首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucosamine-6-phosphate isomerase deaminase from Escherichia coli, a typical allosteric enzyme, becomes less cooperative and 50% inhibited when treated with zinc. This metal cation behaving as a tight-bound and slow partial inhibitor. Modification of a pair of vicinal reactive thiols with some sulfhydryl reagents mimics this effect. On the other hand, sulfhydryl reactivity disappears in the presence of saturating concentrations of Zn2+, which does not modify the kinetics of S-methylated enzyme, a finding that indicates that vicinal thiols are an essential part of the zinc-binding site. Allosteric activation of the deaminase causes trapping of the metal, which cannot be released by dialysis against a buffer containing EDTA. Cadmium and nickel(II) cations also produce a similar effect.  相似文献   

2.
Glucosamine-6-phosphate deaminase from Escherichia coli (EC 3.5.99.6) is an allosteric enzyme, activated by N-acetylglucosamine 6-phosphate, which converts glucosamine-6-phosphate into fructose 6-phosphate and ammonia. X-ray crystallographic structural models have showed that Arg172 and Lys208, together with the segment 41-44 of the main chain backbone, are involved in binding the substrate phospho group when the enzyme is in the R activated state. A set of mutants of the enzyme involving the targeted residues were constructed to analyze the role of Arg172 and Lys208 in deaminase allosteric function. The mutant enzymes were characterized by kinetic, chemical, and spectrometric methods, revealing conspicuous changes in their allosteric properties. The study of these mutants indicated that Arg172 which is located in the highly flexible motif 158-187 forming the active site lid has a specific role in binding the substrate to the enzyme in the T state. The possible role of this interaction in the conformational coupling of the active and the allosteric sites is discussed.  相似文献   

3.
The generation and propagation of conformational changes associated with ligand binding in the allosteric enzyme glucosamine-6-phosphate deaminase (GlcN6P deaminase, EC 3.5.99.6) from Escherichia coli were analyzed by fluorescence measurements. Single-tryptophan mutant forms of the enzyme were constructed on the basis of previous structural and functional evidence and used as structural-change probes. The reporter residues were placed in the active-site lid (position 174) and in the allosteric site (254 and 234); in addition, signals from the natural Trp residues (15 and 224) were also studied as structural probes. The structural changes produced by the occupation of either the allosteric or the active site by site-specific ligands were monitored through changes in the spectral center of mass (SCM) of their steady-state emission fluorescence spectra. Binding of the allosteric activator produces only minimal signals in titration experiments. In contrast, measurable spectral signals were found when the active site was occupied by a dead-end inhibitor. The results reveal that the two binary complexes, enzyme-activator (R(A)) and enzyme-inhibitor (R(S)) complexes, have structural differences and that they also differ from the ternary complex (R(AS)). The mobility of the active-site lid motif is shown to be independent of the allosteric transition. The active-site ligand induces cooperative SCM changes even in the enzyme-activator complex, indicating that the propagation pathway of the conformational relaxation triggered from the active site is different from that involved in the heterotropic activation. Analysis of the complete set of mutants shows that the occupation of the active site generates structural perturbations, which are propagated to the whole of the monomer and extend to the other subunits. The accumulative effect of these propagated changes should be responsible for the change in the sign of the DeltaG degrees ' of the T to R transition associated with the progression of the active-site occupation, resulting in the predominance of the R over the T forms in the population of deaminase hexamers.  相似文献   

4.
5.
Glucosamine-6-phosphate deaminase (EC 3.5.99.6) from Escherichia coli is an allosteric enzyme of the K-type, activated by N-acetylglucosamine 6-phosphate. It is a homohexamer and has six allosteric sites located in clefts between the subunits. The amino acid side-chains in the allosteric site involved in phosphate binding are Arg158, Lys160 and Ser151 from one subunit and the N-terminal amino group from the facing polypeptide chain. To study the functional role of the terminal amino group, we utilized a specific non-enzymic transamination reaction, and we further reduced the product with borohydride, to obtain the corresponding enzyme with a terminal hydroxy group. Several experimental controls were performed to assess the procedure, including reconditioning of the enzyme samples by refolding chromatography. Allosteric activation by N-acetylglucosamine 6-phosphate became of the K-V mixed type in the transaminated protein. Its kinetic study suggests that the allosteric equilibrium for this modified enzyme is displaced to the R state, with the consequent loss of co-operativity. The deaminase with a terminal hydroxy acid, obtained by reducing the transaminated enzyme, showed significant recovery of the catalytic activity and its allosteric activation pattern became similar to that found for the unmodified enzyme. It had lost, however, the pH-dependence of homotropic co-operativity shown by the unmodified deaminase in the pH range 6-8. These results show that the terminal amino group plays a part in the co-operativity of the enzyme and, more importantly, indicate that the loss of this co- operativity at low pH is due to the hydronation of this amino group.  相似文献   

