首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study antioxidant status and physiological responses of wheat to cycocel (CCC) and bio fertilizers application under water limitation condition, a factorial experiment was conducted based on randomized complete block design with three replications in 2015. Treatments included water limitation in three levels [normal irrigation (I1) as control; moderate water limitation (I2) or irrigation withholding at 50% of heading stage; severe water limitation (I3) or irrigation withholding at 50% of booting stage]; four bio fertilizer levels [(no bio fertilizer (F0), seed inoculation by Azotobacter chrocoocum strain 5 (F1), Pseudomonas putida strain 186 (F2), Azotobacter?+?Pseudomonas (F3))] and four CCC levels [(without CCC as control (C0), application of 400 (C1), 800 (C2) and 1200 (C3) mg/l)]. The results showed that water limitation decreased the chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, stomata conductance, leaf area index (LAI) and relative water content of wheat, but activity of catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO) enzymes and proline content were increased. Similar results were observed in CAT, POD and PPO activities due to bio fertilizers and CCC application. Besides the water limitation effects, CCC-treated plants displayed a significant decrease in stomata conductance and LAI. Generally, it was concluded that the application of bio fertilizers and CCC can be a proper tool for increasing wheat yield under water limitation.  相似文献   

2.
Human matrix metalloproteinase (MMP)-1 or collagenase–1 plays a significant role in embryonic development, tissue remodeling, and is also involved in several diseases like arthritis, metastasis, etc. Molecular dynamics simulation studies on hMMP-1 X-ray structures (PDB Id. 1CGE, 1CGF, 1CGL, 1HFC, and 2TCL) suggest that the three conserved water molecules (WH/1, WI, WS) are coordinated with catalytic zinc (ZnC), and one water molecule (W) is associated at structural zinc ion (ZnS). Transition of the coordination geometry around ZnC from tetrahedral to octahedral and tetrahedral to trigonal bipyramidal at ZnS are also observed during the dynamics. Recognition of two zinc ions through water mediated bridges (ZnC – WH (W1)…W2….H183 – ZnS) and stabilization of secondary coordination zone around the metal ions indicates the possibility of ZnC…ZnS coupled catalytic mechanism in hMMP-I. This study not only reveals a functionally important role of conserved water molecules in hMMP-I but also highlights the involvement of other non catalytic residues, such as S172 and D170 in the catalytic mechanism. The results obtained in this study could be relevant for importance of conserved water mediated recognition site of the sequence residue id. 202(RWTNNFREY)210, interaction of W(tryptophan)203 to zinc bound histidine, their influence on the water molecules that are involved in bridging between ZnC and ZnS, and structure-based design of specific hMMP inhibitors.
Graphical abstract Water mediated recognition of structural and catalytic zinc ions of hMMP-1 structure (MD simulatated conformation)
  相似文献   

3.
水分对苜蓿叶片光合特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用田间试验, 对每茬灌水3次(W3)、2次(W2)、1次(W1)和不灌水(W0)四种条件下的土壤水分, 苜蓿(Medicago sativa)叶片的叶绿素荧光参数、气孔导度(Gs)、净光合速率(Pn)和蒸腾速率(Tr)进行测定。结果表明, 灌水提高了苜蓿叶片的原初光能转换效率(Fv/Fm)、PnTr, 并随着灌水量的增加而增加。苜蓿叶片的Fv/FmPnTr的日均值与土壤含水量均呈极显著正相关关系。苜蓿叶片的PnFv/Fm和光合有效辐射(PAR)的乘积呈正相关关系。灌水还改变了苜蓿叶片Pn的日变化格局。灌水较多的处理(W3和W2), 苜蓿叶片没有出现光合“午休”现象,Pn的日变化趋势呈现“单峰”型。而灌水较少和不灌水的处理(W1和W0), 苜蓿叶片出现了明显的光合“午休”现象, 其Pn的日变化进程呈现“双峰”型。在相同的水分条件下, 初花期苜蓿叶片的Pn高于再生期的, Tr则相反。  相似文献   

