首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The torsion model with which we proposed to interpret the specific properties of the photoisomerization reaction of rhodopsin has been developed to apply to isorhodopsin I, isorhodopsin II and some intermediates. Based on this model, optical absorption wavelengths and oscillator strengths, as well as rotational strengths of visual pigments, analogues and intermediates at low temperatures are analyzed by varying twisted conformations of the chromophores. As a result, it was found that most of the optical data could be very well accounted for quantitatively by the torsion model. The twisting characters in the chromophore of rhodopsin are very similar to those of isorhodopsin. The obtained conformations of the chromophores are very similar in rhodopsin and its analogues, and in isorhodopsin and its analogues. Those of the chromophores of bathorhodopsin, lumirhodopsin and metarhodopsin I are similar to one another except that the conjugated chain of metarhodopsin I bends considerably when compared with the other intermediates.  相似文献   

2.
K Marr  K S Peters 《Biochemistry》1991,30(5):1254-1258
The enthalpy and volume changes for the conversion of rhodopsin and isorhodopsin to lumirhodopsin have been investigated by time-resolved photoacoustic calorimetry. The conversion of rhodopsin to lumirhodopsin is endothermic by 3.9 +/- 5.9 kcal/mol and is accompanied by an increase in volume of 29.1 +/- 0.8 mL/mol. The lumirhodopsins produced from rhodopsin and isorhodopsin are energetically equivalent.  相似文献   

3.
4.
The torsion model with which we proposed to interpret the specific properties of the photoisomerization reaction of rhodopsin has been developed to apply to isorhodopsin I, isorhodopsin II and some intermediates. Based on this model, optical absorption wavelengths and oscillator strengths, as well as rotational strengths of visual pigments, analogues and intermediates at low temperatures are analyzed by varying twisted conformations of the chromophores. As a result, it was found that most of the optical data could be very well accounted for quantitatively by the torsion model. The twisting characters in the chromophore of rhodopsin are very similar to those of isorhodopsin. The obtained conformations of the chromophores are very similar in rhodopsin and its analogues, and in isorhodopsin and its analogues. Those of the chromophores of bathorhodopsin, lumirhodopsin and metarhodopsin I are similar to one another except that the conjugated chain of metarhodopsin I bends considerably when compared with the other intermediates.A part of this work was performed while one of the authors (T.K.) was a Visiting Investigator of Japan Society for the Promotion of Science at Kyoto University from April, 1977 to March, 1978  相似文献   

5.
Using frog rod outer segments, we measured changes of the absorption spectrum during the conversion of rhodopsin to a photosteady-state mixture composed of rhodopsin, isorhodopsin and bathorhodopsin by irradiation with blue light (440 nm) at ? 190°C and during the reversion of bathorhodopsin to a mixture of rhodopsin and isorhodopsin by irradiation with red light (718 nm) at ? 190°C. The reaction kinetics was expressed by one exponential in the former case and by two exponentials in the latter. These results suggest that rhodopsin is composed of a single molecular species, while bathorhodopsin is composed of two kinds of molecular species designated as batho1-rhodopsin and batho2-rhodopsin. On warming the two forms of bathorhodopsin, each bathorhodopsin converted to its own lumirhodopsin, metarhodopsin I and finally a free all-trans-retinal plus opsin. The absorption spectra of the two forms of bathorhodopsin, lumirhodopsin and metarhodopsin I were measured at ? 190°C. We infer that a rhodopsin molecule in the excited state relaxes to either batho1-rhodopsin or batho2-rhodopsin, and then converts to its own intermediates through one of the two parallel pathways.  相似文献   

6.
Evidence is presented that lumirhodopsin (containing all-trans retinal) is not directly photoconverted to bathorhodopsin (all-trans) at 77 degrees K as previously suggested (Yoshizawa and Wald. 1963. Nature (Lond.) 197:1279-1286). Rather, lumirhodopsin is converted to a new species, L' (11-cis and/or 9-cis retinal) which, on warming to room temperature, is indistinguishable from rhodopsin or isorhodopsin. The quantum efficiency for the conversion of lumirhodopsin to L' is estimated to be 0.5 +/- 0.1. This value is significantly higher than that of other all-trans to cis conversions for bovine rhodopsin intermediates, indicating that the opsin conformation has a significant effect on a pigment's quantum efficiency.  相似文献   

