首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Studies of intact smooth muscle have suggested that its anomalous aerobic lactate production may reflect an intracellular compartmentation of glycolytic enzyme cascades designed to support specific exergonic processes. In particular, we have postulated a membrane-associated glycolytic cascade that preferentially supports the ATP requirements of membrane functions. We tested this hypothesis by using a smooth muscle plasma membrane fraction (PMV) purified for calcium pump activity. We show that glycolytic enzymes are endogenous in PMV and can produce NADH, ATP, and lactate from fructose 1,6-diphosphate in the presence of glycolytic cofactors. This glycolytic cascade can fuel the calcium pump despite the presence of an ATP trap that eliminated calcium uptake fueled by exogenously added ATP. This plasma membrane glycolytic cascade is coupled to calcium pump function in a tissue with both oxidative and glycolytic metabolism. Thus coupling of metabolic cascades with the specific processes they subserve may be a more general feature of cellular organization than was previously thought.  相似文献   

3.
A smooth muscle plasma membrane vesicular fraction (PMV) purified for the (Ca2+/Mg2+)-ATPase has endogenous glycolytic enzyme activity. In the presence of glycolytic substrate (fructose 1,6-diphosphate) and cofactors, PMV produced ATP and lactate and supported calcium uptake. The endogenous glycolytic cascade supports calcium uptake independent of bath [ATP]. A 10-fold dilution of PMV, with the resultant 10-fold dilution of glycolytically produced bath [ATP] did not change glycolytically fueled calcium uptake (nanomoles per milligram protein). Furthermore, the calcium uptake fueled by the endogenous glycolytic cascade persisted in the presence of a hexokinase-based ATP trap which eliminated calcium uptake fueled by exogenously added ATP. Thus, it appears that the endogenous glycolytic cascade fuels calcium uptake in PMV via a membrane-associated pool of ATP and not via an exchange of ATP with the bulk solution. To determine whether ATP produced endogenously was utilized preferentially by the calcium pump, the ATP production rates of the endogenous creatine kinase and pyruvate kinase were matched to that of glycolysis and the calcium uptake fueled by the endogenous sources was compared with that fueled by exogenous ATP added at the same rate. The rate of calcium uptake fueled by endogenous sources of ATP was approximately twice that supported by exogenously added ATP, indicating that the calcium pump preferentially utilizes ATP produced by membrane-bound enzymes.  相似文献   

4.
Comparative studies of Ca2+-uptake by guinea pig spermatozoa were performed with fresh epididymal sperm and with cells preincubated in a chemically defined, Ca2+-free medium for capacitation. Calcium uptake was negligible in fresh spermatozoa, but increased dramatically after 20 min of incubation at 37 degrees C in the presence of pyruvate and lactate. Spermatozoa incubated in the absence of these substrates accumulated only 34% as much 45Ca2+ as was taken up by cells in complete medium. The monosaccharides glucose, fructose, and mannose and the nonmetabolizable sugars 2-deoxyglucose and sucrose inhibited the enhancement of Ca2+-permeability. In the presence of 6 mM sucrose 45Ca2+ uptake was not influenced by external sodium chloride concentration between 0 mM and 145 mM. The respiratory activity of the capacitated spermatozoa not only was higher than that of uncapacitated cells, but it was stimulated by Ca2+. No effect of Ca2+ on respiration of fresh spermatozoa was detected. An increase in calcium uptake was associated with increasing pH of the medium. It is possible that a regulatory mechanism through the calcium permeability of the plasma membrane of guinea pig spermatozoa exists and controls the development of physiological events related with the fertilization process. The sugar composition, the availability of the energy substrates lactate and pyruvate, and the pH of the reproductive tract fluids could play an important role in the accessibility of Ca2+ into the cells in vivo, as has been demonstrated in vitro. The enhancement of calcium permeability during the preincubation could be a useful indicator to verify if capacitation has occurred.  相似文献   

