首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
使用阳离子胶体金标记中国仓鼠卵巢细胞(CHO-K1)的阴离子位点,并采用双光子荧光显微成像和荧光寿命成像技术记录活细胞的阴离子场分布.阳离子胶体金是纳米量级金微粒与多聚L-赖氨酸的结合物,金纳米微粒在超短激光脉冲的照射下可以产生高度局域化的光热效应.当飞秒激光脉冲聚焦在细胞膜上标记的金纳米微粒时会产生这种纳米尺度的微光热效应,并在不影响细胞活性的前提下暂时提高细胞膜的通透性.基于这种效应,使用聚焦的飞秒激光脉冲三维扫描照射CHO-K1细胞,将分子质量为10ku的荧光探针大分子异硫氰酸荧光素葡聚糖(fluorescein isothioeyanate-dextran, FITC-D)递送到CHO-K1细胞的内部,并用双光子荧光图像记录其递送的过程.使用流式细胞仪分析不同实验条件下FITC-D的转导率和细胞死亡率的关系.  相似文献   

2.
利用共振散射技术研究了金纳米微粒与溶菌酶的相互作用.金纳米微粒可以通过静电引力及疏水作用与溶菌酶结合,使金纳米微粒粒径变大,从而导致纳米金瑞利共振散射光谱显著增强,并且在一定范围内光散射强度的增加量与溶菌酶浓度成正比.考查了作用时间、溶液酸度、共存离子及有机溶剂等条件的影响.将纳米金作为测定溶菌酶的探针,在最佳反应条件下,对溶菌酶的检出限为0.08 μg/mL.将此方法用于蛋清中溶菌酶的测定,检测结果与文献报道方法一致,结果令人满意.  相似文献   

3.
激光诱导的基因转染方法研究   总被引:1,自引:0,他引:1  
基因转染是研究基因表达、结构和功能的主要实验手段。本文对现有的转染方法进行了分析,并重点探讨了两种激光诱导的基因转染新方法:激光产生冲击波和激光照射纳米微粒的方法,并提出了改进的实验方案。这两种方法都是通过改变细胞质膜通透性实现外源基因的导入,其最大的优点就是对细胞没有损伤。文章的最后说明了基因转染在基因疗法的应用。  相似文献   

4.
目的:以PQE-30为原核表达载体,构建PQE30-tBID重组表达载体,表达和纯化目的蛋白tBID,并利用金磁纳米微粒将tBID蛋白与人HER2抗体偶联成分子探针Anti HER2-Gold Mag-tBID,以探究其对前列腺癌细胞的促凋亡作用。方法:根据tBID的基因序列设计特异性的上下游引物,利用普通PCR扩增目的基因tBID,构建重组表达载体PQE30-tBID,将其转化到BL21(DE3)中,IPTG诱导表达,经SDS-PAGE凝胶电泳和Western Blot鉴定分析,验证目的蛋白tBID的表达,并对其进行纯化。利用金磁纳米微粒与蛋白质之间的静电相互作用以及疏水相互作用,将人HER2抗体与tBID蛋白偶联在其表面,构建分子探针Anti HER2-Gold Mag-tBID。流式细胞术检测该分子探针与前列腺癌PC-3细胞的特异性亲附结合能力,通过Annexin V-FITC细胞凋亡检测试剂盒分析分子探针对PC-3细胞的促凋亡作用。结果:普通PCR扩增后得到了411 bp的DNA片段,经双酶切鉴定以及菌液测序,表明重组表达载体PQE30-tBID构建成功。促凋亡蛋白tBID成功地在大肠杆菌中表达,蛋白相对分子量约15 KD,经过纯化,得到了纯度较高的tBID蛋白。经过与金磁纳米微粒的偶联,成功构建出一种新型的分子探针Anti HER2-Gold Mag-tBID。该分子探针可与PC-3细胞特异性结合,且经Annexin V-FITC染色分析可见PC-3细胞发生明显凋亡,凋亡率达62.9%,与未处理组(3.79%)和对照组(4.33%)相比,具有显著的统计学差异。结论:PQE30-tBID重组表达载体能在大肠杆菌中高效表达,且成功得到了纯度较高的人促凋亡蛋白tBID。经金磁纳米微粒偶联,该蛋白能够与人HER2抗体重组成新型的分子探针,且能特异性地靶向前列腺癌PC-3细胞并显著促进其凋亡。  相似文献   

