首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the fission yeast Schizosaccharomyces pombe, the centromeres of each chromosome are clustered together and attached to the nuclear envelope near the site of the spindle pole body during interphase. The mechanism and functional importance of this arrangement of chromosomes are poorly understood. In this paper, we identified a novel nuclear protein, Csi1, that localized to the site of centromere attachment and interacted with both the inner nuclear envelope SUN domain protein Sad1 and centromeres. Both Csi1 and Sad1 mutants exhibited centromere clustering defects in a high percentage of cells. Csi1 mutants also displayed a high rate of chromosome loss during mitosis, significant mitotic delays, and sensitivity to perturbations in microtubule–kinetochore interactions and chromosome numbers. These studies thus define a molecular link between the centromere and nuclear envelope that is responsible for centromere clustering.  相似文献   

2.
BACKGROUND: The pericentromeric heterochromatin is an important element for the regulation of gene silencing. Its spatial distribution during interphase appears to be cell-type specific. This study analyzes three-dimensional (3D) centromere distribution patterns during cellular differentiation along the neutrophil pathway. METHODS: Differentiation of the promyelocytic leukemia cell line NB4 was induced by retinoic acid. Centromeres in interphase nuclei were visualized by immunofluorescence staining of centromere-associated proteins with CREST serum. 3D images of nuclei were obtained by confocal microscopy. Automated methods for the segmentation of point-like objects in 3D images were implemented to detect the position of centromeres. Features of centromere localization patterns were determined by constructing the minimal spanning tree of the centromere distribution. RESULTS: In differentiated NB4 cells, the number of centromere conglomerates (chromocenters) was decreased and the distance between chromocenters was increased as compared with untreated controls. The nuclear volume did not differ between the two groups. CONCLUSIONS: The measured rearrangement of centromeres indicates a progressive clustering of heterochromatin and a global remodeling of interphase chromosome territories during differentiation of NB4 cells. The developed methods for the analysis of 3D centromere distribution patterns provide the opportunity for a fast and objective analysis of heterochromatin remodeling.  相似文献   

3.
During meiotic prophase, telomeres cluster, forming the bouquet chromosome arrangement, and facilitate homologous chromosome pairing. In fission yeast, bouquet formation requires switching of telomere and centromere positions. Centromeres are located at the spindle pole body (SPB) during mitotic interphase, and upon entering meiosis, telomeres cluster at the SPB, followed by centromere detachment from the SPB. Telomere clustering depends on the formation of the microtubule-organizing center at telomeres by the linker of nucleoskeleton and cytoskeleton complex (LINC), while centromere detachment depends on disassembly of kinetochores, which induces meiotic centromere formation. However, how the switching of telomere and centromere positions occurs during bouquet formation is not fully understood. Here, we show that, when impaired telomere interaction with the LINC or microtubule disruption inhibited telomere clustering, kinetochore disassembly-dependent centromere detachment and accompanying meiotic centromere formation were also inhibited. Efficient centromere detachment required telomere clustering-dependent SPB recruitment of a conserved telomere component, Taz1, and microtubules. Furthermore, when artificial SPB recruitment of Taz1 induced centromere detachment in telomere clustering-defective cells, spindle formation was impaired. Thus, detachment of centromeres from the SPB without telomere clustering causes spindle impairment. These findings establish novel regulatory mechanisms, which prevent concurrent detachment of telomeres and centromeres from the SPB during bouquet formation and secure proper meiotic divisions.  相似文献   

4.
Pairing of homologous chromosomes in meiosis is critical for their segregation to daughter cells. In most eukaryotes, clustering of telomeres precedes and facilitates chromosome pairing. In several species, centromeres also form pairwise associations, known as coupling, before the onset of pairing. We found that, in maize (Zea mays), centromere association begins at the leptotene stage and occurs earlier than the formation of the telomere bouquet. We established that centromere pairing requires centromere activity and the sole presence of centromeric repeats is not sufficient for pairing. In several species, homologs of the ZIP1 protein, which forms the central element of the synaptonemal complex in budding yeast (Saccharomyces cerevisiae), play essential roles in centromere coupling. However, we found that the maize ZIP1 homolog ZYP1 installs in the centromeric regions of chromosomes after centromeres form associations. Instead, we found that maize STRUCTURAL MAINTENANCE OF CHROMOSOMES6 homolog forms a central element of the synaptonemal complex, which is required for centromere associations. These data shed light on the poorly understood mechanism of centromere interactions and suggest that this mechanism may vary somewhat in different species.  相似文献   

