首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When MEL cells are reexposed to DMSO after an interruption in inducer treatment, they can initiate commitment to differentiation without the lag period observed after the primary exposure to inducer. This property is known as memory. Here we have employed metabolic inhibitors to analyze the basis of the memory response. Treatment of cells with cycloheximide or cordycepin during the inducer withdrawal period causes memory erasure. Cells must recapitulate an entire lag period upon reexposure to DMSO. The memory response is maintained, however, if cells are treated with metabolic inhibitors in the presence of DMSO. Our results suggest that the capacity of MEL cells for memory requires the synthesis of cell components which are normally stable in the absence of DMSO. Experiments involving reciprocal shifts between two different inhibitors have been performed. Evidence is presented that the process leading to the initiation of commitment is composed of at least three components acting in sequence.  相似文献   

2.
When mouse erythroleukemia (MEL) cells were incubated in the presence of chloramphenicol (a specific inhibitor for mitochondrial protein synthesis) during the early stage of in vitro erythroid differentiation, the number of induced erythroid cells was greatly reduced. By use of cell fusion between two genetically marked MEL cells, this finding was further investigated. We found that the drug, along with other agents which inhibit mitochondrial protein synthesis, blocked the induction and turnover of the DMSO-inducible intracellular-erythroid-inducing activity (differentiation-inducing factor II) in a manner similar to that of cycloheximide, an inhibitor for nuclear protein synthesis. The inhibitory effect was confirmed by directly assaying differentiation-inducing factor II in the cell extracts. These results strongly suggest that mitochondrial protein synthesis is closely associated with in vitro erythroid differentiation of MEL cells.  相似文献   

3.
4.
The level of cytoplasmic calcium ions appears to be important in the control of murine erythroleukemia (MEL) cell differentiation. Our interest in this study focuses on the relationship between the regulation of calcium concentration and differentiation. We used the fluorescent membrane probe DiOC6 to examine the relationship between MEL cell mitochondria and changes in cytoplasmic calcium levels occurring at the initiation of commitment. Fluorescence microscopy reveals the selective association of DiOC6 with MEL cell mitochondria, where an enhanced fluorescence is observed. Treatment of cells with dimethylsulfoxide (DMSO) or other inducers causes a decrease in mitochondria-associated fluorescence levels that occurs with the initiation of commitment. A decrease in DiOC6 fluorescence is caused by agents that reduce mitochondrial membrane potential, but is only slightly affected by agents that alter plasma membrane potential. Amiloride and EGTA, agents that prevent commitment and inhibit calcium uptake, also prevent the decrease in DiOC6 uptake caused by DMSO. The effect of DMSO on MEL cell mitochondria is mimicked by FCCP, a proton ionophore that dissipates mitochondrial membrane potential. FCCP also caused MEL cell mitochondria to release calcium into the cytoplasm. When MEL cells are treated with DMSO plus FCCP, commitment is initiated without the lag period observed when cells are treated with DMSO alone. These results are consistent with the hypothesis that mitochondrial transmembrane potential is important in the regulation of cytoplasmic calcium levels at the time of commitment of MEL cells to terminal differentiation.  相似文献   

5.
We show here that murine erythroleukemia (MEL) cells, following induction with hexamethylene bisacetamide, accumulate high mobility group (HMG)1 protein onto the external surface of the cell in a membrane-associated form detectable by immunostaining with a specific anti-HMG1 protein antibody. This association is maximal at a time corresponding to cell commitment. At longer times, immunostainable cells are progressively reduced and become almost completely undetectable along with the appearance of hemoglobin molecules. Binding to MEL cells does not affect the native molecular structure of HMG1 protein. The type of functional correlation between HMG1 protein and MEL cell differentiation is suggested by the observation that if an anti-HMG1 protein antibody is added at the same time of the inducer almost complete inhibition of cell differentiation is observed, whereas if the antibody is added within the time period in which cells undergo through irreversible commitment, inhibition progressively disappears. A correlation between MEL cell commitment and the biological effect of HMG1 protein can thus be consistently suggested.  相似文献   

6.
We have assessed the relationship between DNA synthesis and the differentiation of MEL cells induced by DMSO. Under conditions where the rate of incorporation of 3H-deoxyadenosine into DNA was inhibited by 99%, the rate at which MEL cells become committed to terminal erythroid differentiation was identical to that of a culture treated with inducer alone. We conclude that commitment of MEL cells does not require concomitant DNA synthesis.  相似文献   

