首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barber NA  Marquis RJ 《Oecologia》2011,166(2):401-409
Theory predicts that variation in plant traits will modify both the direct interactions between plants and herbivores and the indirect impacts of predators of those herbivores. Light has strong effects on leaf quality, so the impacts of herbivores and predators may differ between plants grown in sun and shade. However, past experiments have often been unable to separate the effects of light environment on plant traits and herbivory from direct effects on herbivores and predators. We first manipulated light availability in an open habitat using a shade cloth pre-treatment to produce oak saplings with different leaf qualities. Leaves on plants exposed to high light were thicker and tougher and had lower nitrogen and water contents, and higher carbon and phenolic contents than leaves on plants under a shade cloth. Then, in the main experiment, we moved all plants to a common shade environment where bird predators were excluded in a factorial design. We measured insect herbivore abundance and leaf damage. Herbivores were significantly more abundant and caused greater leaf damage on sun trees, although these leaf characteristics are usually associated with low-quality food. Bird exclusion did not change herbivore abundance but did increase leaf damage. Contrary to our predictions, the effects of birds did not differ between trees grown in sun and shade conditions. Thus, differences in effects of predators on herbivores and plants between light habitats, when observed, might be due to variation in predator abundance and not bottom-up effects of host plant quality.  相似文献   

2.
Differential herbivory and/or differential plant resistance or tolerance in sun and shade environments may influence plant distribution along the light gradient. Embothrium coccineum is one of the few light-demanding tree species in the temperate rainforest of southern South America, and seedlings are frequently attacked by insects and snails. Herbivory may contribute to the exclusion of E. coccineum from the shade if 1) herbivory pressure is greater in the shade, which in turn can result from shade plants being less resistant or from habitat preferences of herbivores, and/or 2) consequences of damage are more detrimental in the shade, i.e., shade plants are less tolerant. We tested this in a field study with naturally established seedlings in treefall gaps (sun) and forest understory (shade) in a temperate rainforest of southern Chile. Seedlings growing in the sun sustained nearly 40% more herbivore damage and displayed half of the specific leaf area than those growing in the shade. A palatability test showed that a generalist snail consumed ten times more leaf area when fed on shade leaves compared to sun leaves, i.e., plant resistance was greater in sun-grown seedlings. Herbivore abundance (total biomass) was two-fold greater in treefall gaps compared to the forest understory. Undamaged seedlings survived better and showed a slightly higher growth rate in the sun. Whereas simulated herbivory in the shade decreased seedling survival and growth by 34% and 19%, respectively, damaged and undamaged seedlings showed similar survival and growth in the sun. Leaf tissue lost to herbivores in the shade appears to be too expensive to replace under the limiting light conditions of forest understory. Following evaluations of herbivore abundance and plant resistance and tolerance in contrasting light environments, we have shown how herbivory on a light-demanding tree species may contribute to its exclusion from shade sites. Thus, in the shaded forest understory, where the seedlings of some tree species are close to their physiological tolerance limit, herbivory could play an important role in plant establishment.  相似文献   

3.
Plant populations often exist in spatially heterogeneous environments with varying light levels, which can affect plant growth directly through resource availability or indirectly by altering behavior or success of herbivores. The plant vigor hypothesis predicts that herbivores are more likely to attack vigorously growing plants than those that are suppressed, for example in more shaded conditions. Plant tolerance of herbivory can also vary under contrasting resource availability. Observations suggest that damage by Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae), introduced into the United States in 2004 as a biological control agent for mile-a-minute weed (Persicaria perfoliata [L.] H. Gross), is greater in the sun than in shade. We compared weevil densities and plant growth in paired plots in full sun or under shade cloth; a second experiment included insecticide-treated plots in sun and shade, to assess the ability of the plant to compensate for herbivore damage. Greater density of weevils and more node damage (indicating internal larval feeding) were found on P. perfoliata plants growing in sun than on those in shade. Nodes were 14% thicker in the sun, which may have provided better larval habitat. Biomass produced by plants without weevils in the sun was about twice that produced in any other treatment. Herbivory had a greater effect on plant growth in the high-light environment than in the shade, apparently because of movement into the sun and increased feeding there by the monophagous herbivore, R. latipes. Results support the plant vigor hypothesis and suggest that high weevil densities in the sunny habitats favored by P. perfoliata can suppress plant growth, negating the resource advantage to plants growing in the sun.  相似文献   