5.
Interphase centromeres are crucial domains for the proper assembly of kinetochores at the onset of mitosis. However, it is not known whether the centromere structure is under tight control during interphase. This study uses the peculiar property of the infected cell protein 0 of herpes simplex virus type 1 to induce centromeric structural damage, revealing a novel cell response triggered by centromere destabilization. It involves centromeric accumulation of the Cajal body-associated coilin and fibrillarin as well as the survival motor neuron proteins. The response, which we have termed interphase centromere damage response (iCDR), was observed in all tested human and mouse cells, indicative of a conserved mechanism. Knockdown cells for several constitutive centromere proteins have shown that the loss of centromeric protein B provokes the centromeric accumulation of coilin. We propose that the iCDR is part of a novel safeguard mechanism that is dedicated to maintaining interphase centromeres compatible with the correct assembly of kinetochores, microtubule binding, and completion of mitosis.  相似文献   

6.
The organization and dynamics of the genome have been shown to influence gene expression in many organisms. Data from mammalian tissue culture cells have provided conflicting conclusions with regard to the extent to which chromatin organization is inherited from mother to daughter nuclei. To gain insight into chromatin organization and dynamics, we developed transgenic Arabidopsis lines in which centromeres were tagged with a green fluorescent protein fusion of the centromere-specific histone H3. Using four-dimensional (4-D) live cell imaging, we show that Arabidopsis centromeres are constrained at the nuclear periphery during interphase and that the organization of endoreduplicated sister centromeres is cell type dependent with predominant clustering in root epidermal cells and dispersion in leaf epidermal cells. 4-D tracking of the entire set of centromeres through mitosis, in growing root meristematic cells, demonstrated that global centromere position is not precisely transmitted from the mother cell to daughter cells. These results provide important insight into our understanding of chromatin organization among different cells of a living organism.  相似文献   

7.
In the fission yeast Schizosaccharomyces pombe, centromeres remain clustered at the spindle-pole body (SPB) during mitotic interphase. In contrast, during meiotic prophase centromeres dissociate from the SPB. Here we examined the behavior of centromere proteins in living meiotic cells of S. pombe. We show that the Nuf2-Ndc80 complex proteins (Nuf2, Ndc80, Spc24, and Spc25) disappear from the centromere in meiotic prophase when the centromeres are separated from the SPB. The centromere protein Mis12 also dissociates during meiotic prophase; however, Mis6 remains throughout meiosis. When cells are induced to meiosis by inactivation of Pat1 kinase (a key negative regulator of meiosis), centromeres remain associated with the SPB during meiotic prophase. However, inactivation of Nuf2 by a mutation causes the release of centromeres from the SPB in pat1 mutant cells, suggesting that the Nuf2-Ndc80 complex connects centromeres to the SPB. We further found that removal of the Nuf2-Ndc80 complex from the centromere and centromere-SPB dissociation are caused by mating pheromone signaling. Because pat1 mutant cells also show aberrant chromosome segregation in the first meiotic division and this aberration is compensated by mating pheromone signaling, dissociation of the Nuf2-Ndc80 complex may be associated with remodeling of the kinetochore for meiotic chromosome segregation.  相似文献   