6.
In the reverse direction, the reaction catalyzed by glucosamine 6-phosphate isomerase deaminase consumes ammonia and forms GlcN6P. As a consequence of the formation of a product with a lower pK than the substrates, a measurable pH drop in the reaction medium is produced. This property can be used to follow potentiometrically the course of the reaction. This property can be used to follow potentiometrically the course of the reaction. The usefulness of the method is demonstrated obtaining the inhibition pattern by GlcN6P when Fru6P is the varied substrate.  相似文献   

7.
Glucosamine-6P-deaminase (EC 3.5.99.6, formerly glucosamine-6-phosphate isomerase, EC 5.3.1.10) from Escherichia coli is an attractive experimental model for the study of allosteric transitions because it is both kinetically and structurally well-known, and follows rapid equilibrium random kinetics, so that the kinetic K(m) values are true thermodynamic equilibrium constants. The enzyme is a typical allosteric K-system activated by N-acetylglucosamine 6-P and displays an allosteric behavior that can be well described by the Monod-Wyman-Changeux model. This thermodynamic study based on the temperature dependence of allosteric parameters derived from this model shows that substrate binding and allosteric transition are both entropy-driven processes in E. coli GlcN6P deaminase. The analysis of this result in the light of the crystallographic structure of the enzyme implicates the active-site lid as the structural motif that could contribute significantly to this entropic component of the allosteric transition because of the remarkable change in its crystallographic B factors.  相似文献   

8.
The active site of glucosamine-6-phosphate deaminase from Escherichia coli (GlcN6P deaminase, EC 3.5.99.6) has a complex lid formed by two antiparallel beta-strands connected by a helix-loop segment (158-187). This motif contains Arg172, which is a residue involved in binding the substrate in the active-site, and three residues that are part of the allosteric site, Arg158, Lys160 and Thr161. This dual binding role of the motif forming the lid suggests that it plays a key role in the functional coupling between active and allosteric sites. Previous crystallographic work showed that the temperature coefficients of the active-site lid are very large when the enzyme is in its T allosteric state. These coefficients decrease in the R state, thus suggesting that this motif changes its conformational flexibility as a consequence of the allosteric transition. In order to explore the possible connection between the conformational flexibility of the lid and the function of the deaminase, we constructed the site-directed mutant Phe174-Ala. Phe174 is located at the C-end of the lid helix and its side-chain establishes hydrophobic interactions with the remainder of the enzyme. The crystallographic structure of the T state of Phe174-Ala deaminase, determined at 2.02 A resolution, shows no density for the segment 162-181, which is part of the active-site lid (PDB 1JT9). This mutant form of the enzyme is essentially inactive in the absence of the allosteric activator, N-acetylglucosamine-6-P although it recovers its activity up to the wild-type level in the presence of this ligand. Spectrometric and binding studies show that inactivity is due to the inability of the active-site to bind ligands when the allosteric site is empty. These data indicate that the conformational flexibility of the active-site lid critically alters the binding properties of the active site, and that the occupation of the allosteric site restores the lid conformational flexibility to a functional state.  相似文献   