5.
Summary Microsomal fractions were isolated from gastric antrum and fundus smooth muscle of guinea pigs. Ca2+ uptake into and Ca2+ release from the membrane vesicles were studied by a rapid filtration method, and Ca2+ transport properties of the different regions of the stomach were compared. ATP-dependent Ca2+ uptake was similar in microsomes isolated from both regions. This uptake was increased by oxalate and was not affected by NaN3. Oxalate affected Ca2+ permeability of both antrum and fundus microsome vesicles similarly. Fundus microsome vesicles preincubated in 100mm NaCl and then diluted to 1/20 concentration with Na+-free medium had significantly higher ATP-independent Ca2+ uptake than vesicles preincubated in 100mm KCl and treated the same way. This was not true for antrum vesicles. Monensin abolished Na+-dependent Ca2+ uptake, and NaCl enhanced Ca2+ efflux from fundus microsome vesicles. The halflife values of Ca2+ loss from fundus vesicles in the presence of NaCl were significantly smaller than those in the presence of KCl. The release of Ca2+ from the vesicles within the first 3 min was accelerated by NaCl to three times that by KCl. However, NaCl had ro effect on Ca2+ release from antrum microsome vesicles.Results suggest two distinct mechanisms of stomach membrane Ca2+ transport: (1) ATP-dependent Ca2+ uptake and (2) Na+–Ca2+ exchange; the latter in the fundus only.  相似文献   

6.
Ca2+ transport was investigated in vesicles of sarcoplasmic reticulum subfractionated from bovine main pulmonary artery and porcine gastric antrum using digitonin binding and zonal density gradient centrifugation. Gradient fractions recovered at 15-33% sucrose were studied as the sarcoplasmic reticulum component using Fluo-3 fluorescence or 45Ca2+ Millipore filtration. Thapsigargin blocked active Ca2+ uptake and induced a slow Ca2+ release from actively loaded vesicles. Unidirectional 45Ca2+ efflux from passively loaded vesicles showed multicompartmental kinetics. The time course of an initial fast component could not be quantitatively measured with the sampling method. The slow release had a half-time of several minutes. Both components were inhibited by 20 microM ruthenium red and 10 mM Mg2+. Caffeine, inositol 1,4,5-trisphosphate, ATP, and diltiazem accelerated the slow component. A Ca2+ release component activated by ryanodine or cyclic adenosine diphosphate ribose was resolved with Fluo-3. Comparison of tissue responses showed that the fast Ca2+ release was significantly smaller and more sensitive to inhibition by Mg2+ and ruthenium red in arterial vesicles. They released more Ca2+ in response to inositol 1,4,5-trisphosphate and were more sensitive to activation by cyclic adenosine diphosphate ribose. Ryanodine and caffeine, in contrast, were more effective in gastric antrum. In each tissue, the fraction of the Ca2+ store released by sequential application of caffeine and inositol 1,4,5-trisphosphate depended on the order applied and was additive. The results indicate that sarcoplasmic reticulum purified from arterial and gastric smooth muscle represents vesicle subpopulations that retain functional Ca2+ channels that reflect tissue-specific pharmacological modulation. The relationship of these differences to physiological responses has not been determined.  相似文献   

7.
Impaired smooth muscle contractility is a hallmark of acute acalculous cholecystitis. Although free cytosolic Ca2+ ([Ca2+]i) is a critical step in smooth muscle contraction, possible alterations in Ca2+ homeostasis by cholecystitis have not been elucidated. Our aim was to elucidate changes in the Ca2+ signaling pathways induced by this gallbladder dysfunction. [Ca2+]i was determined by epifluorescence microscopy in fura 2-loaded isolated gallbladder smooth muscle cells, and isometric tension was recorded from gallbladder muscle strips. F-actin content was quantified by confocal microscopy. Ca2+ responses to the inositol trisphosphate (InsP3) mobilizing agonist CCK and to caffeine, an activator of the ryanodine receptors, were impaired in cholecystitic cells. This impairment was not the result of a decrease in the size of the releasable pool. Inflammation also inhibited Ca2+ influx through L-type Ca2+ channels and capacitative Ca2+ entry induced by depletion of intracellular Ca2+ pools. In addition, the pharmacological phenotype of these channels was altered in cholecystitic cells. Inflammation impaired contractility further than Ca2+ signal attenuation, which could be related to the decrease in F-actin that was detected in cholecystitic smooth muscle cells. These findings indicate that cholecystitis decreases both Ca2+ release and Ca2+ influx in gallbladder smooth muscle, but a loss in the sensitivity of the contractile machinery to Ca2+ may also be responsible for the impairment in gallbladder contractility.  相似文献   