7.
The intermediate photolytic sequence of octopus rhodopsin was studied at different temperatures and different pH values by means of a flash photolysis-rapid scan spectrophotometry near physiological temperature. The first photoproduct in the photolysis of rhodopsin was lumirhodopsin. Transformation of lumirhodopsin leads to mesorhodopsin took place independently of the pH of the solution. Mesorhodopsin was transformed to acid metarhodopsin in acid solution. In alkaline solution, mesorhodopsin was transformed to transient acid metarhodopsin whose absorption spectrum was similar to acid metarhodopsin. Transient acid metarhodopsin was then transformed to alkaline metarhodopsin reaching a tautomeric equilibrium which was determined by the pH of the solution.  相似文献   

8.
In the bleaching process of cephalopod rhodopsin, a new intermediate was found in the conversion process from lumirhodopsin to metarhodopsin. This intermediate of octopus has an absorption peak at about 475 nm and has been named as M475. The circular dichroism value of M475 is too small to be evaluated. On the other hand, lumirhodopsin shows a negative CD at 470 nm, a positive CD at 350 nm and a large positive CD band with three peaks at 280, 287 and 295 nm. Such a large CD band in the ultraviolet region is not observed in rhodopsin, M475 and metarhodopsin. This CD seems to be mainly due to tryptophan and tyrosine residues restricted in free rotation in the protein moiety of lumirhodopsin. The intermediate in the photoregeneration process of cephalopod rhodopsin, P380, has a positive CD band at the main peak, 380 nm, and also a large positive CD band in the ultraviolet region like lumirhodopsin.  相似文献   

9.
Motoyuki Tsuda 《BBA》1979,545(3):537-546
The intermediate photolytic sequence of octopus rhodopsin was studied at different temperatures and different pH values by means of a flash photolysisrapid scan spectrophotometry near physiological temperature.The first photoproduct in the photolysis of rhodopsin was lumirhodopsin. Transformation of lumirhodopsin → mesorhodopsin took place independently of the pH of the solution. Mesorhodopsin was transformed to acid metarhodopsin in acid solution. In alkaline solution, mesorhodopsin was transformed to transient acid metarhodospsin whose absorption spectrum was similar to acid metarhodopsin. Transient acid metarhodopsin was then transformed to alkaline metarhodopsin reaching a tautomeric equilibrium which was determined by the pH of the solution.  相似文献   

10.
Absorbance difference spectra were recorded at 20 degrees C from 30 ns to milliseconds after photolysis of lauryl maltoside suspensions of artificial visual pigments derived from 9-cis isomers of 5-ethylretinal, 8,16-methanoretinal (a 6-s-trans-bicyclic analogue), or 5-demethyl-8-methylretinal. In all three pigments, the earliest intermediate that was detected had the characteristics of a mixture of bathorhodopsin and a blue-shifted intermediate, BSI, which is the first decay product of bathorhodopsin in bovine rhodopsin. The first decays resolved on the nanosecond time scale were the formation of the lumirhodopsin analogues. Subsequent decays were able to be fit with a mechanistic scheme which has been shown to apply to both membrane and detergent suspensions of rhodopsin. Large increases were seen in the amount of metarhodopsin I which appeared after photolysis of 5-ethylisorhodopsin and the bicyclic isorhodopsin analogue, while 5-demethyl-8-methylisorhodopsin more closely followed native rhodopsin in decaying through meta I380, a 380 nm absorbing precursor to metarhodopsin II. In addition to forming more metarhodopsin I, the bicyclic analogue stabilized the metarhodopsin I-metarhodopsin II equilibrium similarly to what has been previously reported for 9-demethylrhodopsin in detergent, introducing the possibility that the bicyclic analogue could similarly be defective in transducin activation. These observations support the idea that long after initial photolysis, structural details of the retinylidene chromophore continue to play a decisive role in processes leading to the activated form, metarhodopsin II.  相似文献   

11.
The photoreaction of opsin regenerated with 9-demethylretinal has been investigated by UV-vis spectroscopy, flash photolysis experiments, and Fourier transform infrared difference spectroscopy. In addition, the capability of the illuminated pigment to activate the retinal G-protein has been tested. The photoproduct, which can be stabilized at 77 K, resembles more the lumirhodopsin species, and only minor further changes occur upon warming the sample to 170 K (stabilizing lumirhodopsin). UV-vis spectroscopy reveals no further changes at 240 K (stabilizing metarhodopsin I), but infrared difference spectroscopy shows that the protein as well as the chromophore undergoes further molecular changes which are, however, different from those observed for unmodified metarhodopsin I. UV-vis spectroscopy, flash photolysis experiments, and infrared difference spectroscopy demonstrate that an intermediate different from metarhodopsin II is produced at room temperature, of which the Schiff base is still protonated. The illuminated pigment was able to activate G-protein, as assayed by monitoring the exchange of GDP for GTP gamma S in purified G-protein, only to a very limited extent (approximately 8% as compared to rhodopsin). The results are interpreted in terms of a specific steric interaction of the 9-methyl group of the retinal in rhodopsin with the protein, which is required to initiate the molecular changes necessary for G-protein activation. The residual activation suggests a conformer of the photolyzed pigment which mimics metarhodopsin II to a very limited extent.  相似文献   