5.
无损光声成像技术结合了纯光学成像高选择特性和纯超声成像中深穿透特性的优点,克服了光散射限制,实现了对活体深层组织的高分辨、高对比度成像。该成像技术对内源物质例如脱氧血红蛋白、含氧血红蛋白、黑色素、脂质等进行成像,提供了活体生物组织结构和功能信息,已经在生物医学领域表现出巨大的应用前景。然而,很多与病理过程相关的特征分子的光吸收能力较弱,在活体环境中难以被光声成像系统所识别,从而限制了光声成像技术的应用范围。基于功能纳米探针的光声成像-光声分子成像极大拓展光声成像的应用范围,可以在活体层面对病理过程进行分子水平的定性和定量研究,将为实现目标疾病的早期诊断提供强大的技术支持。本文发展在近红外具有窄吸收线宽(半高宽仅为60 nm)的纳米金锥作为新型的光声探针。通过选择不同径长比的纳米金锥,可以任意调节纳米金锥的吸收峰。通过调谐激光器的波长,可实现对不同吸收峰纳米金锥的选择性激发。纳米金锥将有可能用于多光谱光声成像,实现对不同靶标的目标分子探测。  相似文献   

6.
目的:制备对硝基苯硫酚(4-Nitrobenzenethiol,4-NBT)分子内嵌的星形表面增强拉曼散射(Surface enhanced Raman Scattering,SERS)金"套娃"纳米颗粒,测定其拉曼增强效果和应用于细胞以及活体肿瘤拉曼影像的可行性。方法:以种子介导法先后制备金纳米星及星形SERS金"套娃"纳米颗粒,采用透射电镜观察其形貌,激光粒度分析仪测定其粒径及Zeta电位,拉曼光谱仪测定其拉曼光谱,考察其对A549细胞的拉曼成像效果,建立A549皮下瘤模型,考察其对活体皮下瘤的成像效果。结果:制备并优化的金纳米星粒径较小,为60.5 nm,其针尖密度较高,以此为核心制备的星形SERS金"套娃"纳米颗粒形态规整,粒径约为66.7nm,Zeta电位约为-16.6 m V,拉曼增强效果提升至其前驱体金纳米星的5.3倍,能够实现对A549细胞及A549皮下瘤的拉曼成像。结论:所制备的星形SERS金"套娃"纳米颗粒形态规整均一,拉曼增强效果较好,能实现对细胞及活体肿瘤的拉曼影像。  相似文献   

7.
目的:通过制备RGD/FA双靶纳米金考察其与高表达整合素与叶酸受体B16细胞的协同靶向成像与热疗作用;方法:采用功能化PEG分子将靶向小分子RGD与叶酸通过强健Au-S键连接至纳米金棒表面,利用激光共聚焦与808 nm近红外激光器评价修饰纳米金的协同靶向作用;结果:RGD与叶酸分子被成功连接于纳米金表面,且双靶纳米金对小鼠黑色素瘤细胞具有较好的协同靶向作用;结论:同时靶向同一肿瘤细胞的不同表位,可克服单一靶向功能化纳米粒子难以在肿瘤位点有效积累的问题,本研究为多功能纳米金棒在临床肿瘤早期诊断与光热治疗中的应用提供研究基础。  相似文献   

8.
银染增强的纳米金标记探针对微量核酸的检测   总被引:7,自引:3,他引:4  
本研究利用银染增强的纳米金技术建立了一种简单快速的核酸定量方法.该方法基于纳米金与烷巯基修饰的寡核苷酸分子共价键合作用,将纳米微粒报告基团标记在与靶核酸一端序列互补的寡核苷酸上,同时生物素化修饰另一端互补序列.靶核酸与两段寡核苷酸探针杂交后,借亲和素固定在酶标板孔内,通过纳米金催化的银染放大效应产生高灵敏的识别信号,适时记录其吸光度值从而实现核酸分子的定量.该检测方法检测单链核酸分子的灵敏度达0.1 fM,双链分子为10 fM.  相似文献   