8.
During meiosis, centromeres in some species undergo a series of associations, but the processes and progression to homologous pairing is still a matter of debate. Here, we aimed to correlate meiotic centromere dynamics and early telomere behaviour to the progression of synaptonemal complex (SC) construction in hexaploid wheat (2n = 42) by triple immunolabelling of CENH3 protein marking functional centromeres, and SC proteins ASY1 (unpaired lateral elements) and ZYP1 (central elements in synapsed chromosomes). We show that single or multiple centromere associations formed in meiotic interphase undergo a progressive polarization (clustering) at the nuclear periphery in early leptotene, leading to formation of the telomere bouquet. Critically, immunolabelling shows the dynamics of these presynaptic centromere associations and a structural reorganization of the centromeric chromatin coinciding with key events of synapsis initiation from the subtelomeric regions. As short stretches of subtelomeric synapsis emerged at early zygotene, centromere clusters lost their strong polarization, gradually resolving as individual centromeres indicated by more than 21 CENH3 foci associated with unpaired lateral elements. Only following this centromere depolarization were homologous chromosome arms connected, as observed by the alignment and fusion of interstitial ZYP1 loci elongating at zygotene so synapsis at centromeres is a continuation of the interstitial synapsis. Our results thus reveal that centromere associations are a component of the timing and progression of chromosome synapsis, and the gradual release of the individual centromeres from the clusters correlates with the elongation of interstitial synapsis between the corresponding homologues.  相似文献   

9.
Centromeres at premeiotic interphase are clustered and situated in a small area of the nucleus opposite to the nuclear envelope associated heterochromatic masses. The centromeres may occur singly or they may associate to form a structure composed of 2 or more centromeres. Many centromere associations are nonhomologous. Interphase centromeres are not attached to the nuclear envelope. — At zygotene and pachytene centromeres are no longer clustered at one pole of the nucleus but rather are distributed throughout the nucleus. Premeiotic associations appear to be resolved prior to meiotic pairing. Only homologous centromere associations occur during zygotene and pachytene. There is no indication that premeiotic centromere associations are involved in prezygotene alignment of homologous chromosomes.  相似文献   

10.
11.
The viral E3 ubiquitin ligase ICP0 protein has the unique property to temporarily localize at interphase and mitotic centromeres early after infection of cells by the herpes simplex virus type 1 (HSV-1). As a consequence ICP0 induces the proteasomal degradation of several centromeric proteins (CENPs), namely CENP-A, the centromeric histone H3 variant, CENP-B and CENP-C. Following ICP0-induced centromere modification cells trigger a specific response to centromeres called interphase Centromere Damage Response (iCDR). The biological significance of the iCDR is unknown; so is the degree of centromere structural damage induced by ICP0. Interphase centromeres are complex structures made of proximal and distal protein layers closely associated to CENP-A-containing centromeric chromatin. Using several cell lines constitutively expressing GFP-tagged CENPs, we investigated the extent of the centromere destabilization induced by ICP0. We show that ICP0 provokes the disappearance from centromeres, and the proteasomal degradation of several CENPs from the NAC (CENP-A nucleosome associated) and CAD (CENP-A Distal) complexes. We then investigated the nucleosomal occupancy of the centromeric chromatin in ICP0-expressing cells by micrococcal nuclease (MNase) digestion analysis. ICP0 expression either following infection or in cell lines constitutively expressing ICP0 provokes significant modifications of the centromeric chromatin structure resulting in higher MNase accessibility. Finally, using human artificial chromosomes (HACs), we established that ICP0-induced iCDR could also target exogenous centromeres. These results demonstrate that, in addition to the protein complexes, ICP0 also destabilizes the centromeric chromatin resulting in the complete breakdown of the centromere architecture, which consequently induces iCDR.  相似文献   