12.
A review of the spectral sensitivity and the rhodopsin and metarhodopsin characteristics in three compound eye receptor types (R1–6, R7, and R8) and ocellar receptors is presented (Fig. 1). Photopigment properties were determined from measures of conversion efficiency. The photopigments of R1–6 were studied using in vivo microspectrophotometry in the deep pseudopupil of white-eyed flies. These studies yielded a refined estimate of the R1–6 metarhodopsin spectrum (Fig. 2). The quantum efficiency relative to the spectral sensitivity estimate of the rhodopsin spectrum was factored out. The quantum efficiency of rhodopsin is about 1.75 times that of metarhodopsin. The peak absorbance of metarhodopsin was estimated to be about 2.6 times that of rhodopsin. The mechanism of the two-peaked R1–6 spectral sensitivity and metarhodopsin spectrum is discussed in terms of evidence that there is only one rhodopsin in R1–6 and that vitamin A deprivation preferentially lowers ultraviolet sensitivity. The prolonged depolarizing afterpotential is reviewed from the standpoint of the internal transmitter hypothesis of visual excitation. A careful comparison of the intensity-responsivity for photopigment conversion and its adaptional consequences is made (Fig. 3).  相似文献   

13.
The visual pigment and visual cycle of the lobster,Homarus   总被引:1,自引:0,他引:1  
Summary The visual pigment of the American lobster,Homarus americanus, has been studied in individual isolated rhabdoms by microspectrophotometry. Lobster rhodopsin has max at 515 nm and is converted by light to a stable metarhodopsin with max at 490 nm. These figures are in good agreement with corresponding values obtained by Wald and Hubbard (1957) in digitonin extracts. Photoregeneration of rhodopsin to metarhodopsin is also observed. The absorbance spectrum of lobster metarhodopsin is invariant with pH in the range 5.4–9, indicating that even after isomerization of the chromophore fromcis totrans, the binding site of the chromophore remains sequestered from the solvent environment. Total axial density of the lobster rhabdom to unpolarized light is about 0.7.As described for several other Crustacea, aldehyde fixation renders the metarhodopsin susceptible to photobleaching, a process that is faster at alkaline than at neutral or acid pH. Small amounts of a photoproduct with max at 370 nm are occasionally seen. A slower dark bleaching of lobster rhabdoms (1/2–2 h) also occurs, frequently through intermediates with absorption similar to metarhodopsin.The molar extinction coefficient of metarhodopsin is about 1.2 times greater than that of rhodopsin, each measured at their respective max. Isomerization of the chromophore fromcis totrans is accompanied by a change in the orientation of the absorption vector of about 3°. The absorption vector of metarhodopsin is either tilted more steeply into the membrane or is less tightly oriented with respect to the microvillar axes.When living lobsters are kept at room temperature, light adaptation does not result in an accumulation of metarhodopsin. At 4 °C, however, the same adapting lights cause a reduction of rhodopsin and an increase in metarhodopsin. There is thus a temperature-sensitive regeneration mechanism that supplements photoregeneration. Following 1 ms, 0.1 joule xenon flashes that convert about 70% of the rhodopsin to metarhodopsin in vivo, dark regeneration occurs in the living eye with half-times of about 25 and 55 min at 22 °C and 15 °C respectively.This work was supported by USPHS research grant EY 00222 to Yale University. S.N.B. was aided by NIH Postdoctoral Fellowship EY 52378.  相似文献   