4.
Plants experience unique challenges due to simultaneous life in two spheres, above- and belowground. Interactions with other organisms on one side of the soil surface may have impacts that extend across this boundary. Although our understanding of plant–herbivore interactions is derived largely from studies of leaf herbivory, belowground root herbivores may affect plant fitness directly or by altering interactions with other organisms, such as pollinators. In this study, we investigated the effects of leaf herbivory, root herbivory, and pollination on plant growth, subsequent leaf herbivory, flower production, pollinator attraction, and reproduction in cucumber (Cucumis sativus). We manipulated leaf and root herbivory with striped cucumber beetle (Acalymma vittatum) adults and larvae, respectively, and manipulated pollination with supplemental pollen. Both enhanced leaf and root herbivory reduced plant growth, and leaf herbivory reduced subsequent leaf damage. Plants with enhanced root herbivory produced 35% fewer female flowers, while leaf herbivory had no effect on flower production. While leaf herbivory reduced the time that honey bees spent probing flowers by 29%, probing times on root-damaged plants were over twice as long as those on control plants. Root herbivory increased pollen limitation for seed production in spite of increased honey bee preference for plants with root damage. Leaf damage and hand-pollination treatments had no effect on fruit production, but plants with enhanced root damage produced 38% fewer fruits that were 25% lighter than those on control plants. Despite the positive effect of belowground damage on honey bee visitation, root herbivory had a stronger negative effect on plant reproduction than leaf herbivory. These results demonstrate that the often-overlooked effects of belowground herbivores may have profound effects on plant performance.  相似文献   

5.
While a plant’s capacity to tolerate damage by herbivores can be studied as a single trait, it is important to recognize that tolerance is generally a result of the combined action of several different traits. Here, we report on a pair of experiments to identify mechanisms for tolerating floral herbivory in Solanum carolinense, an andromonoecious perennial herb that regularly suffers from high levels of florivory. We measured the effect of actual and simulated florivory on host-plant fitness and assessed which plant traits exhibited plasticity in response to florivory. In addition, for each of nine plant genets, we calculated tolerance indices and determined which traits were genetically correlated with tolerance. Traits that served to help S. carolinense tolerate florivory in terms of sexual reproduction included initiating more inflorescences, aborting fewer buds prior to anthesis and fewer ovaries after fertilization, and increasing the ratio of perfect:male flowers. In addition, the greater the levels of florivory, the more the plants allocated to root growth, which may promote tolerance through greater potential future reproduction. The plant population contained significant genetic variation for tolerance itself and for nearly all of the putative tolerance mechanisms, which suggests that S. carolinense has the potential to evolve greater tolerance through a variety of different routes in response to natural selection.  相似文献   

6.
Interactions between plants and herbivores often vary on a geographic scale. Although theory about plant defenses and tolerance is predicated on temporal or spatial variation in herbivore damage, no single study has compared the pattern of herbivory, plant defenses and tolerance to herbivory of a single species across a latitudinal gradient. In 2002–2005 we surveyed replicate salt marshes along the Atlantic coast of the United States from Florida to Maine. At each field site we scored leaves of Iva frutescens for herbivore damage. In laboratory experiments we measured constitutive resistance and induced resistance in I. frutescens from high and low latitude sites along the Atlantic Coast. In another common garden experiment we studied tolerance to herbivory of I. frutescens from various sites. Theory predicts that constitutive resistance should matter more when damage is high, and induced resistance when herbivory is high but variable. In the field, average levels of herbivore damage, and spatial and temporal variation in herbivore damage were all greater at low versus high latitudes, indicating that constitutive as well as induced resistance should be stronger at low latitudes. Consistent with this prediction, constitutive resistance to herbivory was stronger at low latitudes. Induced resistance to herbivores was also stronger at low latitudes: it was deployed faster and lasted longer. Theory also predicts that tolerance to herbivory should be greater where average herbivory damage is greater; however, tolerance to herbivory in Iva did not depend on geographic origin. Our results emphasize the value of considering multiple ways in which plants respond to herbivores when examining geographic variation in plant–herbivore interactions.  相似文献   