4.
Available water stored in deep soil layers could increase the photosynthetic capacity of cotton. It was hypothesized that the photosynthesis of cotton would be enhanced by changing the fertilizer application depth under different deep-layer water conditions. We examined two deep-layer water levels, i.e., well-watered (W80) and not watered (W0), combined with surface application (F10) and deep application (F30) of basal fertilizer. Compared to W0, W80 resulted in increased leaf area (LA), photosynthetic pigment contents, maximal PSII efficiency (Fv/Fm), effective quantum yield of PSII (YII) and PSI (YI), electron transport rate of PSII (ETRII) and PSI (ETRI). W80 also increased the aboveground and root dry mass by 39 and 0.6%, respectively, and decreased the root/shoot ratio by 40–73%. Under the W0 condition, higher values of Fv/Fm, YII, YI, ETRII, and ETRI were measured for F10 compared to F30 after 69 d from emergence. Under the W80 condition, cotton plants with F10 showed higher LA, Fv/Fm, YII, YI, ETRII, and ETRI, but there were no significant differences in the photosynthetic pigments compared to F30. Our results suggest that sufficient water in deeper soil layers and the surface application of basal fertilizer could increase photosynthetic activity and efficiency, which promoted aboveground dry mass accumulation and partitioning towards reproductive organs.  相似文献   

5.
The possibility to improve the recovery of sugar beet plants after water stress by application of synthetic cytokinins N6-benzyladenine (BA) or N6-(m-hydroxybenzyl)adenosine (HBA) was tested. Relative water content (RWC), net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), chlorophyll (Chl) a and Chl b contents, and photosystem 2 efficiency characterized by variable to maximal fluorescence ratio (Fv/Fm) were measured in control plants, in water-stressed plants, and after rehydration (4, 8, 24, and 48 h). Water stress markedly decreased parameters of gas exchange, but they started to recover soon after irrigation. Application of BA or HBA to the substrate or sprayed on leaves only slightly stimulated recovery of PN, E, and gs in rehydrated plants, especially during the first phases of recovery. Chl contents decreased only under severe water stress and Fv/Fm ratio was not significantly affected by water stress applied. Positive effects of BA or HBA application on Chl content and Fv/Fm ratio were mostly not observed.  相似文献   

6.
等氮滴灌对宿根蔗产量及土壤氧化亚氮排放的影响   总被引:1,自引:0,他引:1  
为得到合理的水肥管理措施,研究等氮量下不同滴灌施肥比例对宿根蔗产量以及不同生育期蔗田土壤氧化亚氮(N2 O)通量和无机氮含量的影响,并分析蔗田土壤N2 O通量与无机氮含量之间的关系.该文以自然降雨W0为对照,设置2种滴灌灌水量水平W1(田间持水量的75%)和W2(田间持水量的85%),等量氮肥(N 300 kg·hm-...  相似文献   

7.
The responses of gas exchange and chlorophyll fluorescence of field-growing Ulmus pumila seedlings to changes in simulated precipitation were studied in Hunshandak Sandland, China. Leaf water potential (Ψwp), net photosynthetic rate (P N), stomatal conductance (g s), and transpiration rate (E) were significantly increased with enhancement of precipitation from 0 to 20 mm (p<0.01), indicating stomatal limitation of U. pumila seedlings that could be avoided when soil water was abundant. However, P N changed slightly when precipitation exceeded 20 mm (p>0.05), indicating more precipitation than 20 mm had no significant effects on photosynthesis. Maximum photochemical efficiency of photosystem 2, PS 2 (Fv/Fm) increased from 0.53 to 0.78 when rainfall increased from 0 to 10 mm, and Fv/Fm maintained a steady state level when rainfall was more than 10 mm. Water use efficiency (WUE) decreased significantly (from 78–95 to 23–27 μmol mol−1) with enhancement of rainfalls. P N showed significant linear correlations with both g s and Ψwp (p<0.0001), which implied that leaf water status influenced gas exchange of U. pumila seedlings. The 20-mm precipitation (soil water content at about 15 %, v/v) might be enough for the growth of elm seedlings. When soil water content (SWC) reached 10 %, down regulation of PS2 photochemical efficiency could be avoided, but stomatal limitation to photosynthesis remained. When SWC exceeded 15 %, stomatal limitation to photosynthesis could be avoided, indicating elm seedlings might tolerate moderate drought.  相似文献   