14.
A review of the spectral sensitivity and the rhodopsin and metarhodopsin characteristics in three compound eye receptor types (R1-6, R7, and R8) and ocellar receptors is presented (Fig. 1). Photopigment properties were determined from measures of conversion efficiency. The photopigments of R1-6 were studied using in vivo microspectrophotometry in the deep pseudopupil of white-eyed flies. These studies yielded a refined estimate of the R1-6 metarhodopsin spectrum (Fig. 2). The quantum efficiency relative to the spectral sensitivity estimate of the rhodopsin spectrum was factored out. The quantum efficiency of rhodopsin is about 1.75 times that of metarhodopsin. The peak absorbance of metarhodopsin was estimated to be about 2.6 times that of rhodopsin. The mechanism of the two-peaked R1-6 spectral sensitivity and metarhodopsin spectrum is discussed in terms of evidence that there is only one rhodopsin in R1-6 and that vitamin A deprivation preferentially lowers ultraviolet sensitivity. The prolonged depolarizing afterpotential is reviewed from the standpoint of the internal transmitter hypothesis of visual excitation. A careful comparison of the intensity-responsivity for photopigment conversion and its adaptional consequences is made (Fig. 3).  相似文献   

15.
The formation of metarhodopsin II in various bovine rhodopsin preparations (rod outer segment (ROS) suspensions and rhodopsin-detergent solutions) was measured by means of flash spectrophotometry. The half-lifetime and formation of metarhodopsin II in ROS did not depend on the calcium concentration in the range of less than 10–9 M (using EGTA or EDTA) to 15×10–3 M calcium at pH values of 5.0, 7.1, and 9.0 (Table 1).The regeneration of rhodopsin from opsin by adding 11-cis retinal to ROS-suspensions and rhodopsin digitonin solutions was measured spectrophotometrically. It was not substantially different in either saline, one containing less than 10–7 M calcium (by adding EGTA), the other containing 10–3 M calcium (Table 2).Abbreviations A absorption - A absorption change - CTAB N-Cetyl-N,N,N-trimethylammoniumbromide - E700 extinction at =700 nm - EDTA ethylenediamine-NNNN-tetraacetic acid - EGTA 2,2-ethylenedioxybis [ethyliminodi (acetic acid)] - MI metarhodopsin I - MII metarhodopsin II - Rh rhodopsin - ROS rod outer segment This work is based upon a Ph. D. dissertation (Nöll, 1974) and was presented in part at the Jahrestagung der Deutschen Gesellschaft für Biophysik, Freiburg, Germany, October 1974  相似文献   

16.
The origin of spontaneous quantum bumps has been examined in the ultraviolet photoreceptors of Limulus median eye. These cells have a rhodopsin with a lambda max at 360 nm and a stable photoproduct, metarhodopsin, with a lambda max at 470 nm. The steady state rate of spontaneous quantum bumps was found to be higher when the metarhodopsin concentration was high than when the rhodopsin concentration was high. This result implicates metarhodopsin in the generation of spontaneous quantum bumps. Furthermore, this result is consistent with the idea that the reaction which inactivates metarhodopsin (terminates the ability of metarhodopsin to initiate the reactions leading to a quantum bump) is reversible and that such reversions can be a significant source of spontaneous quantum bumps. Given that the rate of spontaneous quantum bumps is approximately 1/s under conditions where the number of inactive metarhodopsin molecules is approximately 10(9), it follows that the molecular switch that inactivates metarhodopsin reverses with a probability of less than 10(-9). A model is presented of how a molecular switch with this reliability might be constructed.  相似文献   

17.
The enthalpy changes associated with each of the major steps in the photoconversion of octopus rhodopsin have been measured by direct photocalorimetry. Formation of the primary photoproduct (bathorhodopsin) involves energy uptake of about 130 kJ/mol, corresponding to storage of over 50% of the exciting photon energy, and is comparable to the energy storage previously observed in bovine rhodopsin. Subsequent intermediates involve the step-wise dissipation of this energy to give the physiological end-product (acid metarhodopsin) at a level only slightly above the parent rhodopsin. No significant differences in energetics are observed between rhodopsin in microvilli membrane suspensions or detergent dispersions. Use of different buffer systems in the calorimetric experiments shows that conversion of rhodopsin to acid metarhodopsin involves no light-induced protonation change, whereas alkali metarhodopsin photoproduction occurs with the release of one proton per molecule and an additional enthalpy increase of about 50 kJ/mol. Van't Hoff analysis of the effect of temperature on the reversible metarhodopsin equilibrium gives an enthalpy for the acid alkali transition consistent with this calorimetric result, and the proton release is confirmed by direct observation of light-induced pH changes. Acid-base titration of metarhodopsin yields an apparent pK of 9.5 for this transition, though the pH profile deviates slightly from ideal titration behaviour. We suggest that a high energy primary photoproduct is an obligatory feature of efficient biological photodetectors, as opposed to photon energy transducers, and that the similarity at this stage between cephalopod and vertebrate rhodopsins represents either convergent evolution at the molecular level or strong conservation of a crucial functional characteristic.  相似文献   