9.
The human genome contains two genes encoding for two isoforms of the enzyme glucosamine-6-phosphate deaminase (GNPDA, EC 3.5.99.6). Isoform 1 has been purified from several animal sources and the crystallographic structure of the human recombinant enzyme was solved at 1.75? resolution (PDB ID: 1NE7). In spite of their great structural similarity, human and Escherichia coli GNPDAs show marked differences in their allosteric kinetics. The allosteric site ligand, N-acetylglucosamine 6-phosphate (GlcNAc6P), which is an activator of the K-type of E. coli GNPDA has an unusual mixed allosteric effect on hGNPDA1, behaving as a V activator and a K inhibitor (antiergistic or crossed mixed K(-)V(+) effect). In the absence of GlcNAc6P, the apparent k(cat) of the enzyme is so low, that GlcNAc6P behaves as an essential activator. Additionally, substrate inhibition, dependent on GlcNAc6P concentration, is observed. All these kinetic properties can be well described within the framework of the Monod allosteric model with some additional postulates. These unusual kinetic properties suggest that hGNPDA1 could be important for the maintenance of an adequate level of the pool of the UDP-GlcNAc6P, the N-acetylglucosylaminyl donor for many reactions in the cell. In this research we have also explored the possible functional significance of the C-terminal extension of hGNPDA1 enzyme, which is not present in isoform 2, by constructing and studying two mutants truncated at positions 268 and 275.  相似文献   

10.
Glucosamine-6-phosphate isomerase deaminase (2-amino-2-deoxy-d-glucose-6-phosphate ketol isomerase (deaminating), EC 5.3.1.10) from Escherichia coli is an hexameric homopolymer that contains five half-cystines per chain. The reaction of the native enzyme with 5′,5′-dithiobis-(2-nitrobenzoate) or methyl iodide revealed two reactive SH groups per subunit, whereas a third one reacted only in the presence of denaturants. Two more sulfhydryls appeared when denatured enzyme was treated with dithiothreitol, suggesting the presence of one disulfide bridge per chain. The enzyme having the exposed and reactive SH groups blocked with 5′-thio-2-nitrobenzoate groups was inactive, but the corresponding alkylated derivative was active and retained its homotropic cooperativity toward the substrate, d-glucosamine 6-phosphate, and the allosteric activation by N-acetyl-d-glucosamine 6-phosphate. Studies of SH reactivity in the presence of enzyme ligands showed that a change in the availability of these groups accompanies the allosteric conformational transition. The results obtained show that sulfhydryls are not essential for catalysis or allosteric behavior of glucosamine-6-phosphate deaminase.  相似文献   

11.
Glucosamine-6-phosphate deaminase (EC 5.3.1.10) from dog kidney cortex was purified to homogeneity, as judged by several criteria of purity. The purification procedure was based on two biospecific affinity chromatography steps, one of them using N-epsilon-amino-n-hexanoyl-D-glucosamine-6-phosphate agarose, an immobilized analog of the allosteric ligand, and the other by binding the enzyme to phosphocellulose followed by substrate elution, which behaved as an active-site affinity chromatography. The enzyme is an hexameric protein of about 180 kDa composed of subunits of 30.4 kDa; its isoelectric point was 5.7. The sedimentation coefficient was 8.3S, and its frictional ratio was 1.28, indicating that dog deaminase is a globular protein. The enzyme displays positive homotropic cooperativity toward D-glucosamine-6-phosphate (Hill coefficient = 2.1, pH 8.8). Cooperativity was completely abolished by saturating concentrations of GlcNAc6P; this allosteric modulator activated the reaction with a typical K-effect. Under hyperbolic kinetics, a Km value of 0.25 +/- 0.02 mM for D-glucosamine-6-phosphate was obtained. Assuming six catalytic sites per molecule, kcat is 42 s-1. Substrate-velocity data were fitted to the Monod's allosteric model for the exclusive-binding case for both substrate and activator, with two interacting substrate sites. The Kdis for N-acetyl-D-glucosamine-6-phosphate was estimated at 14 microM.  相似文献   