7.
Leaf-cutting ants (LCA) are generalist herbivores capable of causing severe plant damage. Negative impacts of ant herbivory vary according to the density of nests and availability of palatable plants; however, it is not yet clear how these herbivores affect tropical forest restoration sites. To investigate how LCA preference affects plant species performance, we evaluated the herbivory of Atta sexdens rubropilosa on native tree species seedlings in Atlantic Forest restoration sites. We expected pioneer species to suffer higher herbivory by LCA when compared with non-pioneer species and that species with higher damage will have poorer growth and higher mortality. The experiment was conducted in three restoration sites in northern Paraná state, southern Brazil, with 1,500 seedlings of 5 pioneer and 5 non-pioneer species. Sites share similar age, stand size, tree species composition, and LCA nest density. The number of attacks, degree of leaf damage, number of leaves, plant height, and survival were recorded. Specific leaf area, leaf polyphenols, flavonoids, tannins, and nitrogen content were analyzed for each species. Plant damage was similar between pioneer and non-pioneer plant species. This could be explained by trait variability among species in each group and by LCA generalist foraging. Preferred species suffered decreases in growth and survival. Less preferred species suffered fewer ant attacks and no change in performance. Results suggest that ant herbivory can influence plant species establishment and thus species composition in restoration sites by reducing performance and increasing mortality of some, but not all species, making LCA an important ecological filter.  相似文献   

8.
1. It has become increasingly recognised that several herbivores switch from folivory (leaf‐feeding) to florivory (flower‐feeding) during larval development. Yet, it remains poorly understood which cues influence this behaviour, whether a switch to florivory is consistently shown on different hosts, and to what extent florivory could be hindered by plant traits. 2. Using the sawfly Athalia rosae and two Brassicaceae differing in architecture and surface structure, the cues that influence larval movement to the flowers were investigated. A broad set of behavioural assays was employed and physical and chemical plant traits potentially affecting the larvae were analysed. Furthermore, the consequences of folivory versus florivory on insect performance were studied. 3. The larvae preferred flowers over leaves. Consumption of particular flower parts correlated partly with measured plant traits such as glucosinolate distribution. Visual cues were of higher importance than volatile cues. The initial position of newly hatched larvae on plants influenced the probability of the larvae reaching the flowers during development. Trichomes and surface waxes hindered the larvae from moving upwards to the flowers. Larvae developed slower and gained less body mass when feeding on inflorescences of Brassica nigra than when feeding on leaves, in contrast to the patterns observed before on Sinapis alba, where florivory led to an improved performance. 4. This study demonstrates that florivory depends on various host plant traits. It reveals new insights into different parameters influencing this multifaceted phenomenon and into the expected impact on the ecology and fitness of both the attacking herbivores and the plants.  相似文献   