7.
Kodama Y  Inouye I  Fujishima M 《Protist》2011,162(2):288-303
Treatment of symbiotic alga-bearing Paramecium bursaria cells with a protein synthesis inhibitor, cycloheximide, induces synchronous swelling of all perialgal vacuoles at about 24h after treatment under a constant light condition. Subsequently, the vacuoles detach from the host cell cortex. The algae in the vacuoles are digested by the host's lysosomal fusion to the vacuoles. To elucidate the timing of algal degeneration, P. bursaria cells were treated with cycloheximide under a constant light condition. Then the cells were observed using transmission electron microscopy. Results show that algal chloroplasts and nuclei degenerated within 9h after treatment, but before the synchronous swelling of the perialgal vacuole and appearance of acid phosphatase activity in the perialgal vacuole by lysosomal fusion. Treatment with cycloheximide under a constant dark condition and treatment with chloramphenicol under a constant light condition induced neither synchronous swelling of the vacuoles nor digestion of the algae inside the vacuoles. These results demonstrate that algal proteins synthesized during photosynthesis are necessary to maintain chloroplastic and nuclear structures, and that inhibition of protein synthesis induces rapid lysis of these organelles, after which synchronous swelling of the perialgal vacuole and fusion occur with the host lysosomes.  相似文献   

8.
Post-Transcriptional Control of Interferon Synthesis   总被引:23,自引:3,他引:20       下载免费PDF全文
Low to moderate doses of cycloheximide had a stimulatory effect on interferon production in rabbit kidney cell cultures treated with double-stranded polyinosinate-polycytidylate (poly I:poly C). A very marked stimulation occurred in the presence of a dose of cycloheximide inhibiting amino acid incorporation into total cellular protein by about 75%. Higher doses of cycloheximide caused a shift in interferon release towards later intervals and a gradual decrease in the overall degree of stimulation. An even greater increase in the amount of interferon produced was observed if cells were treated with cycloheximide for only 3 to 4 hr immediately after their exposure to poly I:poly C. Under the latter conditions, a rapid burst of interferon production occurred after the reversal of cycloheximide action. Treatment with a high dose of actinomycin D before the reversal of cycloheximide action caused a further increase and a marked prolongation of interferon production. It is postulated that inhibitors of protein synthesis suppress the accumulation of a cellular regulatory protein (repressor) which interacts with the interferon messenger ribonucleic acid mRNA and thereby prevents its translation. Therefore, active interferon mRNA can apparently accumulate in rabbit kidney cells which, after exposure to poly I:poly C, are kept in the presence of an inhibitor of protein synthesis. Some of this accumulated interferon mRNA can be translated during a partial block of cellular protein synthesis, but its most efficient translation occurs after the reversal of the action of the protein synthesis inhibitor.  相似文献   

9.
The effect of imidazole on DMSO-induced murine erythroleukemia (MEL) cell differentiation has been examined. While imidazole does inhibit heme, globin mRNA, and hemoglobin accumulation in DMSO-induced MEL cells, it does not affect the commitment of MEL cells to the specific limitation of proliferative capacity associated with the in vitro differentiation program. Furthermore, imidazole treatment does not affect DMSO-induced changes in cell volume, in the relative proportion of nuclear protein IP25, and in the specific activity of the enzyme cytidine deaminase. A clonal analysis in the presence of imidazole indicated that the drug prevents heme accumulation even in MEL cells already committed to terminal differentiation. These observations suggest that imidazole effectively dissociates two aspects of the erythroid differentiation program of MEL cells: globin gene expression and commitment to loss of proliferative capacity.  相似文献   

10.
11.
Synchronization of MEL cell commitment with cordycepin.   总被引:4,自引:0,他引:4  
R Levenson  J Kernen  D Housman 《Cell》1979,18(4):1073-1078
The response of differentiating MEL cells to the nucleotide analogue cordycepin reveals a previously unrecognized aspect of the molecular events which cause commitment of these cells to terminal erythroid differentiation. Cordycepin rapidly inhibits commitment of DMSO-treated MEL cells in a dose range which does not cause cytotoxicity. Reversal of cordycepin treatment in the presence of inducer leads to a rapid and synchronous commitment of a significant proportion of cells in the culture. These results suggest that MEL cells can be blocked just prior to the point of commitment by cordycepin treatment.  相似文献   

12.
Activin A, a protein homologous to transforming growth factor beta, was shown to induce hemoglobin synthesis in murine erythroleukemia (MEL) cells and was also termed erythroid differentiation factor (EDF) (Eto, Y., Tsuji, T., Takezawa, M., Takano, S., Yokogawa, Y., and Shibai, H. (1987) Biochem. Biophys. Res. Commun. 142, 1095-1103). We found that activin A/EDF also induced thromboxane (TX) A2 synthetic activity in these cells. Synthesis of TXA2 from arachidonic acid is catalyzed by cyclooxygenase and TX synthase. Activin A/EDF induced the latter TX synthase activity, whereas the cyclooxygenase activity was constitutively expressed. The induction of this enzyme activity was inhibited by cycloheximide, suggesting that activin A/EDF induced de novo protein synthesis of TX synthase. Furthermore, we studied the relationship between the induction of TXA2 synthetic activity and erythroid differentiation in MEL cells, since the former is not an erythroid phenotype. We found 1) that the two responses to activin A/EDF were distinctly affected by the initial cell density; 2) that the dose-response curves for activin A/EDF were similar (ED50 = approximately 100 pM), whereas the time course of induction of TXA2 synthetic activity was much faster; and 3) that other erythroid differentiation inducers of MEL cells, namely dimethyl sulfoxide and hexamethylene bisacetamide, had little or no effect on TXA2 synthesis. These results indicate that activin A/EDF induces TXA2 synthetic activity independently of erythroid differentiation.  相似文献   