12.
A key step in amino sugar metabolism is the interconversion between fructose-6-phosphate (Fru6P) and glucosamine-6-phosphate (GlcN6P). This conversion is catalyzed in the catabolic and anabolic directions by GlcN6P deaminase and GlcN6P synthase, respectively, two enzymes that show no relationship with one another in terms of primary structure. In this study, we examined the catalytic properties and regulatory features of the glmD gene product (GlmD(Tk)) present within a chitin degradation gene cluster in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Although the protein GlmD(Tk) was predicted as a probable sugar isomerase related to the C-terminal sugar isomerase domain of GlcN6P synthase, the recombinant GlmD(Tk) clearly exhibited GlcN6P deaminase activity, generating Fru6P and ammonia from GlcN6P. This enzyme also catalyzed the reverse reaction, the ammonia-dependent amination/isomerization of Fru6P to GlcN6P, whereas no GlcN6P synthase activity dependent on glutamine was observed. Kinetic analyses clarified the preference of this enzyme for the deaminase reaction rather than the reverse one, consistent with the catabolic function of GlmD(Tk). In T. kodakaraensis cells, glmD(Tk) was polycistronically transcribed together with upstream genes encoding an ABC transporter and a downstream exo-beta-glucosaminidase gene (glmA(Tk)) within the gene cluster, and their expression was induced by the chitin degradation intermediate, diacetylchitobiose. The results presented here indicate that GlmD(Tk) is actually a GlcN6P deaminase functioning in the entry of chitin-derived monosaccharides to glycolysis in this hyperthermophile. This enzyme is the first example of an archaeal GlcN6P deaminase and is a structurally novel type distinct from any previously known GlcN6P deaminase.  相似文献   

13.
The secondary structure of the purified glucosamine-6-phosphate deaminase from Escherichia coli K12 was investigated by both circular dichroism (CD) spectroscopy and empirical prediction methods. The enzyme was obtained by allosteric-site affinity chromatography from an overproducing strain bearing a pUC18 plasmid carrying the structural gene for the enzyme. From CD analysis, 34% of alpha-helix, 9% of parallel beta-sheet, 11% of antiparallel beta-sheet, 15% turns and 35% of non-repetitive structures, were estimated. A joint prediction scheme, combining six prediction methods with defined rules using several physicochemical indices, gave the following values: alpha-helix, 37%; beta-sheet, 22%; turns, 18% and coil, 23%. The structure predicted showed also a considerable degree of alternacy of alpha and beta structures; 64% of helices are amphipathic and 90% of beta-sheets are hydrophobic. Overall, the data suggest that deaminase has as dominant motif, an alpha/beta structure.  相似文献   

14.
The structure of toxic monomeric diphtheria toxin (DT) was determined at 2.3 A resolution by molecular replacement based on the domain structures in dimeric DT and refined to an R factor of 20.7%. The model consists of 2 monomers in the asymmetric unit (1,046 amino acid residues), including 2 bound adenylyl 3'-5' uridine 3' monophosphate molecules and 396 water molecules. The structures of the 3 domains are virtually identical in monomeric and dimeric DT; however, monomeric DT is compact and globular as compared to the "open" monomer within dimeric DT (Bennett MJ, Choe S, Eisenberg D, 1994b, Protein Sci 3:0000-0000). Detailed differences between monomeric and dimeric DT are described, particularly (1) changes in main-chain conformations of 8 residues acting as a hinge to "open" or "close" the receptor-binding (R) domain, and (2) a possible receptor-docking site, a beta-hairpin loop protruding from the R domain containing residues that bind the cell-surface DT receptor. Based on the monomeric and dimeric DT crystal structures we have determined and the solution studies of others, we present a 5-step structure-based mechanism of intoxication: (1) proteolysis of a disulfide-linked surface loop (residues 186-201) between the catalytic (C) and transmembrane (T) domains; (2) binding of a beta-hairpin loop protruding from the R domain to the DT receptor, leading to receptor-mediated endocytosis; (3) low pH-triggered open monomer formation and exposure of apolar surfaces in the T domain, which insert into the endosomal membrane; (4) translocation of the C domain into the cytosol; and (5) catalysis by the C domain of ADP-ribosylation of elongation factor 2.  相似文献   