9.
It has been sustained that the sticky traps present in some carnivorous plants could have evolved from ancestor species bearing leaves covered with secreting glands formerly associated with a defensive function. In this study, we evaluated the interaction of the carnivorous plant Pinguicula moranensis with its insect herbivores to assess the defensive role of the glandular trichomes. Firstly, we estimated the standing levels of insect herbivory in field conditions. We also evaluated the response of herbivore insects to the removal of the secreting glands from the leaves of P. moranensis in field and laboratory conditions. The mean damage was 1.61%, and half of the sampled plants showed no damage. The low level of herbivory in the field suggests that P. moranensis has an efficient defense ability. In the field experiment, after 25 d of exposure to natural damage, treated glandless plants received 18 times more damage than control plants. In the laboratory, the consumption of glandless tissue was three times higher during a 6 h evaluation period. Overall, our results provide evidence that secreting trichomes in Pinguicula are not only associated with prey capture but also have a defensive role. The defensive function could have favored the evolution of the sticky traps, the most extended prey‐capture strategy among carnivorous plants.  相似文献   

10.
The joint effects of multiple herbivores on their shared host plant have received increasing interest recently. The influence of herbivores on population dynamics of their host plants, especially the relative roles of different types of damage, is, however, still poorly understood. Here, we present a modelling approach, including both deterministic and stochastic matrix modelling, to be used in estimating fitness effects of multiple herbivores on perennial plants. We examined the effects and relative roles of two specialist herbivores, a pre-dispersal seed predator, Euphranta connexa, and a leaf-feeding moth, Abrostola asclepiadis, on the population dynamics and long-term fitness of their shared host plant, a long-lived perennial herb Vincetoxicum hirundinaria (Asclepiadaceae). We collected demographic data during 3 years and combined these data with the effects of natural levels of herbivory measured from the same individuals. We found that both seed predation and leaf herbivory reduced population growth of V. hirundinaria, but only very high damage levels changed the growth trend of the vigorously growing study populations from positive to negative. Demographic modelling indicated that seed predation had a greater impact on plant population growth than leaf herbivory. The effect of leaf herbivory was weaker and diminished with increasing level of seed predation. Evaluation of individual fitness components, however, suggested that leaf herbivory contributed more strongly to host plant fitness than seed predation. Our results emphasize that understanding the effects of a particular herbivore on plant population dynamics requires also knowledge on other herbivores present in the system, because the effect of a particular type of herbivory on plant population dynamics is likely to vary according to the intensity of other types of herbivory. Furthermore, evaluating herbivore impact from using individual fitness components does not necessarily reflect the long-term effects on total plant fitness.  相似文献   

11.
Tatyana A. Rand 《Oecologia》2002,132(4):549-558
Herbivore damage and impact on plants often varies spatially across environmental gradients. Although such variation has been hypothesized to influence plant distribution, few quantitative evaluations exist. In this study I evaluated patterns of insect herbivory on an annual forb, Atriplex patula var. hastata, across a salt marsh tidal gradient, and performed experiments to examine potential causes and consequences of variation in herbivory. Damage to plants was generally twice as great at mid-tidal elevations, which are more frequently inundated, than at higher, less stressful, elevations at five of six surveyed sites. Field herbivore assays and herbivore preference experiments eliminated the hypothesis that plant damage was mediated by herbivore response to differences in host plants across the gradient. Alternately, greater herbivore densities in the mid-marsh, where densities of an alternate host plant (Salicornia europaea) were high, were associated with greater levels of herbivory on Atriplex, suggesting spillover effects. The effect of insect herbivores on host plant performance varied between the two sites studied more intensively. Where overall herbivore damage to plants was low, herbivory had no detectable effect on plant survival or seed production, and plant performance did not significantly differ between zones. However, where herbivore damage was high, herbivores dramatically reduced both plant survival (>50%) and fruit production (40-70%), and their effects were stronger in the harsher mid-marsh than the high marsh. Thus herbivores likely play a role in maintaining lower Atriplex densities in mid-marsh. Overall, these results suggest that variation in herbivore pressure can be an important determinant of patterns of plant abundance across environmental gradients.  相似文献   