13.
14.
15.
The effects of the tetra benzamidine serine-proteinase inhibitor 1,3-di-(p-amidinophenoxy) -2,2- bis- (p-amidinophenoxymethyl)propane (TAPP-H) and related compounds, including halo-derivatives, were determined on the erythroid differentiation of murine erythroleukemic cells induced by trypsin and kallikrein. These aromatic poly-amidines and their halo derivatives were found to be strong inhibitors of both trypsin and kallikrein mediated induction of commitment of MEL cells to erythroid differentiation, hemoglobin synthesis and accumulation, globin mRNA production. No inhibitory effects were detected by treating proteinase-induced MEL cells with benzamidine. Only slight inhibitory activity was found after treatment of trypsin-induced MEL cells with other antiproteinase compounds widely used in the control of proteinase-dependent functions, including leupeptin, antipain and Bowman-Birk proteinase inhibitor. MEL cells induced to erythroid differentiation by proteinases could be proposed as an experimental system to test the biological activity of proteinase inhibitors.  相似文献   

16.
The cell cycle kinetics of NHIK 3025 cells, synchronized by mitotic selection, was studied in the presence of cycloheximide at concentrations (0.125-1.25 μM) which inhibited protein synthesis partially and slowed down the rate of cell cycle traverse. The median cell cycle duration was equal to the protein doubling time in both the control cells and in the cycloheximide-treated cultures at all drug concentrations. This conclusion was valid whether protein synthesis was continuously depressed by cycloheximide throughout the entire cell cycle, or temporarily inhibited during shorter periods at various stages of the cell cycle. These results may indicate that cell division does not take place before the cell has reached a critical size, or has completed a protein accumulation-dependent sequence of events. When present throughout the cell cycle, cycloheximide increased the median G1 duration proportionally to the total cell cycle prolongation. However, the entry of cells into S, once initiated, proceeded at an almost unaffected rate even at cycloheximide concentrations which reduced the rate of protein synthesis 50%. The onset of DNA synthesis seemed to take place in the cycloheximide-treated cells at a time when the protein content was lower than in the control cells. This might suggest that DNA synthesis in NHIK 3025 cells is not initiated at a critical cell mass.  相似文献   

17.
A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis.  相似文献   

18.
Cultured mouse erythroleukemia (MEL) cells can be induced to erythroid differentiation by a variety of chemical agents. This differentiation process is marked by the onset of globin mRNA and hemoglobin synthesis. In rabbit reticulocytes, globin synthesis is regulated by a hemin-controlled translational inhibitor (HCI) which acts via phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2). From both uninduced and induced MEL cells, hemin-controlled eIF-2 alpha kinases have been partially purified. They resemble HCI with respect to their chromatographic behaviour and their sensitivity towards physiological concentrations of hemin (5-10 microM). Further purification on phosphocellulose, however, reveals that the eIF-2 alpha kinase from uninduced MEL cells is chromatographically distinct from HCI, whilst the eIF-2 alpha kinase activity from induced MEL cells represents a mixture of the former and the HCI-type eIF-2 alpha kinase. The latter inhibits protein synthesis in a fractionated system from rabbit reticulocytes which is free of, but sensitive to, HCI, whereas the eIF-2 alpha kinase from uninduced MEL cells does not show any inhibitory activity. This observation is supported by the finding that induced MEL cells respond in vivo to iron depletion with a shut-off of protein synthesis (as do rabbit reticulocytes), whilst uninduced MEL cells do not.  相似文献   

19.
Inhibition of protein synthesis stabilizes histone mRNA.   总被引:36,自引:19,他引:17       下载免费PDF全文
  相似文献   

20.
We previously found that murine leukemia cells of T cell, B cell, and erythroid ontogeny express a cell membrane antigen that cross-reacts with an idiotype of an anti-retroviral antibody. In the present study, the expression of this antigen (termed AVID, for anti-viral idiotype) by murine erythroleukemia (MEL) cells was examined during chemically induced differentiation. AVID expression by MEL cells was found to be lost when they were treated with either dimethyl sulfoxide or hexamethylene bisacetamide, two chemicals that induce MEL cells to terminally differentiate. The kinetics of disappearance of AVID during inducer treatment reflected the kinetics with which the inducers caused MEL cell commitment to terminal differentiation. Loss of AVID expression by inducer-treated cells was inhibited by dexamethasone, which inhibits commitment and MEL cell differentiation. The subset of inducer-treated cells that expressed the least amount of AVID contained the greatest number of cells committed to differentiate. These results indicate that AVID identifies a novel differentiation antigen of MEL cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号