8.
  • Excess salt affects about 955 million ha of arable land worldwide, and 49% of agricultural land is Zn‐deficient. Soil salinity and zinc deficiency can intensify plant abiotic stress. The mechanisms by which Zn can mitigate salinity effects on plant functions are not well understood.
  • We conducted an experiment to determine how Zn and salinity effects on rice plant retention of Zn, K+ and the salt ion Na+ affect chlorophyll formation, leaf cell membrane stability and grain yield. We examined the mechanisms of Zn nutrition in mitigating salinity stress by examining plant physiology and nutrition. We used native Zn‐deficient soils (control), four salinity (EC ) and Zn treatments – Zn 10 mg·kg?1 (Zn10), EC 5 dS ·m?1 (EC 5), Zn10+EC 5 and Zn15+EC 5, a coarse rice (KS ‐282) and a fine rice (Basmati‐515) in the study.
  • Our results showed that Zn alone (Zn10) significantly increased rice tolerance to salinity stress by promoting Zn/K+ retention, inhibiting plant Na+ uptake and enhancing leaf cell membrane stability and chlorophyll formation in both rice cultivars in native alkaline, Zn‐deficient soils (<  0.05). Further, under the salinity treatment (EC 5), Zn inputs (10–15 mg·kg?1) could also significantly promote rice plant Zn/K+ retention and reduce plant Na+ uptake, and thus increased leaf cell membrane stability and grain yield. Coarse rice was more salinity‐tolerant than fine rice, having significantly higher Zn/K+ nutrient retention.
  • The mechanistic basis of Zn nutrition in mitigating salinity impacts was through promoting plant Zn/K+ uptake and inhibiting plant Na+ uptake, which could result in increased plant physiological vigour, leaf cell membrane stability and rice productivity.
  相似文献   

9.
Singh  B.  Singh  G. 《Photosynthetica》2003,41(3):407-414
Biomass, leaf water potential (l), net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), leaf to air temperature difference (T diff), and instantaneous water use efficiency (WUE) were measured in the seedlings of Dalbergia sissoo Roxb. grown under irrigation of 20 (W1), 14 (W2), 10 (W3), and 8 (W4) mm. Treatments were maintained by re-irrigation when water content of the soil reached 7.4% in W1, 5.6% in W2, 4.3% in W3, and 3.2% in W4. Seedlings in a control (W5) were left without irrigation after maintaining the soil field capacity (10.7%). Seedlings of W1 had highest biomass that was one tenth in W5. Biomass allocation was highest in leaf in W2 and in root in W4 and W5 treatments. Difference between predawn leaf water potential (Pd) and midday (mid) increased with soil water stress and with vapour pressure deficit (VPD) in April and May slowing down the recovery in plant leaf water status after transpiration loss. P N, E, and g s declined and T diff increased from W1 to W5. Their values were highly significant in April and May for the severely stressed seedlings of W4 and W5. P N increased from 08:00 to 10:00 and E increased until 13:00 within the day for most of the seedlings whereas g s decreased throughout the day from 08:00 to 17:00. P N and E were highest in March but their values were low in January, February, April, and May. Large variations in physiological variables to air temperature, photosynthetically active radiation, and vapour pressure deficit (VPD) indicated greater sensitivity of the species to environmental factors. WUE increased from W1 to W2 but decreased drastically at high water stress particularly during hot summer showing a kind of adaptation in D. sissoo to water stress. However, low biomass and reduced physiological functions at <50% of soil field capacity suggest that this species does not produce significant biomass at severe soil water stress or drought of a prolonged period.  相似文献   

10.
Summary Anther culture of secondary octoploid triticale (AABBDDRR) and F1 hybrids (AABBDDR) of octoploid triticale x common wheat crosses was carried out, and 96 pollen-derived plants were developed and studied cytologically. In addition to the 8 types of pollen-derived plants with the theoretically predicted chromosome number, plants with the chromosome constitutions of 2n = 38, 43, 45, 47, 74, and mixoploids were obtained. The haploids and the diploids had different distributions. The frequencies of plants with one and two (pairs of) rye chromosomes were extremely high, and anther culture may be an expeditious route for creating alien addition lines of distant hybrid F1s. Chromosome aberrations, including deletions, inversions, translocations, as well as isochromosomes and ring chromosomes, were observed in some plants. Abnormal meioses, such as chromosome non-disjunction, were also found. The reasons for the chromosome aberrations are discussed.  相似文献   