9.
目的:设计对隐球菌荚膜特异性标记的靶向金纳米棒,研究靶向金纳米棒的体外光热作用对隐球菌活性的影响。方法晶种生长法制备金纳米棒,偶联隐球菌荚膜抗体,检测表征,与隐球菌体外孵育,近红外激光照射,检测隐球菌活性变化。结果成功制备与荚膜抗体偶联的金纳米棒,体外近红外照射后,隐球菌活性较未偶联抗体的金纳米棒组显著降低。结论靶向性金纳米棒显著增强了近红外激光对隐球菌的光热效应,可用于治疗隐球菌感染的新尝试。  相似文献   

10.
在不同功率激光照射下,纳米金与周围介质会经历不同的物理学效应,并产生宏观、微观和纳观三个层次的生物学效应及相应的应用。其中纳观效应的生物学应用和机理研究受到了关注并具有挑战性。本文针对纳米金激光纳观热效应的物理学机理研究及其相应模型进行综述,比较了各种模型和测量方法的利弊,对其生物学应用进行了论述,指出了其中的某些发展趋势,强调了纳米金激光纳观热效应研究的必要性和重要性。  相似文献   

11.
The photothermal properties of solid and hollow gold nanostructures represented by colloidal solutions of spherical nanoparticles, nanoshells, and nanocages upon irradiation with a 100 mW 808 nm continuous-wave laser for the first time were experimentally compared under identical optical density and nanoparticle concentration conditions. Accompanying computer modeling of light absorption by the studied gold nanostructures revealed the general parameters influencing the photothermal efficiency, which is of significance for nanomedical applications. The spectral position of localized plasmonic excitations of the studied nanostructures ranged from 518 nm for solid gold nanoparticles to 718 nm for gold nanocages, which provided a possibility to observe a direct influence of the wavelength proximity between the localized surface plasmon resonance and laser line on the heat generation capability of the nanostructures. As a result, the best photothermal efficiency was registered for gold nanocages, which proves them as an efficient photothermal treatment agent and a possible candidate to build a nanocarrier platform for drug delivery with a controlled release. Light absorption modeling demonstrated an existence of optimal wall thickness for gold nanoshells that should lead to the maximum photothermal efficiency when irradiated with 808 nm light, which varied from about 0.1 to 0.4 in units of external nanoshell radius with an increase of the wall porosity. Additionally, computer modeling results show that increased wall porosity should lead to enhanced photothermal efficiency of polydisperse colloidal solutions of hollow gold nanostructures.  相似文献   

12.

Efficient heat generation by plasmon-resonant gold nanoparticles, together with their biocompatibility and high specificity of biomolecular recognition, opens new possibilities for applications in biomedical applications. In this work, we present an improved method of monitoring surface temperature changes subjected to external stimulation by dynamic IR thermography. The method is based on the careful analysis of an IR image sequence recorded before, during, and after the stimulation that allows one to select areas with significant temperature variation and evaluate temporal behavior of the surface temperature. The method was applied for the experimental study on the photothermal effect in a gold hydrosol containing hollow gold nanoparticles heated with laser beam. Under these conditions, it was seen that the surface temperature of the gold hydrosol (measured with a FLIR SC655 InfraRed Camera, resolution 640 × 480 pixels) under the laser beam gradually increases and reaches a saturation level. It was shown that the developed method is capable of producing a quantitative analysis of the changes in the surface temperature distribution of the gold hydrosol, as well as characterizing the photothermal properties of the nanoparticles.