8.
Cations stimulated aortic muscle membrane aggregation with increasing potency according to their effective charge, e.g., K+2+3+, and the stimulation is reciprocally related to the apparent affinity for these cations. Divalent metal ion-induced membrane aggregation showed a dependence on the ionic radius, being optimal for Cd2+. Polyvalent cation-induced membrane aggregation was reversibly suppressed by high ionic strength as well as by metal ion chelators, irreversibly inhibited by the cross-linking agent glutaraldehyde, and enhanced by increasing concentrations of ethanol and increased temperature of the medium. When the pH is lowered below 6.0, membrane aggregation progressively increased with a concomitant decrease in cation-induced aggregation. The patterns of aggregation of microsomal membranes and further purified plasma membranes were almost identical whereas the aggregation of the heterogeneous mitochondrial membrane-enriched fraction was distinctly different in the initial rate of aggregation, its pH dependence, and metal ion concentration dependence. Our results indicate that cation-induced membrane aggregation can also be used to isolate a plasma membrane-enriched fraction from vascular smooth muscle.  相似文献   

9.
10.
Summary Plasma membrane vesicles, which are mostly right side-out, were isolated from corn leaves by aqueous two-phase partitioning method. Characteristics of Ca2+ transport were investigated after preparing inside-out vesicles by Triton X-100 treatment.45Ca2+ transport was assayed by membrane filtration technique. Results showed that Ca2+ transport into the plasma membrane vesicles was Mg-ATP dependent. The active Ca2+ transport system had a high affinity for Ca2+(K m (Ca2+)=0.4 m) and ATP(K m (ATP)=3.9 m), and showed pH optimum at 7.5. ATP-dependent Ca2+ uptake in the plasma membrane vesicles was stimulated in the presence of Cl or NO 3 . Quenching of quinacrine fluorescence showed that these anions also induced H+ transport into the vesicles. The Ca2+ uptake stimulated by Cl was dependent on the activity of H+ transport into the vesicles. However, carbonylcyanidem-chlorophenylhydrazone (CCCP) and VO 4 3– which is known to inhibit the H+ pump associated with the plasma membrane, canceled almost all of the Cl-stimulated Ca2+ uptake. Furthermore, artificially imposed pH gradient (acid inside) caused Ca2+ uptake into the vesicles. These results suggest that the Cl-stimulated Ca2+ uptake is caused by the efflux of H+ from the vesicles by the operation of Ca2+/H+ antiport system in the plasma membrane. In Cl-free medium, H+ transport into the vesicles scarcely occurred and the addition of CCCP caused only a slight inhibition of the active Ca2+ uptake into the vesicles. These results suggest that two Ca2+ transport systems are operating in the plasma membrane from corn leaves, i.e., one is an ATP-dependent active Ca2+ transport system (Ca2+ pump) and the other is a Ca2+/H+ antiport system. Little difference in characteristics of Ca2+ transport was observed between the plasma membranes isolated from etiolated and green corn leaves.  相似文献   

11.
Ca2+ uptake and membrane potential in sarcoplasmic reticulum vesicles   总被引:2,自引:0,他引:2  
The rate of calcium uptake by sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle was stimulated by inside-negative membrane potential generated by K+ gradients in the presence of valinomycin. The increase in the calcium transport rate was accompanied by a proportional increase in the rate of calcium-dependent ATP hydrolysis, without significant change in the steady state level of the phosphorylated enzyme intermediate. Changes in the sarcoplasmic reticulum membrane potential during calcium transport were monitored with the optical probe, 3,3'-diethylthiadicarbocyanine. The decrease in the absorbance of 3,3'-diethylthiadicarbocyanine at 660 nm following generation of inside-negative membrane potential was reversed during ATP-induced calcium uptake. These observations support an electrogenic mechanism for the transport of calcium by the sarcoplasmic reticulum.  相似文献   