18.
U M Ganter  W G?rtner  F Siebert 《Biochemistry》1988,27(19):7480-7488
The rhodopsin-lumirhodopsin transition has been investigated by Fourier transform infrared difference spectroscopy using isotope-labeled retinals. In the transition, two protonated carboxyl groups are involved. Another carbonyl band, located at 1725 cm-1 in rhodopsin, is shifted to 1731.5 cm-1 in lumirhodopsin. This line is tentatively assigned to a carbonyl stretching vibration of a peptide bond adjacent to the nitrogen of a proline residue. The C=N stretching vibration of rhodopsin could unequivocally be assigned to a band at 1659 cm-1. In contrast to rhodopsin and bathorhodopsin, the C=N stretching vibration of lumirhodopsin is at a low position, i.e., at 1635 cm-1, and exhibits only a downshift of 4 cm-1 upon deuteriation of the nitrogen. The C15-H rocking vibration of rhodopsin is assigned to the unusual high position of 1456 cm-1 and shifts into the normal region upon formation of lumirhodopsin. From these results, it is concluded that, whereas the environment of the Schiff base in rhodopsin, bathorhodopsin, and isorhodopsin is approximately the same, large changes occur with the formation of lumirhodopsin. From the assignment of the C10-C11 stretching vibration in bathorhodopsin and lumirhodopsin, a 10-s-cis geometry of lumirhodopsin can be excluded.  相似文献   

19.
Photolyzed rhodopsin was phosphorylated in bovine rod outer segments incubated at –10 C. In the experiment in which urea-treated outer segments and rhodopsin kinase were incubated with ATP in the presence of 30% glycerol, the extent of phosphate incorporation at –10 C was about 30% of that at 37 C. Separation of phosphorylated rhodopsin by isoelectric focusing indicated that a limited number of sites were phosphorylated at –10 C. The partially phosphorylated pigment incorporated more phosphates when the temperatures was raised to 37 C. This was partly due to decreased inhibition of phosphorylation by glycerol at higher temperature. Since the maximum phosphorylation at –10 C (at which metarhodopsin II is stable) occurred at a pH value (6.0) lower than the pKa for metarhodopsin I-metarhodopsin II transition, metarhodopsin II was suggested to be the preferred substrate for rhodopsin kinase at –10 C. Limited proteolysis with thermolysin of rhodopsin phosphorylated at 37 C released peptides containing about 50% of the total phosphate incorporated. In contrast, proteolytic digestion of rhodopsin phosphorylated at –10 C released negligible amounts of phosphate-containing peptides. The results were taken to suggest that the incorporation of phosphates at metarhodopsin II level under the present condition occurred in the residues other than those removed by thermolysin digestion.Based on material presented at the Fifth International Congress of Eye Research, Eindhoven, October 1982  相似文献   

20.
Photochemical studies were conducted on human rhodopsin at 20 degrees C to characterize the intermediates which precede the formation of metarhodopsin II, the trigger for the enzyme cascade mechanism of visual transduction. Human rhodopsin was prepared from eyes which had previously been used for corneal donations. Time resolved absorption spectra collected from 10(-8) to 10(-6) s after photolysis of human rhodopsin in detergent suspensions displayed biexponential decay kinetics. The apparent lifetimes obtained from the data are 65 +/- 20 and 292 +/- 25 ns, almost a factor of 2 slower than the corresponding rates in bovine rhodopsin. The spectra can be fit well using a model in which human bathorhodopsin decays toward equilibrium with a blue-shifted intermediate (BSI) which then decays to lumirhodopsin. Spectra and kinetic rate constants were determined for all these intermediates using a global analysis which showed that the spectra of the human intermediates are remarkably similar to bovine intermediates. Microscopic rate constants derived from this model are 7.4 x 10(6) s-1 for bathorhodopsin decay and 7.5 x 10(6) s-1 and 4.6 x 10(6) s-1 for the forward and reverse reactions of BSI, respectively. Decay of lumirhodopsin to later intermediates was studied from 10(-6) to 10(-1) s after photolysis of rhodopsin in human disk membrane suspensions. The human metarhodopsin I in equilibrium metarhodopsin II equilibrium appears to be more forward shifted than in comparable bovine studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号