首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plasmid pMC44 is a recombinant plasmid that contains a 2-megadalton EcoRI fragment of Escherichia coli K-12 DNA joined to the cloning vehicle, pSC101. The polypeptides specified by plasmid pMC44 were identified and compared with those specified by pSC101 to determine those that are unique to pMC44. Three polypeptides specified by plasmid pMC44 were localized in the cell envelope fraction of minicells: a Sarkosyl-insoluble outer membrane polypeptide (designated M2), specified by the cloned 2-megadalton DNA fragment, and two Sarkosyl-soluble membrane polypeptides specified by the cloning plasmid pSC101. Bacteria containing plasmid pMC44 synthesized quantities of M2 approximately equal to the most abundant E. coli K-12 outer membrane protein. Evidence is presented that outer membrane polypeptide M2, specified by the recombinant plasmid pMC44, is the normal E. coli outer membrane protein designated protein a by Lugtenberg and 3b by Schnaitman.  相似文献   

2.
Protein II, a major outer cell envelope membrane protein, was found together with lipopolysaccharide to stoichiometrically inhibit conjugation in Escherichia coli K12.  相似文献   

3.
A specialized transducing phage lambda carrying the structural gene for the OmpF protein, an outer membrane matrix protein, was isolated. The phage carries the 20.5--21-min region of the Escherichia coli K-12 chromosome and carries asnS, ompF, and aspC genes.  相似文献   

4.
5.
6.
7.
8.
9.
Summary Protein I, one of the major outer membrane proteins ofE. coli, in a number of strains exists as two electrophoretically separable species Ia and Ib. Two phages, TuIa and TuIb, have been found which use, as receptors, proteins Ia and Ib, respectively. Selection for resistance to phage TuIb yielded mutants still possessing protein Ia and missing protein Ib (Ia+ Ib-). Selection in this background, for resistance to phage TuIa yielded one class of mutants missing both species of protein I and another synthesizing a new species of protein I, polypeptide Ic.Tryptic fingerprints of Ia and Ic are very similar and the sequence of 8 N-terminal amino acids is identical for Ia and Ic. Yet, Ic showed an entirely different pattern of cyanogen bromide fragments than that of protein Ia. With another example (cyanogen bromide fragments of protein II*, with and without performic acid oxidation) it is shown that protein modification can lead to gross changes of the electrophoretic mobility of cyanogen bromide fragments. It is not unlikely that all protein I species observed so far represent in vivo modifications of one and the same polypeptide chain.A genetic analysis together with data from other laboratories revealed that at least 4 widely separated chromosomal loci are involved in the expression of the protein I species known to date.  相似文献   

10.
The gene determining the structure of a major outer membrane protein of Escherichia coli, protein Ia, has been located between serC and pyrD, at the min 21 region of the linkage map. This is based on the isolation and characterization of E. coli-Salmonella typhimurium intergeneric hybrids as well as analyses of a mutation (ompF2) affecting the formation of protein Ia. When the serC region of the S. typhimurium chromosome was transduced by phage P1 into E. coli, two classes of transductants were obtained; one produced protein Ia like the parental strain of E. coli, whereas the other produced not protein Ia but a pair of outer membrane proteins structurally related to 35K protein, one of the major outer membrane proteins of S. typhimurium. Furthermore, a strain of S. typhimurium harboring an F' plasmid which carries the ompF region of the E. coli chromosome was found to produce a protein indistinguishable from protein Ia, beside the outer membrane proteins characteristic to the parental Salmonella strain. These results suggest that the structural genes for protein Ia (E. coli) and for 35K protein (S. typhimurium) are homologous to each other and are located at the ompF region of the respective chromosome. The bearing of these findings on the genetic control of protein Ia formation is discussed.  相似文献   

11.
The 325-residue OmpA protein is one of the major outer membrane proteins of Escherichia coli. It serves as the receptor for several T-even-like phages and is required for the action of certain colicins and for the stabilization of mating aggregates in conjugation. We have isolated two mutant alleles of the cloned ompA gene which produce a protein that no longer functions as a phage receptor. Bacteria possessing the mutant proteins were unable to bind the phages, either reversibly or irreversibly. However, both proteins still functioned in conjugation, and one of them conferred colicin L sensitivity. DNA sequence analysis showed that the phage-resistant, colicin-sensitive phenotype exhibited by one mutant was due to the amino acid substitution Gly leads to Arg at position 70. The second mutant, which contained a tandem duplication, encodes a larger product with 8 additional amino acid residues, 7 of which are a repeat of the sequence between residues 57 and 63. In contrast to the wild-type OmpA protein, this derivative was partially digested by pronase when intact cells were treated with the enzyme. The protease removed 64 NH2-terminal residues, thereby indicating that this part of the protein is exposed to the outside. It is argued that the phage receptor site is most likely situated around residues 60 to 70 of the OmpA protein and that the alterations characterized have directly affected this site.  相似文献   