11.
Two separate field experiments were conducted in 2018 and 2019 as split-plot based on randomized complete block design with three replications to evaluate physiological responses of rapeseed to fertilization treatments (control, chemical fertilizer, inoculation of seeds with PGPR, vermicompost and combined fertilizers) under different irrigation levels (irrigation after 70,100, 130, and 160 mm evaporation). Water stress increased the activities of catalase, polyphenol oxidase, peroxidase and superoxide dismutase and the contents of proline, soluble sugars and malondialdehyde and also leaf temperature, but decreased membrane stability index, chlorophyll content, leaf water content, stomatal conductance and grain yield. Application of fertilizers particularly combined fertilizers decreased proline content and leaf temperature, but increased the antioxidant enzymes activities, soluble sugars, chlorophyll content, leaf water content, membrane stability index, and stomatal conductance under different irrigation intervals. These superiorities of fertilization treatments were led to considerable improvement in grain yield. The results revealed that the combined fertilizer application improved most of the physiological parameters. It was deducted that the application of combined fertilizers reduced chemical fertilizer by about 67% and alleviated the deleterious effects of water limitation on field performance of rapeseed.  相似文献   

12.
Photosynthesis, chlorophyll (Chl) a fluorescence, and nitrogen metabolism of hawthorn (Crataegus pinnatifida Bge.), subjected to exogenous L-glutamic acid (GLA) (200 mg l−1, 400 mg l−1, and 800 mg l−1) that possibly affect secondary metabolic regulation, were measured. The results indicated that photosynthetic and fluorescence characteristics of hawthorn exhibited positive responses to the application of GLA. Different concentrations of GLA caused an increase in Chl content, net photosynthetic rate (P N) and stomatal conductance (g s) as well as transpiration rate (E), and improved the carboxylation efficiency (CE), apparent quantum yield (AQY) and maximum carboxylation velocity of Rubisco (Vcmax). Application of GLA could also enhance the maximum ratio of quantum yields of photochemical and concurrent non-photochemical processes in PSII (Fv/F0), the maximal quantum yield of PSII (Fv/Fm), the probability that an absorbed photon will move an electron into the electron transport chain beyond QAEo) as well as the performance index on absorption basis (PIABS), but decreased the intercellular CO2 concentration (C i) and the minimal fluorescence (F0). Application of GLA also induced an increase in nitrate reductase (NR; EC 1.6.6.1) and glutamine synthetase (GS; EC 6.3.1.2) activities, and increased the soluble protein content, leaf nitrogen (N) content and N accumulation in leaves as well as the plant biomass. However, the effects were different among different concentrations of GLA, and 800 mg l−1 GLA was better. This finding suggested that application of GLA is recommended to improve the photosynthetic capacity by increasing the light energy conversion and CO2 transfer as well as the photochemical efficiency of PSII, and enhanced the nitrogen metabolism and growth and development of plants.  相似文献   

13.
Solubility of metal in contaminated soils is a key factor which controls the phytoavailability and toxic effects of metals on soil environment. The chemical equilibria of metal ions between soil solution and solid phases govern the solubility of metals in soil. Hence, an attempt was made to identify the probable solid phases (minerals), which govern the solubility of Zn2+ and Cd2+ in zinc smelter effluent-irrigated soils. Estimation of free ion activities of Zn2+ (pZn2+) and Cd2+ (pCd2+) by Baker soil test indicated that metal ion activities were higher in smelter effluent-irrigated soils as compared to that in tubewell water-irrigated soils. Identification of solid phases further reveals that free ion activity of Zn2+ and Cd2+ in soil highly contaminated with Zn and Cd due to long-term irrigation with zinc smelter effluent is limited by the solubility of willemite (Zn2SiO4) in equilibrium with quartz and octavite (CdCO3), respectively. However, in case of tubewell water-irrigated soil, franklinite (ZnFe2O4) in equilibrium with soil-Fe and exchangeable Cd are likely to govern the activity of Zn2+ and Cd2+ in soil solution, respectively. Formation of highly soluble minerals namely, willemite and octavite indicates the potential ecological risk of Zn and Cd, respectively in smelter effluent irrigated soil.  相似文献   