12.
C Y Kwan 《Enzyme》1982,28(4):317-327
Studies of ATP hydrolysis by various subcellular fractions isolated from rat mesenteric arteries and veins indicate that an apparent ATPase activity, which can be activated by Mg2+ or Ca2+, is primarily associated with the plasma membranes. Although both Mg2+-activated and Ca2+-activated ATPase activities under the optimal condition are substantially lower in venous than in arterial plasma membrane fraction, their dependence on the concentration of Mg2+ and Ca2+ are quite similar in arterial as well as venous plasma membrane fractions. No synergistic effect on ATP hydrolysis was observed in the presence of both Mg2+ and Ca2+. In addition, Mg2+-activated and Ca2+-activated ATPase activities show similar pH dependence, inhibition by deoxycholate, stability toward heat inactivation and substrate specificity. Furthermore, Mg2+-activated and Ca2+-activated ATPase activities were similarly reduced in vascular smooth muscles of spontaneously hypertensive rats. These results suggest that the activation of ATP hydrolysis by Mg2+ or Ca2+ may represent a single enzyme moiety in the plasma membrane of vascular smooth muscle. The possible involvement of such ATPase in the Ca2+ transport function of vascular smooth muscle is discussed.  相似文献   

13.
14.
Using m-calpain antibody, we have identified two major bands corresponding to the 80 kDa large and the 28 kDa small subunit of m-calpain in caveolae vesicles isolated from bovine pulmonary artery smooth muscle plasma membrane. In addition, 78, 35, and 18 kDa immunoreactive bands of m-calpain have also been detected. Casein zymogram studies also revealed the presence of m-calpain in the caveolae vesicles. We have also identified Na+/Ca2+ exchanger-1 (NCX1) in the caveolae vesicles. Purification and N-terminal sequence analyses of these two proteins confirmed their identities as m-calpain and NCX1, respectively. We further sought to determine the role of m-calpain on calcium-dependent proteolytic cleavage of NCX1 in the caveolae vesicles. Treatment of the caveolae vesicles with the calcium ionophore, A23187 (1 μM) in presence of CaCl2 (1 mM) appears to cleave NCX1 (120 kDa) to an 82 kDa fragment as revealed by immunoblot study using NCX1 monoclonal antibody; while pretreatment with the calpain inhibitors, calpeptin or MDL28170; or the Ca2+ chelator, BAPTA-AM did not cause a discernible change in the NCX protein profile. In vitro cleavage of the purified NCX1 by the purified m-calpain supports this finding. The cleavage of NCX1 by m-calpain in the caveolae vesicles may be interpreted as an important mechanism of Ca2+ overload, which could arise due to inhibition of Ca2+ efflux by the forward-mode NCX and that could lead to sustained Ca2+ overload in the smooth muscle leading to pulmonary hypertension.  相似文献   

15.
Ca2+ uptake by microsomes prepared from guinea-pig stomach required the presence of both ATP and Mg2+ and was unaffected by NaN3. ATP-dependent Ca2+ uptake increased with increasing free Ca2+ concentration from 0.1 to 5 microM, and further increase in Ca2+ concentration above 5 microM did not enhance the uptake further. Half-saturation occurred at approximately 0.55 microM. The t1/2 values of Ca2+ loss from these vesicles loaded in the presence of oxalate were significantly slower than those in the absence of oxalate. Enzyme activity suggested linkage between Ca2+ uptake and ATPase activity, and most of the azide-sensitive component of ATP hydrolysis was attributable to potent inhibition of ADPase activity.  相似文献   