12.
Differential herbivory in contrasting environments is commonly explained by differences in plant traits. When several plant traits are considered, separate correlation analyses between herbivory and candidate traits are typically conducted. This makes it difficult to discern which trait best explain the herbivory patterns, or to avoid spurious inferences due to correlated characters. Aristotelia chilensis saplings sustain greater herbivory in shaded environments than in open habitats. We measured alkaloids, phenolics, trichomes, leaf thickness and water content in the same plants sampled for herbivory. We conducted a multiple regression analysis to estimate the relationship between herbivory and each plant trait accounting for the effect of correlated traits, thus identifying which trait(s) better explain(s) the differential herbivory on A. chilensis. We also estimated insect abundance in both light environments. Palatability bioassays tested whether leaf consumption by the main herbivore on A. chilensis was consistent with field herbivory patterns. Overall insect abundance was similar in open and shaded environments. While saplings in open environments had thicker leaves, lower leaf water content, and higher concentration of alkaloids and phenolics, no difference in trichome density was detected. The multiple regression analysis showed that leaf thickness was the only trait significantly associated with herbivory. Thicker leaves received less damage by herbivores. Sawfly larvae consumed more leaf tissue when fed on shade leaves. This result is consistent with field herbivory and, together with results of insect abundance, renders unlikely that the differential herbivory in A. chilensis was due to greater herbivory pressure in open habitats.  相似文献   

13.
Herbivores are important drivers of plant population dynamics and community composition in natural and managed systems. Intraspecific genetic diversity of long‐lived plants like trees might shape patterns of herbivory by different guilds of herbivores that trees experience through time. However, previous studies on plant genetic diversity effects on herbivores have been largely short‐term. We investigated how tree genotypic variation and diversity influence herbivory of silver birch Betula pendula in a long‐term field experiment. Using clones of eight genotypes, we constructed experimental plots consisting of one, two, four or eight genotypes, and measured damage by five guilds of arthropod herbivores twice a year over three different years (four, six and nine years after the experiment was established). Genotypes varied significantly for most types of herbivore damage, but genotype resistance rankings often shifted over time, and none of the clones was more resistant than all others to all types of herbivores. At the plot level, birch genotypic diversity had significant positive additive effect on leaf rollers and negative non‐additive effects on chewing herbivores and gall makers. In contrast, leaf‐mining and leaf‐tying damage was not influenced by birch genotypic diversity. Within diverse plots, the direction of genotypic diversity effects varied depending on birch genotype, some having lower and some having higher herbivory in mixed stands. This research highlights the importance of long‐term studies including different feeding guilds of herbivores to understand the effects of plant genetic diversity on arthropod communities. Different responses of various feeding guilds to genotypic diversity and shifts in resistance of individual genotypes over time indicate that genotypic mixtures are unlikely to result in overall reduction in herbivory over time.  相似文献   

14.
Theoretically, induced defenses should be prevalent within low resource environments like the forest understory where constitutive defenses would be costly. Also, the induced response should be stronger when the herbivore is a generalist rather than a specialist, which often have mechanisms to avoid or overcome plant defenses. These ideas have been previously tested for herbaceous species, and we examined these predictions in Lindera benzoin (spicebush), a common woody shrub of the eastern deciduous forest. Lindera benzoin plants in contrasting light environments served as control plants or were subjected to one of four treatments: application of jasmonic acid, clipping, herbivory by the specialist Epimecis hortaria (tulip tree beauty) and herbivory by the generalist Spodoptera exigua (beet armyworm). Following treatment, we assessed induced responses by measuring leaf chemistry (C/N ratio, protein content, and peroxidase activity), and by using insect bioassays with E. hortaria larvae. We found no difference in peroxidase activity between light environments in controls, plants treated with clipping or jasmonic acid. In plants subject to insect herbivory, peroxidase activity was greater in shade plants than in sun plants. The magnitude of this increase in the shade varied between the herbivores, with a 32 fold increase in plants exposed to the generalist S. exigua and a 9 fold increase in plants exposed to the specialist E. hortaria . Leaves from shade plants had more protein and lower C/N ratios than leaves from sun plants, regardless of induction treatment. In control plants, E. hortaria larvae consumed more leaf biomass and achieved greater final weights in the sun than in the shade, but these differences disappeared with induction treatments were applied. These results are among the first to show rapid induction in a woody plant, and different levels of induction with light environments and with specialist versus generalist herbivores.  相似文献   

