inflammatory infiltration of pancreatic tissue and vacuolization of acinar cells. Also, plasma lipase activity and plasma IL-1beta concentration were reduced, and caerulein-induced fall in pancreatic DNA synthesis was reversed. Administration of ghrelin at the dose 10 and 20 nmol/kg was without effect on caerulein-induced pancreatic edema and pancreatitis-related fall in pancreatic blood flow. CONCLUSIONS: (1) Administration of ghrelin attenuates pancreatic damage in caerulein-induced pancreatitis; (2) Protective effect of ghrelin administration seems Background: Ghrelin, a circulating growth hormone-releasing peptide isolated from human and rat stomach, stimulates growth hormone secretion, food intake and exhibits gastroprotective properties. Ghrelin is predominantly produced by a population of endocrine cells in the gastric mucosa, but its presence in bowel, pancreas, pituitary and hypothalamus has been reported. In human fetal pancreas, ghrelin is expressed in a prominent endocrine cell population. In adult pancreatic islets the population of these cell is reduced. The aim of present study was to investigate the influence of ghrelin administration on the development of acute pancreatitis. Methods: Acute pancreatitis was induced in rat by caerulein injection. Ghrelin was administrated twice (30 min prior to the first caerulein or saline injection and 3 h later) at the doses: 2, 10 or 20 nmol/kg. Immediately after cessation of caerulein or saline injections the following parameters were measured: pancreatic blood flow, plasma lipase activity, plasma interleukin-1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, and morphological signs of pancreatitis. Results: Administration of ghrelin without induction of pancreatitis did not affect significantly any parameter tested. Caerulein led to the development of acute edematous pancreatitis. Treatment with ghrelin at the dose 2 nmol/kg, during induction of pancreatitis, was without effect on pancreatic histology or biochemical and functional parameters. Treatment with ghrelin at the dose 10 and 20 nmol/kg attenuated the development of pancreatitis and the effects of both doses were similar. Administration of ghrelin (10 or 20 nmol/kg) reduced inflammatory infiltration of pancreatic tissue and vacuolization of acinar cells. Also, plasma lipase activity and plasma IL-1beta conc; concentration were reduced, and caerulein-induced fall in pancreatic DNA synthesis was reversed. Administration of ghrelin at the dose 10 and 20 nmol/kg was without effect on caerulein-induced pancreatic edema and pancreatitis-related fall in pancreatic blood flow. Conclusions: (1) Administration of ghrelin attenuates pancreatic damage in caerulein-induced pancreatitis; (2) Protective effect of ghrelin administration seems to be related the inhibition in inflammatory process and the reduction in liberation of pro-inflammatory IL-1beta.  相似文献   

4.
The endocrine pancreas is comprised of beta and alpha cells producing the glucostatic hormones insulin and glucagon, respectively, and arises during development by the differentiation of stem/progenitor cells in the foregut programmed by the beta cell lineage-specific homeodomain protein Idx-1. Brain-4 (Brn-4) is expressed in the pancreatic anlaga of the mouse foregut at e10 in the alpha cells and transactivates glucagon gene expression. We expressed Brn-4 in pancreatic precursors or beta cell lineage in transgenic mice by placing it under either Idx-1 or insulin promoter (rat insulin II promoter) control, respectively. Idx-1 expression occurs at developmental day e8.5, and insulin expression occurs at e9.5, respectively. Misexpression of Brn-4 by the Idx-1 promoter results in ectopic expression of the proglucagon gene in insulin-expressing pancreatic beta cells, whereas misexpression by rat insulin II promoter did not. The early developmental expression of Brn-4 appears to be a dominant regulator of the glucagon expressing alpha cell lineage, even in the context of the beta cell lineage.  相似文献   