15.
The crystal structure of the olfactory marker protein at 2.3 A resolution   总被引:1,自引:0,他引:1  
Olfactory marker protein (OMP) is a highly expressed and phylogenetically conserved cytoplasmic protein of unknown function found almost exclusively in mature olfactory sensory neurons. Electrophysiological studies of olfactory epithelia in OMP knock-out mice show strongly retarded recovery following odorant stimulation leading to an impaired response to pulsed odor stimulation. Although these studies show that OMP is a modulator of the olfactory signal-transduction cascade, its biochemical role is not established. In order to facilitate further studies on the molecular function of OMP, its crystal structure has been determined at 2.3 A resolution using multiwavelength anomalous diffraction experiments on selenium-labeled protein. OMP is observed to form a modified beta-clamshell structure with eight antiparallel beta-strands. While OMP has no significant sequence homology to proteins of known structure, it has a similar fold to a domain found in a variety of existing structures, including in a large family of viral capsid proteins. The surface of OMP is mostly convex and lacking obvious small molecule binding sites, suggesting that it is more likely to be involved in modulating protein-protein interaction than in interacting with small molecule ligands. Three highly conserved regions have been identified as leading candidates for protein-protein interaction sites in OMP. One of these sites represents a loop known to mediate ligand interactions in the structurally homologous EphB2 receptor ligand-binding domain. This site is partially buried in the crystal structure but fully exposed in the NMR solution structure of OMP due to a change in the orientation of an alpha-helix that projects outward from the structurally invariant beta-clamshell core. Gating of this conformational change by molecular interactions in the signal-transduction cascade could be used to control access to OMP's equivalent of the EphB2 ligand-interaction loop, thereby allowing OMP to function as a molecular switch.  相似文献   

16.
The crystal structure of recombinant bovine chymosin (EC 3.4.23.4; renin), which was cloned and expressed in Escherichia coli, has been determined using X-ray data extending to 2.3 A resolution. The crystals of the enzyme used in this study belong to the space group I222 with unit cell dimensions alpha = 72.7 A, b = 80.3 A, and c = 114.8 A. The structure was solved by the molecular replacement method and was refined by a restrained least-squares procedure. The crystallographic R factor is 0.165 and the deviation of bond distances from ideality is 0.020 A. The resulting model includes all 323 amino acid residues, as well as 297 water molecules. The enzyme has an irregular shape with approximate maximum dimensions of 40 x 50 x 65 A. The secondary structure consists primarily of parallel and antiparallel beta-strands with a few short alpha-helices. The enzyme can be subdivided into N- and C-terminal domains which are separated by a deep cleft containing the active aspartate residues Asp-34 and Asp-216. The amino acid residues and waters at the active site form an extensive hydrogen-bonded network which maintains the pseudo 2-fold symmetry of the entire structure. A comparison of recombinant chymosin with other acid proteinases reveals the high degree of structural similarity with other members of this family of proteins as well as the subtle differences which make chymosin unique. In particular, Tyr-77 of the flap region of chymosin does not hydrogen bond to Trp-42 but protrudes out in the P1 pocket forming hydrophobic interactions with Phe-119 and Leu-32. This may have important implications concerning the mechanism of substrate binding and substrate specificity.  相似文献   

17.
18.
Hexameric glucosamine-6-phosphate deaminase from Escherichia coli has been crystallized isomorphously with both phosphate and ammonium sulphate as precipitants, over a wide pH range (6.0 to 9.0). The crystals belong to space group R32 and the cell parameters in the hexagonal setting are a = b = 125.9 A and c = 223.2 A. A complete native data set was collected to 2.1 A resolution. Self-rotation function studies suggest that the hexamers sit on the 3-fold axis and have point group symmetry 32, with a non-crystallographic dyad relating two monomers linked by an interchain disulfide bridge. A possible packing for the unit cell is proposed.  相似文献   

19.
Glucosamine-6-phosphate synthase catalyses the first and rate-limiting step in hexosamine metabolism, converting fructose 6-phosphate into glucosamine 6-phosphate in the presence of glutamine. The crystal structure of the Escherichia coli enzyme reveals the domain organisation of the homodimeric molecule. The 18 A hydrophobic channel sequestered from the solvent connects the glutaminase and isomerase active sites, and provides a means of ammonia transfer from glutamine to sugar phosphate. The C-terminal decapeptide sandwiched between the two domains plays a central role in the transfer. Based on the structure, a mechanism of enzyme action and self-regulation is proposed. It involves large domain movements triggered by substrate binding that lead to the formation of the channel.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号