  相似文献   

13.
We fabricated composite nanoparticles consisting of a plasmonic core (gold nanorods or gold–silver nanocages) and a hematoporphyrin‐doped silica shell. The dual photodynamic and photothermal activities of such nanoparticles against Staphylococcus aureus 209 P were studied and compared with the activities of reference solutions (hematoporphyrin or silica‐coated plasmonic nanoparticles). Bacteria were incubated with nanocomposites or with the reference solutions for 15 min, which was followed by CW light irradiation with a few exposures of 5 to 30 min. To stimulate the photodynamic and photothermal activities of the nanocomposites, we used LEDs (405 and 625 nm) and a NIR laser (808 nm), respectively. We observed enhanced inactivation of S. aureus 209 P by nanocomposites in comparison with the reference solutions. By using fluorescence microscopy and spectroscopy, we explain the enhanced antimicrobial effect of hematoporphyrin‐doped nanocomposites by their selective accumulation in the vicinity of the bacteria. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Laser based cell manipulation has proven to be a versatile tool in biomedical applications. In this context, combining weakly focused laser pulses and nanostructures, e.g. gold nanoparticles, promises to be useful for high throughput cell manipulation, such as transfection and photothermal therapy. Interactions between laser pulses and gold nanoparticles are well understood. However, it is still necessary to study cell behavior in gold nanoparticle mediated laser manipulation. While parameters like cell viability or perforation efficiency are commonly addressed, the influence of the manipulation process on other essential cell parameters is not sufficiently investigated yet. Thus, we set out to study four relevant cell properties: cell volume and area, ion exchange and cytoskeleton structure after gold nanoparticle based laser manipulation. For this, we designed a multimodal imaging and manipulation setup. 200 nm gold nanoparticles were attached unspecifically to canine cells and irradiated by weakly focused 850 ps laser pulses. Volume and area change in the first minute post laser manipulation was monitored using digital holography. Calcium imaging and cells expressing a marker for filamentous actin (F-actin) served to analyze the ion exchange and the cytoskeleton, respectively. High radiant exposures led to cells exhibiting a tendency to shrink in volume and area, possibly due to outflow of cytoplasm. An intracellular raise in calcium was observed and accompanied by an intercellular calcium wave. This multimodal approach enabled for the first time a comprehensive analysis of the cell behavior in gold nanoparticle mediated cell manipulation. Additionally, this work can pave the way for a better understanding and the evaluation of new applications in the context of cell transfection or photothermal therapy.  相似文献   

15.
Gold nanoparticles are recently having much attention because of their increased applications in biomedical fields. In this paper, we demonstrated the photothermal efficacy of citrate capped gold nanoparticles (AuNPs) for the destruction of A431 cancer cells. Citrate capped AuNPs were synthesized successfully and characterized by UV–visible–NIR spectrophotometry and High Resolution Transmission Electron Microscopy (HR-TEM). Further, AuNPs were conjugated with epidermal growth factor receptor antibody (anti-EGFR) and applied for the selective photothermal therapy (PTT) of human epithelial cancer cells, A431. PTT experiments were conducted in four groups, Group I—control cells, Group II—cells treated with laser light alone, Group III—cells treated with unconjugated AuNP and further laser irradiation and Group IV—anti-EGFR conjugated AuNP treated cells irradiated by laser light. After laser irradiation, cell morphology changes that were examined using phase contrast microscopy along with the relevant biochemical parameters like lactate dehydrogenase activity, reactive oxygen species generation and caspase-3 activity were studied for all the groups to determine whether cell death occurs due to necrosis or apoptosis. From these results we concluded that, these immunotargeted nanoparticles could selectively induce cell death via ROS mediated apoptosis when cells were exposed to a low power laser light.  相似文献   

16.
We describe a new method for selective laser killing of bacteria targeted with light-absorbing gold nanoparticles conjugated with specific antibodies. The multifunctional photothermal (PT) microscope/spectrometer provides a real-time assessment of this new therapeutic intervention. In this integrated system, strong laser-induced overheating effects accompanied by the bubble-formation phenomena around clustered gold nanoparticles are the main cause of bacterial damage. PT imaging and time-resolved monitoring of the integrated PT responses assessed these effects. Specifically, we used this technology for selective killing of the Gram-positive bacterium Staphylococcus aureus by targeting the bacterial surface using 10-, 20-, and 40-nm gold particles conjugated with anti-protein A antibodies. Labeled bacteria were irradiated with focused laser pulses (420-570 nm, 12 ns, 0.1-5 J/cm(2), 100 pulses), and laser-induced bacterial damage observed at different laser fluences and nanoparticle sizes was verified by optical transmission, electron microscopy, and conventional viability testing.  相似文献   