5.
Earlier studies indicate that binding sites of type II angiotensin (AT2) receptors are detected all over the pancreas, as well as in the pancreatic exocrine cell line AR4-2J. However, lack of corresponding functional AT2 receptor responses can be detected in the exocrine pancreas. The aim of present study is to determine the protein expression of AT2 receptors in the pancreas by probing with an AT2 receptor-specific antibody, and to examine the role of AT2 receptors in the regulation of pancreatic endocrine hormone release. In Western protein analysis of adult rat tissues, expression of AT2 receptor-immunoreactive bands of 56, 68, and 78 kDa was detected in the adrenal, kidney, liver, salivary glands, and pancreas. In adult rat pancreas, strong immunoreactivity was detected on cells that were located at the outer region of Langerhans islets. Immunohistochemical studies indicated that AT2 receptors colocalized with somatostatin-producing cells in the endocrine pancreas. Consistent with the findings in adult pancreas, abundant expression of AT2 receptors was also detected in immortalized rat pancreatic endocrinal cells lines RIN-m and RIN-14B. To examine the role of AT2 receptors on somatostatin secretion in the pancreas, angiotensin-stimulated somatostatin release from pancreatic RIN-14B cells was studied by an enzyme immunoassay in the absence or presence of various subtype-selective angiotensin analogues. There was a basal release of somatostatin from RIN-14B cells at a rate of 8.72 +/- 4.21 ng/10(6) cells (n = 7). Angiotensin II (1 nM-10 microM) stimulated a biphasic somatostatin release in a dose-dependent manner with an apparent EC50 value of 49.3 +/- 25.9 nM (n = 5), and reached maximal release at 1 microM angiotensin II (982 +/- 147.34% over basal secretion; n = 5). Moreover, the AT2 receptor-selective angiotensin analogue, CGP42112, was 1000 times more potent than the AT1 receptor-selective angiotensin analogue, losartan, in inhibiting angiotensin II-stimulated somatostatin release. These results suggest that angiotensin may modulate pancreatic hormone release via regulation of somatostatin secretion.  相似文献   

6.
The effects of the prolonged infusion with interleukin-1 beta (IL-1 beta) (20 pM.kg-1.min-1) on the function and morphology of the isolated inner cells of the rat adrenal cortex were investigated. After 3 and 5 days of IL-1 beta infusion, the level of circulating ACTH was below the control level, while the plasma concentration of corticosterone was strikingly elevated. After 5 days of infusion, isolated inner adrenocortical cells showed an enhanced basal and ACTH-stimulated corticosterone secretion, and showed a conspicuous hypertrophy. The acute exposure to IL-1 beta 10(-6) M did not affect the secretory activity of dispersed cell from either control or IL-1 beta-infused rats. These findings indicate that the prolonged exposure to high levels of circulating IL-1 beta, like those occurring during chronic inflammatory diseases, is able to enhance the growth and steroidogenic (glucocorticoid) capacity of the rat inner adrenocortical zones. Moreover, they suggest that the mechanism underlying this adrenocorticotrophic effect of IL-1 beta does not involve either a stimulation of the hypophyseal ACTH release or a direct stimulatory effect of monokine on adrenocortical cells. It is suggested that IL-1 beta may activate an intra-adrenal paracrine regulatory mechanism.  相似文献   

7.
Capsaicin-sensitive afferent neurons including transient receptor potential vanilloid subfamily 1, TRPV1, and neurohormonal peptides participate in the physiological regulation of pancreatic endocrine. However, the direct effect of capsaicin on insulin secretion remains unknown. Our present study showed that TRPV1 is expressed in islet beta cells as well as in neurons in rat pancreas, and also in rat beta cell lines, RIN and INS1. Capsaicin (10(-11)-10(-9) M) dose-dependently increased insulin secretion from RIN cells, and this effect was inhibited by either a TRPV1 inhibitor capsazepine or EDTA. Systemic capsaicin (10 mg/kg, s.c.) increased plasma insulin level 1 h after the treatment. We demonstrated for the first time that TRPV1 is functionally expressed in rat islet beta cells and plays a role in insulin secretion as a calcium channel. This study may account for the influences of capsaicin on the food intake and energy consumption as well as on the pathophysiological regulation of pancreatic endocrine.  相似文献   