12.
The centromere plays a critical role in the segregation of chromosomes during mitosis. In mammals, sister centromeres are resolved from one another in the G2 phase of the cell cycle. During prophase, chromosomes condense with sister centromeres oriented in a back to back configuration enabling only one chromatid to be captured by each half spindle. To study this process, we identified a centromere protein (CENP)-C-like protein, holocentric protein (HCP)-4, in Caenorhabditis elegans based on sequence identity, loss of function phenotype, and centromeric localization. HCP-4 is found in the cytoplasm during interphase, but is nuclear localized in mitosis, where it localizes specifically to the centromere. The localization of HCP-4 to the centromere is dependent on the centromeric histone HCP-3; in addition, HCP-3 and HCP-4 are both required for localization of a CENP-F-like protein, HCP-1, indicating an ordered assembly pathway. Loss of HCP-4 expression by RNA-mediated interference resulted in a failure to generate resolution of sister centromeres on chromosomes, suggesting that HCP-4 is required for sister centromere resolution. These chromosomes also failed to form a functional kinetochore. Thus, the CENP-C-like protein HCP-4 is essential for both resolution sister centromeres and attachment to the mitotic spindle.  相似文献   

13.
Each microspore of the onion Allium fistulosum (n=8) has 8 chromosomes. It is shown that in the microspore the 8 centromeres aggregate to form 2 or 3 centromeric structures. Subsequently, at early mitotic prophase, these aggregates are resolved into 8 separate centromeres and each becomes structurally double. After mitosis the pollen grain contains 2 nuclei, each with 8 separate and distinct centromeres, clustered at the nuclear envelope. As interphase progresses the centromeres of the vegetative nucleus are no longer at the nuclear envelope and they aggregate into 3 or 4 centromeric masses. In the generative nucleus there is less movement. The interphase centromere movements occur in the absence of microtubules. The centromeres range in size from about 0.10 to 0.17 m3 with an average of 0.14 m3 per centromere.  相似文献   

14.
We have constructed a fluorescent alpha-satellite DNA-binding protein to explore the motile and mechanical properties of human centromeres. A fusion protein consisting of human CENP-B coupled to the green fluorescent protein (GFP) of A. victoria specifically targets to centromeres when expressed in human cells. Morphometric analysis revealed that the alpha-satellite DNA domain bound by CENPB-GFP becomes elongated in mitosis in a microtubule-dependent fashion. Time lapse confocal microscopy in live mitotic cells revealed apparent elastic deformations of the central domain of the centromere that occurred during metaphase chromosome oscillations. These observations demonstrate that the interior region of the centromere behaves as an elastic element that could play a role in the mechanoregulatory mechanisms recently identified at centromeres. Fluorescent labeling of centromeres revealed that they disperse throughout the nucleus in a nearly isometric expansion during chromosome decondensation in telophase and early G1. During interphase, centromeres were primarily stationary, although motility of individual or small groups of centromeres was occasionally observed at very slow rates of 7-10 microns/h.  相似文献   

15.
16.
Because of their importance as target antigens in scleroderma and since all other major autoantigens in scleroderma can be localized to the interphase nucleolus, we were interested in a further investigation of the potential relationship between interphase centromeres and the nucleolus. Using human anticentromere autoantibodies (ACA) from patients with the CREST form of scleroderma as probes in indirect immunofluorescence microscopy, we observed nonrandom interphase "clumping" of centromeres in a distribution suggestive of nucleoli. By double-label immunofluorescence comparing the localization of centromeres to nucleolar proteins Ki-67, fibrillarin, or protein B23 (nucleophosmin), interphase centromeres appeared to be localized around and within nucleoli. A number of different ACA sera were tested on HEp-2, HeLa, PtK2, Indian muntjac, 3T3, and NRK cells, all with identical results indicating colocalization between centromeres and nucleoli. Immunoelectron microscopy revealed that interphase centromeres were distributed free in the nucleoplasm, in contact with the nuclear envelope, in contact with and on the periphery of nucleoli, and totally embedded within the confines of the nucleolus itself. Interestingly, actinomycin D treatment dissociated centromeres from localization within the segregated nucleolus. To determine if interphase centromeres were integral components of nucleoli, nucleoli were isolated according to classical methods. By double-label immunofluorescence, immunoelectron microscopy, and Western blotting, it was demonstrated that centromere autoantigens copurified with isolated nucleoli. These studies offer proof that some interphase centromeres can be associated with, and may even be considered part of, the interphase nucleolus. Furthermore, all of the major autoantigens in scleroderma can now be localized to the nucleolus.  相似文献   