15.
  • Relative growth rate (RGR) plays an important role in plant adaptation to the light environment through the growth potential/survival trade‐off. RGR is a complex trait with physiological and biomass allocation components. It has been argued that herbivory may influence the evolution of plant strategies to cope with the light environment, but little is known about the relation between susceptibility to herbivores and growth‐related functional traits.
  • Here, we examined in 11 evergreen tree species from a temperate rainforest the association between growth‐related functional traits and (i) species’ shade‐tolerance, and (ii) herbivory rate in the field. We aimed at elucidating the differential linkage of shade and herbivory with RGR via growth‐related functional traits.
  • We found that RGR was associated negatively with shade‐tolerance and positively with herbivory rate. However, herbivory rate and shade‐tolerance were not significantly related. RGR was determined mainly by photosynthetic rate (Amax) and specific leaf area (SLA). Results suggest that shade tolerance and herbivore resistance do not covary with the same functional traits. Whereas shade‐tolerance was strongly related to Amax and to a lesser extent to leaf mass ratio (LMR) and dark respiration (Rd), herbivory rate was closely related to allocation traits (SLA and LMR) and slightly associated with protein content.
  • The effects of low light on RGR would be mediated by Amax, while the effects of herbivory on RGR would be mediated by SLA. Our findings suggest that shade and herbivores may differentially contribute to shape RGR of tree species through their effects on different resource‐uptake functional traits.
  相似文献   

16.
Light availability is an important modulator of seedling growth and plant–herbivore dynamics. Logging increases light levels in forests, potentially altering herbivore–plant interactions that drive seedling establishment. We conducted a transplant experiment to evaluate how logging and herbivory affect seedling growth and survival in three shade‐tolerant tree species, at paired canopy gap and understory sites in logged forest and an adjacent unlogged area in central Amazonia (Brazil). Seedlings were either left exposed to naturally occurring insect herbivores or protected from insects by a fine netting structure. We measured the herbivore damage and growth rate of seedlings after 18 mo. In general, logged areas received more light than unlogged sites. Growth and herbivory rates were positively influenced by light, and herbivory was also influenced positively by logging. In gaps, increased growth mitigated foliar damage. Logging resulted in a loss of foliar tissue due to increased herbivory. Herbivory rates were higher in the understory of logged sites than in that of unlogged understory sites, but growth was similar in these areas. Thus, the understory of logged areas provided the least favorable sites for shade‐tolerant tree regeneration, due to higher herbivory rates. The effect of logging on biotic interactions can extend beyond the gaps it creates into untouched understory sites. To our knowledge, this is the first time such a pattern has been observed, highlighting the importance of evaluating the impact of logging on biotic interactions.  相似文献   

17.
Perennial plants interact with herbivores and pollinators across multiple growing seasons, and thus may respond to herbivores and pollinators both within and across years. Joint effects of herbivores and pollinators influence plant traits, but while some of the potential interactions among herbivory, pollination, plant size, and plant reproductive traits have been well studied, others are poorly understood. This is particularly true for perennial plants where effects of herbivores and pollinators may manifest across years. Here, we describe two experiments addressing the reciprocal interactions of plant traits with herbivore damage and pollination across 2 years using the perennial plant Chamerion angustifolium. We measured (1) plant responses to manipulation of damage and pollination in the year of treatment and the subsequent season, (2) damage and pollination responses to manipulation of plant size and flowering traits in the year of treatment, and (3) plant-mediated indirect interactions between herbivores and pollinators. We found that plant traits had little effect on damage and pollination, but damage and pollination affected plant traits in both the treatment year and the subsequent year. We found evidence of indirect effects between leaf herbivores and pollinators in both directions; indirect effects of pollinators on leaf herbivores have not been previously demonstrated. Our results indicate that pollen receipt results in shorter plants with fewer stems but does not change flower number, while leaf herbivory results in taller plants with fewer flowers. Together, herbivory and pollination may contribute to intermediate plant height and plants with fewer stems and flowers in our system.  相似文献   