8.
Specific binding sites for 125I-Tyr1somatostatin-14 were comparatively demonstrated in isolated rat pancreatic and gastric parietal cells. In both materials, the sites occurred mostly in cytosol, with apparent affinities of 1×10?10M and 3×10?11M, respectively, in pancreatic and gastric cells. Somatostatin-14 stimulated cytosolic phosphoprotein phosphatases (PPPases) in pancreas as well as in gastric mucosa with concentrations for half maximal effect consistent with binding affinities. Somatostatin 28 mimicked somatostatin 14 stimulation with a higher efficacy but an equivalent potency. Secretin and cholecystokinin C terminal octapeptide were ineffective. Furthermore, in intact isolated cells, somatostatinic stimulation of PPPases was blocked by 5×10?4M dinitrophenol. We therefore suggest that in pancreas as in gastric mucosa, somatostatin's inhibitory effect on secretory functions could involve protein dephosphorylation mediated by an intracellular receptor.  相似文献   

9.
The fine specificity of T cell responses involved in the generation of help for antibody production and proliferation was examined by using the 14 amino acid peptide human fibrinopeptide B (hFPB, B beta 1-14) and its synthetic peptide homologues B beta 1-14(Lys14), B beta 1-13, and B beta 3-14. Peritoneal exudate or lymph node T cells from C57BL/10 and B10.BR mice immunized with hFPB or its synthetic homologues were used to measure in vitro proliferative responses. T cells from hFPB-immunized B10.BR mice showed specific proliferation to hFPB, but were unresponsive to B beta 1-14(Lys14), B beta 1-13, and B beta 3-14. B10.BR mice immunized with B beta 1-14(Lys14), B beta 1-13, or B beta 3-14 were unresponsive to all peptides tested. T cells from C57BL/10 mice showed no specific proliferation after immunization and challenge with any of the peptide antigens. In contrast to the patterns of T cell proliferation, immunization of both B10.BR and C57BL/10 mice with hFPB, B beta 1-14(Lys14), B beta 1-13, or B beta 3-14 primed for significant helper T cell activity, as assessed by the augmentation of a primary in vitro B cell IgM anti-FITC plaque-forming cell response after culture with B beta 1-1(Lys14)-FITC. Significant peptide-specific helper activity was observed when the FITC moiety was conjugated to the carboxyl terminal lysine (B beta 1-14(Lys14)-FITC) as well as FITC substitution at the amino terminus (FITC-B beta 3-13 or FITC-B beta 3-14). These results suggest that the fine specificity of T cell responses to peptide antigens are different for helper and proliferating T cells and that responsiveness by one T cell subpopulation does not predict the response pattern of other functional subpopulations.  相似文献   

10.
Previous studies using pancreas from various mammals and freshly isolated islets from rat pancreas have provided evidence supporting possible involvement of the glycosphingolipid sulfatide in insulin processing and secretion. In this study, sulfatide expression and metabolism in the beta cell line RINr1046-38 (RIN-38), commonly used as a model for beta cell functional studies, were investigated and compared with previous findings from freshly isolated islets. RIN-38 cells expressed similar amounts (2.7 +/- 1.1 nmol/mg protein, n = 19) of sulfatide as isolated rat islets and also followed the same metabolic pathway, mainly through recycling. Moreover, in agreement with findings in isolated islets, the major species of sulfatide isolated from RIN-38 cells contained C16:0 and C24:0 fatty acids. By applying subcellular isolations and electron microscopy and immunocytochemistry techniques, sulfatide was shown to be located to the secretory granules, the plasma membrane and enriched in detergent insoluble microdomains. In the electron microscopy studies, Sulph I staining was also associated with mitochondria and villi structures. In conclusion, RIN-38 cells might be an appropriate model, as a complement to isolated islets where the amount of material often limits the experiments, to further explore the role of sulfatide in insulin secretion and signal transduction of beta cells.  相似文献   