17.
Despite its ubiquity in interphase eukaryotic nuclei, the functional significance of the RabI configuration, in which interphase centromeres are clustered at the nuclear envelope (NE) near the centrosome and telomeres localize at the opposite end of the nucleus, has remained mysterious. In a broad variety of organisms, including Schizosaccharomyces pombe, the RabI configuration is maintained throughout mitotic interphase. The fission yeast linker of nucleoskeleton and cytoskeleton (LINC) complex mediates this centromere association. The functional significance of centromere positioning during interphase has been recently revealed using a conditionally inactivated LINC allele that maintains LINC stability but releases interphase centromere-LINC contacts. Remarkably, this interphase release abolishes mitotic spindle formation. Here, we confirm these observations using an alternative strategy to explore the role of centromere-NE association without modifying the LINC complex. We analyze spindle dynamics in cells lacking Csi1, a stabilizer of centromere-LINC associations, and Lem2, a NE protein harboring lamin interacting domains. We recapitulate these observations and their implications for the functional significance of centromere positioning for cell cycle progression in fission yeast and most likely, a wide range of eukaryotes.  相似文献   

18.
Eukaryotic centromeres are maintained at specific chromosomal sites over many generations. In the budding yeast Saccharomyces cerevisiae, centromeres are genetic elements defined by a DNA sequence that is both necessary and sufficient for function; whereas, in most other eukaryotes, centromeres are maintained by poorly characterized epigenetic mechanisms in which DNA has a less definitive role. Here we use the pathogenic yeast Candida albicans as a model organism to study the DNA replication properties of centromeric DNA. By determining the genome-wide replication timing program of the C. albicans genome, we discovered that each centromere is associated with a replication origin that is the first to fire on its respective chromosome. Importantly, epigenetic formation of new ectopic centromeres (neocentromeres) was accompanied by shifts in replication timing, such that a neocentromere became the first to replicate and became associated with origin recognition complex (ORC) components. Furthermore, changing the level of the centromere-specific histone H3 isoform led to a concomitant change in levels of ORC association with centromere regions, further supporting the idea that centromere proteins determine origin activity. Finally, analysis of centromere-associated DNA revealed a replication-dependent sequence pattern characteristic of constitutively active replication origins. This strand-biased pattern is conserved, together with centromere position, among related strains and species, in a manner independent of primary DNA sequence. Thus, inheritance of centromere position is correlated with a constitutively active origin of replication that fires at a distinct early time. We suggest a model in which the distinct timing of DNA replication serves as an epigenetic mechanism for the inheritance of centromere position.  相似文献   

19.
Centromere protein CENP-A is a histone H3-like protein associated specifically with the centromere and represents one of the human autoantigens identified by sera taken from patients with the CREST variant of progressive systemic sclerosis. Injection of whole human autoimmune serum to the centromere into interphase cells disrupts some mitotic events. It has been assumed that this effect is due to CENP-E and CENP-C autoantigens, because of the effects of injecting monospecific sera to those proteins into culture cells. Here we have used an antibody raised against an N-terminal peptide of the human autoantigen CENP-A to determine its function in mitosis and during cell cycle progression. Affinity-purified anti-CENP-A antibodies injected into the nucleus during the early replication stages of the cell cycle caused cells to arrest in interphase before mitosis. These cells showed highly condensed small nuclei, a granular cytoplasm and loss of their division capability. On the other hand, microinjection of nocodazole-blocked HeLa cells in mitosis resulted in the typical punctate staining pattern of CENP-A for centromeres during different stages of mitosis and apparently normal cell division. This was corroborated by time-lapse imaging microscopy analysis of mid-interphase-injected cells, revealing that they undergo mitosis and divide properly. However, a significant delay throughout the progression of mitotic stages was observed. These results suggest that CENP-A is involved predominantly in an essential interphase event at the centromere before mitosis. This may include chromatin assembly at the kinetochore coordinate with late replication of satellite DNA to form an active centromere. Received: 3 August 1998 / Accepted: 18 September 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号