18.
Herbivory has been long considered an important component of plant-animal interactions that influences the success of invasive species in novel habitats. One of the most important hypotheses linking herbivory and invasion processes is the enemy-release hypothesis, in which exotic plants are hypothesized to suffer less herbivory and fitness-costs in their novel ranges as they leave behind their enemies in the original range. Most evidence, however, comes from studies on leaf herbivory, and the importance of flower herbivory for the invasion process remains largely unknown. Here we present the results of a meta-analysis of the impact of flower herbivory on plant reproductive success, using as moderators the type of damage caused by floral herbivores and the residence status of the plant species. We found 51 papers that fulfilled our criteria. We also included 60 records from unpublished data of the laboratory, gathering a total of 143 case studies. The effects of florivory and nectar robbing were both negative on plant fitness. The methodology employed in studies of flower herbivory influenced substantially the outcome of flower damage. Experiments using natural herbivory imposed a higher fitness cost than simulated herbivory, such as clipping and petal removal, indicating that studies using artificial herbivory as surrogates of natural herbivory underestimate the real fitness impact of flower herbivory. Although the fitness cost of floral herbivory was high both in native and exotic plant species, floral herbivores had a three-fold stronger fitness impact on exotic than native plants, contravening a critical element of the enemy-release hypothesis. Our results suggest a critical but largely unrecognized role of floral herbivores in preventing the spread of introduced species into newly colonized areas.  相似文献   

19.
Successful climbing by vines not only prevents shading by neighbouring vegetation, but also may place the vines beyond ground herbivores. Here we tested the hypothesis that herbivory might enhance climbing in a vine species, and that such induced climbing should be greater in the shade. We assessed field herbivory in climbing and prostrate ramets of the twining vine Convolvulus arvensis. We evaluated plant climbing after mechanical damage in a glasshouse under both sun and shade conditions, and determined whether control and damaged plants differed in growth rate or photosynthetic capacity. Plants experienced greater herbivory when growing prostrate than when climbing onto companion plants, in both an open habitat and a shaded understorey. Experimental plants increased their twining rate on a stake after suffering leaf damage, in both high- and low-light conditions, and this induced climbing was not coupled to an increase in growth rate. Increased photosynthesis was associated with enhanced twining rate only in the shade. Herbivory may be an ecological factor promoting the evolution of a climbing habit in plants.  相似文献   

20.
Pre-release evaluation of the efficacy of biological control agents is often not possible in the case of many invasive species targeted for biocontrol. In such circumstances simulating herbivory could yield significant insights into plant response to damage, thereby improving the efficiency of agent prioritisation, increasing the chances of regulating the performance of invasive plants through herbivory and minimising potential risks posed by release of multiple herbivores. We adopted this approach to understand the weaknesses herbivores could exploit, to manage the invasive liana, Macfadyena unguis-cati. We simulated herbivory by damaging the leaves, stem, root and tuber of the plant, in isolation and in combination. We also applied these treatments at multiple frequencies. Plant response in terms of biomass allocation showed that at least two severe defoliation treatments were required to diminish this liana's climbing habit and reduce its allocation to belowground tuber reserves. Belowground damage appears to have negligible effect on the plant's biomass production and tuber damage appears to trigger a compensatory response. Plant response to combinations of different types of damage did not differ significantly to that from leaf damage. This suggests that specialist herbivores in the leaf-feeding guild capable of removing over 50% of the leaf tissue may be desirable in the biological control of this invasive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号