11.
Isolation of pure acinar cells of the rat pancreas was achieved employing counterflow sedimentation filtration technique (CSFT). The preparation of purified acinar cells contained an occasional red blood cell (RBC, 200:1) with total absence of endocrine and duct cells. A significant stimulation of amylase secretion from isolated pure acinar cells was produced by octapeptide of cholecystokinin (CCK8) and insulin produced potentiation of the effect of CCK8. Synthetic glucagon inhibited basal and CCK8 stimulated amylase secretion. Non-synthetic purified glucagon stimulated amylase secretion and potentiated the effect of CCK8. Vasoactive intestinal polypeptide (VIP) did not stimulate amylase secretion but potentiated the effect of CCK8. No leakage of lactic dehydrogenase (LDH) was detected from the cells in any of the secretion studies. Thus a highly purified preparation of isolated pure acinar cells of rat pancreas could be obtained with excellent morphologic and functional integrity.  相似文献   

12.
Shiels MJ  Mastro AM  Gay CV 《Life sciences》2002,70(25):2967-2975
The loss of osteoblast function in aging bone is one of the major causes of osteopenia, or loss of bone mass. In this study, this loss of function was investigated by examining the proliferative response of rat long bone periosteal osteoblasts to TGF(beta1) and 1,25-dihydroxy vitamin D(3) (1,25-D(3)) as a function of donor age. Using a DNA binding fluorescent dye, DNA levels were measured in osteoblast cultures derived from either young adult (3-4 months) or old (14-15 months) rats following treatment with two concentrations (10(-9) M or 10(-12) M) of either 1,25-D(3) or TGF(beta1) or with vehicle. Cells from young rat bone, when treated with 1, 25-D(3), showed a dose-dependent increase in proliferation when treated with the higher dose and a decrease in proliferation when treated with the lower dose. Osteoblasts isolated from old rats did not respond to 1, 25-D(3) treatment. A similar pattern of response to TGF(beta1) was found. When treated with 10(-9) M TGF(beta1), the rate of proliferation increased for young rat osteoblasts, but the old rat derived cells were unresponsive. The 10(-12) M dose of TGF(beta1) was ineffective for both young and old cells. This study has shown that osteoblasts derived from old donors are impaired in their ability to respond to vitamin D and TGF(beta), two of the major controlling factors of skeletal development and maintenance.  相似文献   

13.
Nitric oxide synthase, induced by cytokines in insulin-containing cells, produces nitric oxide which inhibits function and may promote cell killing. Since glucagon was shown to prevent inducible nitric oxide synthase (iNOS) expression in rat hepatocytes it was of interest to examine the action of glucagon (and cyclic AMP) on iNOS induction in insulin-producing cells. Cultured RIN5F cells and primary rat and human islets of Langerhans were treated with interleukin 1beta (IL-1beta) or a combination of cytokines, and were co-treated or pre-treated with glucagon. In RIN5F cells, the activity of iNOS induced by IL-1beta (10 pM, 24 h), was significantly reduced by glucagon (1000 nM), which raises cyclic AMP, and by forskolin (1-10 microM), a non specific activator of adenylate cyclase. Glucagon and forskolin also decreased iNOS expression in RIN5F cells, and rat and human islets, as shown by Western blotting. The inhibitory action of IL-1beta (100 pM, 24 h) on rat islet insulin secretion was partially reversed by 1-h pre-treatment with glucagon (10-1000 nM), while the contrasting stimulatory effect of 48-h treatment with cytokines on insulin secretion from human islets was similarly prevented by glucagon (1000 nM) pre-treatment. These results suggest that glucagon inhibits iNOS expression in insulin-containing cells and imply that glucagon could modulate the inhibitory effects of cytokines.  相似文献   

14.
During inflammation, chemokines are conductors of lymphocyte trafficking. The chemokine CXCL10 is expressed early after virus infection. In a virus-induced mouse model for type 1 diabetes, CXCL10 blockade abrogated disease by interfering with trafficking of autoaggressive lymphocytes to the pancreas. We have generated transgenic rat insulin promotor (RIP)-CXCL10 mice expressing CXCL10 in the beta cells of the islets of Langerhans to evaluate how bystander inflammation influences autoimmunity. RIP-CXCL10 mice have islet infiltrations by mononuclear cells and limited impairment of beta cell function, but not spontaneous diabetes. RIP-CXCL10 mice crossed to RIP-nucleoprotein (NP) mice expressing the NP of the lymphocytic choriomeningitis virus in the beta cells had massively accelerated type 1 diabetes after lymphocytic choriomeningitis virus infection. Mechanistically, we found a drastic increase in NP-specific, autoaggressive CD8 T cells in the pancreas after infection. In situ staining with H-2D(b)(NP(396)) tetramers revealed islet infiltration by NP-specific CD8 T cells in RIP-NP-CXCL10 mice early after infection. Our results indicate that CXCL10 expression accelerates the autoimmune process by enhancing the migration of Ag-specific lymphocytes to their target site.  相似文献   