14.
探讨油松水分传输效率和安全性对养分和水分添加的响应是揭示其适应性的基础。该试验采用新改进的离心机技术,以2年生油松幼苗当年生枝为材料,试验设置对照(CK,不施肥、自然降水)、氮磷养分添加(F,按每年120 kg/hm2纯N和60 kg/hm2纯P水平添加N和P素,自然降水)及养分和水分同时添加(FI,按每年120 kg/ hm2纯N和60 kg/hm2纯P水平添加N素和P素,且补水100 mm)3个处理,研究了油松幼苗水分传输效率和栓塞脆弱性对氮磷养分和水分添加的响应。结果表明:(1)与CK相比,氮磷养分添加(F)增加了油松幼苗地径、冠幅和地上部生物量,但对比导水率(Ks)、比叶导水率(LSC)、Huber值、抵抗栓塞能力(P50)及水分传输安全阈值均影响不大。(2)氮磷和水分同时添加处理(FI)的地径、株高、冠幅和地上部生物量显著高于CK和F处理,其KsLSC和Huber值与CK及F处理相比并无显著差异,但P50比CK和F处理增加0.2 MPa左右,且水分传输安全阈值相对变小。研究表明,养分添加对油松幼苗当年生枝的水分传输效率和安全性影响不大,水分添加对水分传输效率亦无显著影响,但降低了水分传输的安全性,原因主要与管胞长度增加及管胞壁抗爆破阻力下降有关。  相似文献   

15.
Barták  M.  Raschi  A.  Tognetti  R. 《Photosynthetica》1999,37(1):1-16
Photosynthetic parameters were studied in Arbutus unedo L. trees growing at either ambient (AC) or elevated EC (mean 465 μmol mol-1) CO2 concentration near a natural CO2 vent in Orciatico, Italy Diurnal courses of net photosynthetic rate (P N), ratio of variable to maximum chlorophyll fluorescence (Fv/Fm), and quantum yield of electron transport through photosystem 2 (Φ2) were measured on sun and shade leaves. The contents of N, C, Ca, K, P, and chlorophyll (Chl) and specific leaf area (SLA) in these leaf categories were also determined. A morning peak and midday depression of P N were found for both AC and EC sun leaves. Long-term EC caused little or no down-acclimation of P N in sum leaves. The estimate of total daily CO2 uptake was lower in AC leaves than in EC leaves. In shade leaves, it reached up to 70 % of the value of sun leaves. The Fv/Fm ratio showed decreasing trend in the morning, reached a minimum at midday (90 % of dawn value), and then increased in the afternoon. The EC had no effect on Fv/Fm either in sun or shade leaves. Plants grown near the CO2 spring had lower Chl content, higher SLA, and higher Ca and K contents than plants grown under AC. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
魏明  余茂元  柴瑞娟 《西北植物学报》2018,38(12):2276-2283
为了阐明兰科菌根真菌对铁皮石斛光合作用的影响及机制,采用盆栽方式研究了兰科菌根真菌对铁皮石斛幼苗生长的影响,并分析了叶片中叶绿素含量、光合参数、叶绿素荧光参数以及pepc基因表达的变化。结果表明:(1)兰科菌根真菌促进了铁皮石斛幼苗生长,接种兰科菌根真菌的铁皮石斛的株高、根重、茎叶重和总生物量分别是未接种对照组的1.21、1.54、1.71和1.68倍;而且可显著提高叶片中叶绿素含量、叶片净光合速率(Pn)、蒸腾速率(Gs)和气孔导度(Tr)。(2)接种兰科菌根真菌的铁皮石斛叶片潜在光化学效率(Fv/F0)、最大光化学效率(Fv/Fm)、光化学猝灭系数(qP)、非光化学猝灭系数(qN)、实际光化学反应量子效率(Yield)和表观光合电子传递速率(ETR)均高于未接种对照组。(3)菌根真菌能促进pepc基因的表达,增强PEPC活性,提高铁皮石斛叶片的光合碳同化能力。研究表明,菌根的形成可以提高铁皮石斛叶片光合性能和pepc基因的表达水平,促进铁皮石斛幼苗的生长。  相似文献   