12.
13.
A nucleotide sequence of 2271 basepairs has been determined from cloned E. coli DNA which contains ompA. Withing that sequence, starting at nucleotide 1037, an open translational reading frame encodes a protein of 367 amino acids which starting with amino acid 22 agrees with the primary structure of protein II. The preceeding 21 amino acids constitute a typical signal sequence. There is a non-translated region of 360 nucleotides in front of the translational start. The insertion point of an IS1 element 110 nucleotides upstream from the start codon and an amber codon at the position of amino acid residue 28 have been localized in the DNA from two ompA mutants.  相似文献   

14.
A number of T-even-like bacteriophages use the outer membrane protein OmpA of Escherichia coli as a receptor. We had previously analyzed a series of ompA mutants which are resistant to such phages and which still produce the OmpA protein (R. Morona, M. Klose, and U. Henning, J. Bacteriol. 159:570-578, 1984). Mutational alterations were found near or at residues 70, 110 and 154. Based on these and other results a model was proposed showing the amino-terminal half of the 325-residue protein crossing the outer membrane repeatedly and being cell surface exposed near residues 25, 70, 110, and 154. We characterized, by DNA sequence analysis, an additional 14 independently isolated phage-resistant ompA mutants which still synthesize the protein. Six of the mutants had alterations identical to the ones described before. The other eight mutants possessed seven new alterations: Ile-24----Asn, Gly-28----Val, deletion of Glu-68, Gly-70----Cys, Ser-108----Phe, Ser-108----Pro, and Gly-154----Asp (two isolates). Only the latter alteration resulted in a conjugation-deficient phenotype. The substitutions at Ile-24 and Gly-28 confirmed the expectation that this area of the protein also participates in its phage receptor region. It is unlikely that still other such sites of the protein are involved in the binding of phage, and it appears that the phage receptor area of the protein has now been characterized completely.  相似文献   

15.
M Riley  N Glansdorff 《Gene》1983,24(2-3):335-339
The argD gene of Escherichia coli was shown to be present in plasmids pLC2-28 and pLC3-11 of the collection of Clarke and Carbon [Cell 9 (1976) 91-99]. The gene was cloned into pBR322 as a 6.3-kb BamHI fragment. Enzyme determination showed that the cloned DNA contains the structural gene for acetylornithine delta-transaminase. The argD DNA was used as a probe in hybridization experiments which indicated that the argM gene resides in a duplicated portion of E. coli DNA that is highly similar to the argD region.  相似文献   

16.
17.
Summary The DNA of the promoter region of ompT, including the putative start for the pro-OmpT protein (proprotein a), has been sequenced. Previous studies showed that trypsin inhibitors prevent the processing of pro-OmpT to OmpT protein which led to the prediction that the processing site would be a lysine or an arginine. The deduced amino acid sequence contains a lysine at amino acid 12 and an arginine at amino acid 17 from the N terminus. Chou-Fassman analysis would predict processing at the lysine (but not the arginine) to remove a 1389 dalton peptide, consistent with the fact that the estimated molecular masses of pro-OmpT and OmpT are 42 kd and 40 kd respectively. In addition, the predicted mRNA of the promoter region can form a stable secondary structure (-17.1 kcal) that sequesters the Shine-Dalgarno (SD) sequence as well as the initiator AUG codon. There is evidence that the perA (tpo, envZ) gene product is required for synthesis of OmpT protein (as well as several outer membrane and periplasmic proteins). The perA gene product could be activating translation of OmpT protein by disrupting the mRNA secondary structure that sequesters the SD sequence. OmpT protein synthesis is reduced at temperatures below 32°C and this may also be related to the greater stability of the sequestered SD sequence of the mRNA at low temperature.  相似文献   

18.
19.
20.
The 325-residue OmpA protein is one of the major outer membrane proteins of Escherichia coli K-12. A model, in which this protein crosses the membrane eight times in an antiparallel beta-sheet conformation and in which regions around amino acids 25, 70, 110 and 154 are exposed at the cell surface, had been proposed. Linkers were inserted into the ompA gene with the result that OmpA proteins, carrying non-OmpA sequences between residues 153 and 154 or 160 and 162, were synthesized. Intact cells possessing these proteins were treated with proteases. Insertion of 15 residues between residues 153 and 154 made the protein sensitive to proteinase K and the sizes of the two cleavage products were those expected following proteolysis at the area of the insertion. Addition of at least 17 residues between residues 160 and 162 left the protein completely refractory to protease action. Thus, the former area is cell surface exposed while the latter area appears not to be. The insertions did not cause a decrease in the concentration of the hybrid proteins as compared to that of the OmpA protein, and in neither case was synthesis of the protein deleterious to cell growth. It is suggested that this method may serve to carry peptides of practical interest to the cell surface and that it can be used to probe surface-located regions of other membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号