15.
16.
In the present study we examined the effect of carboxyl-terminal modifications of des-Met14-bombesin (Bn) on Bn receptor affinity in murine 3T3 cells, rat and guinea pig pancreatic acini, and the ability to initiate biologic responses by synthesizing 18 des-Met14-Bn(6-13) analogues. With guinea pig acini and 3T3 cells, affinity was affected by the chain length of the alkyl moiety (R) added to [D-Phe6]Bn(6-13)NH2R with relative potencies: propyl greater than ethyl greater than butyl = hexyl greater than heptyl greater than free amide, whereas in rat acini affinity was not increased by the chain length. In each cell system the affinity of the alkylamide was not increased by insertion of a phenyl group in the alkyl side chain, by making the analogue more neuromedin B-like or by addition of a reduced peptide bond. The affinity in each cell system was increased by additions of other electron releasing groups to the COOH-terminal carboxyl group such as [D-Phe6]Bn(6-13)ethyl or methyl ester, or hydrazide. In guinea pig pancreas and 3T3 cells, 12 analogues were antagonists, 1 a full and 5 partial agonists. In rat pancreas, 8 were antagonists, 5 full agonists, and 5 partial agonists. Potent antagonists in each cell system were the methyl and ethyl ester, hydrazide, and ethylamide analogues. In 3T3 cells or guinea pig pancreas, agonist activity of the alkylamide was critically dependent on the chain length, whereas with rat pancreatic Bn receptors any alkylamide longer than the ethylamide had agonist activity. In all three cell systems any alteration that made the alkylamide more neuromedin B-like caused agonist activity. These results demonstrate that the nature of the substitution on the carboxyl terminus of des-Met14-Bn analogues is critically important, not only for determining Bn receptor affinity, but also for determining the ability to initiate a biologic response. In contrast to previous studies, the present results demonstrate that the presence of the COOH-terminal amino acid in position 14 of Bn is not essential for initiating a biologic response. Several des-Met14-Bn analogues were potent partial agonists, whereas others such as the hydrazide or ethyl ester are very potent antagonists.  相似文献   

17.
We have examined the properties of the alpha 5 beta 1 integrin of baby hamster kidney (BHK) cells, a ricin-resistant variant Ric14 lacking N-acetylglucosaminyl transferase I, and hence unable to complete assembly of hybrid- or complex-type N-glycans, and BHK cells treated with 1-deoxymannojirimycin (dMM), an inhibitor of Golgi mannosidases involved in the initial processing of N-glycan precursors. Comparable amounts of alpha 5 beta 1 integrin were isolated from these cells by chromatography of detergent extracts on a fibronectin cell-binding fragment affinity column and elution with EDTA. The alpha 5 beta 1 integrin obtained from normal BHK cells by fibronectin affinity chromatography contained mainly endoglycosidase H-resistant oligosaccharides, whereas in RicR14 cells or dMM-treated BHK cells these were entirely endoglycosidase H-sensitive. Analysis of lactoperoxidase labeled or long term biosynthetically 35S-labeled proteins from cultures of normal or glycosylation deficient cells showed similar steady state levels of alpha 5 beta 1 integrin and expression at the cell surface. Pulse-chase experiments in normal BHK cells showed rapid conversion of the alpha 5 subunit into a mature form containing oligosaccharides resistant to endoglycosidase H and slower maturation of a precursor beta 1 subunit, as in other cell types. In Ric14 cells the precursor beta 1 subunit was found to carry glycans larger than the fully processed Man5GlcNAc2 glycan of the mature subunit, indicating that the bulk precursor pool had not been translocated into the cis-Golgi compartment containing mannosidase I. We conclude that in BHK cells terminal oligosaccharide processing of alpha 5 beta 1 integrin subunits is not required for dimer formation, surface expression, and fibronectin binding, and that expression of the glycosylation defect of Ric14 cells on the alpha 5 beta 1 integrin does not account for the reduced adhesiveness of these cells on fibronectin compared with normal and dMM-treated BHK cells.  相似文献   