17.
X. Guan  S. Gu 《Photosynthetica》2009,47(3):437-444
In order to investigate the photoprotective function of photorespiration in grapevine under water stress, potted grapevines (Vitis vinifera L. cv. Cabernet Sauvignon) were randomly divided into three uniform groups for well-watered [watered every morning to keep the relative water content (RWC) of soil over 70 %], water-stress adapted (drought-adapted at 30 % relative soil water content for 30 days), and water stress without adaptation treatment (water-stressed to 30 % relative soil water content for 3 days). Net assimilation rate (A N), stomatal conductance (g s), substomatal CO2 concentration (C i), transpiration rate (E), actual photochemical efficiency of PSII (ΦPSII), and maximum photochemical efficiency of PSII (Fv/Fm) were recorded by combining measurements of gas exchange and chlorophyll fluorescence. Gross photorespiration (Pr), photosynthetic electron partitioning (JC/JT), photochemical quenching coefficient (qP), and non-photochemical quenching (NPQ) were also calculated. The ratio of net assimilation rate to transpiration rate (A N/E) was used as an indicator of water use efficiency (WUE). A N, apparent Pr, ΦPSII, Fv/Fm, qp, and g s decreased, NPQ increased, and gross Pr sustained at a high level under water stress. This suggests that both photorespiration and energy dissipation play important roles in protecting photosynthetic apparatus against photoinhibition. C i in water-stressed plants without adaptation treatment increased, which indicates the leaves suffered a non-stomatal limitation, while the water-stress adaped plants only suffered a stomatal limitation indicated by low C i.  相似文献   

18.
Relationships between number of eggs (Ng), brood weight (Wg), and body length (L) and weight (W) of females were studied for 16 orders and suborders of Crustacea. The study was based on the authors' observations in the inland waters of the European USSR, in the coastal regions of the fareastern and northern seas and data from V. V. KUZNETSOV (preserved in archives). An extensive literature was also used. The equations describing the relationships (Ng=f(L) and Wg=f(W) are calculated for some species and high taxons. On the average for the superclass (excluding the order Notostraca) the Wg/W ratio appeared to be 0.16. This ratio is markedly different for species of Notostraca. It is supposed that this difference is due to the high metabolic rate of Notostraca.  相似文献   

19.
Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn -), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo +) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.  相似文献   

20.
In rice cultivation, there are controversial reports on net impacts of nitrogen (N) fertilizers on methane (CH 4) emissions. Nitrogen fertilizers increase crop growth as well as alter CH 4 producing (Methanogens) and consuming (Methanotrophs) microbes, and thereby produce complex effects on CH 4 emissions. Objectives of this study were to determine net impact of N fertilizers on CH 4 emissions and to identify their underlying mechanisms in the rice soils. Database was obtained from 33 published papers that contained CH 4 emissions observations from N fertilizer (28–406 kg N ha?1) treatment and its control. Results have indicated that N fertilizers increased CH 4 emissions in 98 of 155 data pairs in rice soils. Response of CH 4 emissions per kg N fertilizer was significantly (P < 0.05) greater at < 140 kg N ha?1 than > 140 kg N ha?1 indicating that substrate switch from CH 4 to ammonia by Methanotrophs may not be a dominant mechanism for increased CH 4 emissions. On the contrary, decreased CH 4 emission in intermittent drainage by N fertilizers has suggested the stimulation of Methanotrophs in rice soils. Effects of N fertilizer stimulated Methanotrophs in reducing CH 4 emissions were modified by the continuous flood irrigation due to limitation of oxygen to Methanotrophs. Greater response of CH 4 emissions per kg N fertilizer in urea than ammonia sulfate probably indicated the interference of sulfate in the CH 4 production process. Overall, response of CH 4 emissions to N fertilizers was correlated with N‐induced crop yield (r = +0.39; P < 0.01), probably due to increased carbon substrates for Methanogens. Using CH 4 emission observations, this meta‐analysis has identified dominant microbial processes that control net effects of N fertilizers on CH 4 emissions in rice soils. Finally, we have provided a conceptual model that included microbial processes and controlling factors to predict effects of N fertilizers on CH 4 emissions in rice soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号