17.
Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this review, we discuss the SPR-enhanced optical properties of noble metal nanoparticles, with an emphasis on the recent advances in the utility of these plasmonic properties in molecular-specific imaging and sensing, photo-diagnostics, and selective photothermal therapy. The strongly enhanced SPR scattering from Au nanoparticles makes them useful as bright optical tags for molecular-specific biological imaging and detection using simple dark-field optical microscopy. On the other hand, the SPR absorption of the nanoparticles has allowed their use in the selective laser photothermal therapy of cancer. We also discuss the sensitivity of the nanoparticle SPR frequency to the local medium dielectric constant, which has been successfully exploited for the optical sensing of chemical and biological analytes. Plasmon coupling between metal nanoparticle pairs is also discussed, which forms the basis for nanoparticle assembly-based biodiagnostics and the plasmon ruler for dynamic measurement of nanoscale distances in biological systems.  相似文献   

18.
Gold nanorods, rod-shaped gold nanoparticles, have strong absorbance in the near-infrared region, and the absorbed light energy can be converted to heat, the so-called photothermal effect. The gold nanorods were coated with thermoresponsive polymers, which have different phase transition temperatures that were controlled by adding comonomers, N,N-dimethylacrylamide (DMAA) or acrylamide (AAm) to N-isopropylacrylamide (NIPAM). The phase transition temperatures of poly(NIPAM-DMAA) and poly(NIPAM-AAm)-coated gold nanorods were 38 and 41 °C, respectively, while polyNIPAM-coated gold nanorods showed phase transition at 34 °C. Irradiation of the coated gold nanorods using the near-infrared laser induced a decrease in their sizes due to a phase transition of the polymer layers. Poly(NIPAM-AAm)-coated gold nanorods stably circulated in the blood flow without a phase transition after intravenous injection. Irradiation of near-infrared light at a tumor after the injection resulted in the gold specifically accumulating in the tumor. This novel accumulation technique which combines a thermoresponsive polymer and the photothermal effect of the gold nanorods should be a powerful tool for targeted delivery in response to light irradiation.  相似文献   

19.
The methods currently available to deliver functional labels and drugs to the cell cytosol are inefficient and this constitutes a major obstacle to cell biology (delivery of sensors and imaging probes) and therapy (drug access to the cell internal machinery). As cell membranes are impermeable to most molecular cargos, viral peptides have been used to bolster their internalisation through endocytosis and help their release to the cytosol by bursting the endosomal vesicles. However, conflicting results have been reported on the extent of the cytosolic delivery achieved. To evaluate their potential, we used gold nanoparticles as model cargos and systematically assessed how the functionalisation of their surface by either or both of the viral peptides TAT and HA2 influenced their intracellular delivery. We evaluated the number of gold nanoparticles present in cells after internalisation using photothermal microscopy and their subcellular localisation by electron microscopy. While their uptake increased when the TAT and/or HA2 viral peptides were present on their surface, we did not observe a significant cytosolic delivery of the gold nanoparticles.  相似文献   

20.
Tiopronin (N-(2-mercaptopropionyl)glycine)-protected gold nanoparticles (TPAu) were cross-linked to collagen via EDC (1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide) coupling. On average, each TPAu forms eight amide bonds with collagen lysine moieties. The resulting gels were studied with environmental SEM, TEM, micro-DSC, and TNBS assay. The porous structure of collagen was significantly altered by cross-linking, resulting in the reduction of the pore size from ca. 140 to <1 microm depending on the concentration of nanoparticles. The collagenase biodegradation assay showed improved stability of cross-linked material. The cell viability assay, CellTiter96, indicates that the gold nanoparticles are not toxic at the concentrations used in gel synthesis. This new material has potential for the delivery of small molecule drugs as well as Au nanoparticles for photothermal therapies, imaging, and cell targeting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号