18.
N-Nitrosobis(2-oxopropyl)amine (BOP), N-nitrosobis(2-hydroxypropyl)-amine (BHP) and N-nitroso(2-hydroxypropyl-2-oxopropyl)amine (HPOP) are pancreatic carcinogens in the Syrian golden hamster (SGH) but do not cause pancreatic tumors in rats. In this study, the ability of these three compounds to induce DNA damage in isolated pancreas cells from both species was determined by alkaline elution analysis. BOP was highly potent in SGH cells, causing DNA damage at concentrations as low as 0.5 micrograms/ml, and HPOP, although less potent than BOP, also caused considerable damage. Isolated SGH pancreas cells are thus able to metabolize BOP and HPOP to DNA-damaging species. Of the three compounds tested, only HPOP at higher doses (25-100 micrograms/ml) induced DNA damage in isolated rat pancreas cells. BHP did not damage rat or SGH pancreas cell DNA at concentrations up to 100 micrograms/ml, apparently due to lack of uptake of this compound by the cells. The observed insensitivity to DNA damage in rat cells is consistent with the resistance of the rat pancreas to carcinogenesis by these three compounds. The sensitivity of SGH pancreas cells to BOP- and HPOP-induced DNA damage correlates with the high carcinogenicity of these compounds for the SGH pancreas.  相似文献   

19.
Type 1 diabetes (T1D) is characterized by the immune-mediated destruction of beta cells in the pancreas. Little is known about the in vivo dynamic interactions between T cells and beta cells or the kinetic behavior of other immune cell subsets in the pancreatic islets. Utilizing multiphoton microscopy we have designed a technique that allows for the real-time visualization of diabetogenic T cells and dendritic cells in pancreatic islets in a live animal, including their interplay with beta cells and the vasculature. Using a custom designed stage, the pancreas was surgically exposed under live conditions so that imaging of islets under intact blood pressure and oxygen supply became possible. We demonstrate here that this approach allows for the tracking of diabetogenic leukocytes as well as vascularization phenotype of islets and accumulation of dendritic cells in islets during diabetes pathogenesis. This technique should be useful in mapping crucial kinetic events in T1D pathogenesis and in testing the impact of immune based interventions on T cell migration, extravasation and islet destruction.  相似文献   

20.
Reactive oxygen species (ROS) are considered an important mediator in pancreatic beta cell destruction, thereby triggering the development of insulin-dependent diabetes mellitus. In the present study, we investigated the HIV-1 Tat protein transduction domain-mediated transduction of Cu,Zn-superoxide dismutase (SOD), which supplies SOD activity exogenously in pancreatic beta cells under oxidative stress. Tat-SOD fusion protein was successfully delivered into insulin-producing RINm5F cells and rat islet cells. The intracellular dismutation activities of SOD were found to increase in line with the amount of protein delivered into the cells. ROS, nitric oxide-induced cell death, lipid peroxidation, and the DNA fragmentation of insulin-producing cells were found to be significantly reduced when the cells were pretreated with Tat-SOD. Next, we examined the in vivo transduction of Tat-SOD into streptozotocin-induced diabetic mice. A single intraperitoneal injection of Tat-SOD resulted in the delivery of this biologically active enzyme to the pancreas. Moreover, increased radical scavenging activity in the pancreas was induced by multiple injections of Tat-SOD, and this enhanced the tolerance of pancreatic beta cells to oxidative stress. These results suggest that the transduction of Tat-SOD offers a new strategy for protecting pancreatic beta cells from destruction by relieving oxidative stress in ROS-implicated diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号