16.
The plasma membrane ATP-dependent Ca2+ pump and the Na+/Ca2+ exchanger (NCX) are the major means of Ca2+ extrusion in smooth muscle. However, little is known regarding distribution and function of the NCX in guinea pig gastric smooth muscle. The expression pattern and distribution of NCX isoforms suggest a role as a regulator of Ca2+ transport in cells. Na+ pump inhibition and the consequent to removal of K+ caused gradual contraction in fundus. In contrast, the response was significantly less in antrum. Western blotting analysis revealed that NCX1 and NCX2 are the predominant NCX isoforms expressed in stomach, the former was expressed strongly in antrum, whereas the latter displayed greater expression in fundus. Isolated plasma membrane fractions derived from gastric fundus smooth muscle were also investigated to clarify the relationship between NCX protein expression and function. Na+-dependent Ca2+ uptake increased directly with Ca2+ concentration. Ca2+ uptake in Na+-loaded vesicles was markedly elevated in comparison with K+-loaded vesicles. Additionally, Ca2+ uptake by the Na+- or K+-loaded vesicles was substantially higher in the presence of A23187 than in its absence. The result can be explained based on the assumption that Na+ gradients facilitate downhill movement of Ca2+. Na+-dependent Ca2+ uptake was abolished by the monovalent cationic ionophore, monensin. NaCl enhanced Ca2+ efflux from vesicles, and this efflux was significantly inhibited by gramicidin. Results documented evidence that NCX2 isoform functionally contributes to Ca2+ extrusion and maintenance of contraction-relaxation cycle in gastric fundus smooth muscle.  相似文献   

17.
Three plasma membrane subfractions have been isolated and characterized from rat liver cells. The high affinity Ca2+-stimulated ATPase is highly enriched in the bile canalicular subfraction. Taking into account cross-contamination by the blood sinusoidal and lateral membranes it is suggested that the high-affinity Ca2+-ATPase is located exclusively in this fraction. The high-affinity Ca2+-ATPase is coupled to Ca2+ transport, is calmodulin-insensitive, sensitive to vanadate under appropriate experimental conditions and is strongly inhibited by La3+. In the presence of Ca2+ and ATP the ATPase forms a phosphorylated intermediate of molecular mass about 200 kDa.  相似文献   

18.
To further define the possible involvement of sarcoplasmic reticulum calcium accumulation and release in the skeletal muscle disorder malignant hyperthermia (MH), we have examined various properties of sarcoplasmic reticulum fractions isolated from normal and MH-susceptible pig muscle. A sarcoplasmic reticulum preparation enriched in vesicles derived from the terminal cisternae, was further fractionated on discontinuous sucrose density gradients (Meissner, G. (1984) J. Biol. Chem. 259, 2365-2374). The resultant MH-susceptible and normal sarcoplasmic reticulum fractions, designated F0-F4, did not differ in yield, cholesterol and phospholipid content, or nitrendipine binding capacity. Calcium accumulation (0.27 mumol Ca/mg per min at 22 degrees C), Ca2+-ATPase activity (0.98 mumol Pi/mg per min at 22 degrees C), and calsequestrin content were also similar for MH-susceptible and normal sarcoplasmic reticulum fraction F3. To examine sarcoplasmic reticulum calcium release, fraction F3 vesicles were passively loaded with 45Ca (approx. 40 nmol Ca/mg), and rapidly diluted into a medium of defined Ca2+ concentration. Upon dilution into 1 microM Ca2+, the extent of Ca2+-dependent calcium release measured after 5 s was significantly greater for MH-susceptible than for normal sarcoplasmic reticulum, 65.9 +/- 2.8% vs. 47.7 +/- 3.9% of the loaded calcium, respectively. The C1/2 for Ca2+ stimulation of this calcium release (5 s value) from MH-susceptible sarcoplasmic reticulum also appeared to be shifted towards a higher Ca2+-sensitivity when compared to normal sarcoplasmic reticulum. Dantrolene had no effect on calcium release from fraction F3, however, halothane (0.1-0.5 mM) increased the extent of calcium release (5 s) similarly in both MH-susceptible and normal sarcoplasmic reticulum. Furthermore, Mg2+ was less effective at inhibiting, while ATP and caffeine were more effective in stimulating, this Ca2+-dependent release of calcium from MH-susceptible, when compared to normal sarcoplasmic reticulum. Our results demonstrate that while sarcoplasmic reticulum calcium-accumulation appears unaffected in MH, aspect(s) of the sarcoplasmic reticulum Ca2+-induced calcium release mechanism are altered. Although the role of the Ca2+-induced calcium release mechanism of sarcoplasmic reticulum in situ is not yet clear, our results suggest that an abnormality in the regulation of sarcoplasmic reticulum calcium release may play an important role in the MH syndrome.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号