首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three phase liquid phase microextraction (three phase LPME) technique coupled with HPLC-UV has been applied as a sensitive and efficient sample preparation method to determine phenylacetic acid (PAA) as a biomarker of depressive disorders and phenylpropionic acid (PPA) in biological fluids. The compounds were extracted from 3.0 ml aqueous solution with the adjustment of pH at a fixed value in the range of 2.0-3.5 (donor solution) into an organic phase (1-hexanol) layered on the surface of the donor solution and finally back-extracted into 4.0 microl of the acceptor microdrop (pH 11.1) located at the end of the microsyringe needle. After a prescribed back-extraction time, the acceptor microdrop was withdrawn into the microsyringe and then directly injected into the HPLC system. In order to achieve maximum extraction efficiency, different parameters affecting the extraction conditions were optimized. At the optimum conditions (donor solution: 2.3M Na(2)SO(4), pH 2.0-3.5; organic membrane: 95 microl of 1-hexanol; acceptor solution: 4.0 microl of 0.1M NH(3)/NH(4)(+) with pH 11.1; donor solution temperature: 45-50 degrees C; extraction time: 20 min and back-extraction time: 12 min), up to 110-fold enrichment factor was obtained. The calibration curve for these analytes was linear in the range of 1-5000 microg/l with r(2)>0.998. The intraday and interday RSD% were below 6.5% and the limits of detection (LODs) for both analytes were 0.2 microg/l (based on S/N=3). The proposed technique is a low cost, simple and sensitive method with highly clean-up effect. Finally, this technique was successfully utilized for the detection of target analytes in human urine, serum and plasma.  相似文献   

2.
In the present work, the applicability of hollow fiber-based liquid phase microextraction (HF-LPME) was evaluated for the extraction and preconcentration of valerenic acid prior to its determination by reversed-phase HPLC/UV. The target drug was extracted from 5.0 mL of aqueous solution with pH 3.5 into an organic extracting solvent (dihexyl ether) impregnated in the pores of a hollow fiber and finally back extracted into 10 μ L of aqueous solution with pH 9.5 located inside the lumen of the hollow fiber. In order to obtain high extraction efficiency, the parameters affecting the HF-LPME, including pH of the donor and acceptor phases, type of organic phase, ionic strength, the volume ratio of donor to acceptor phase, stirring rate and extraction time were studied and optimized. Under the optimized conditions, enrichment factor up to 446 was achieved and the relative standard deviation (RSD) of the method was 4.36% (n = 9). The linear range was 7.5-850 μg L?1 with correlation coefficient (r2=0.999), detection limits was 2.5 μg L?1 and the LOQ was 7.5 μg L?1. The proposed method was evaluated by extraction and determination of valerenic acid in some Iranian wild species of Valerianaceae.  相似文献   

3.
Hollow fiber liquid-phase microextraction (HF-LPME) coupled with high-performance liquid chromatography was used to simultaneously determine three Aconitum alkaloids, including aconitine (AC), hypaconitine (HA) and mesaconitine (MA) in human urine sample. Analytes were extracted from 5 mL urine sample containing 1.0 mmol/L NaOH into 1-octanol membrane phase impregnated in the pores of hollow fiber wall, and then back extracted into acidified aqueous solution in the lumen of the hollow fiber. After extraction, 10 μL of the acceptor phase was analyzed directly by HPLC. In this method, some important extraction parameters, such as organic solvent, extraction time, stirring rate, pH of donor phase and acceptor phase, temperature, and the volume of acceptor phase were optimized. This method provided 98- to 288-fold enrichment factors within 60 min of extraction and good repeatability with RSDs of 0.99–7.22%. The calibration curves were linear over the ranges of 16.0–128.0 μg/L for AC, 11.0–88.0 μg/L for HA and 8.1–64.8 μg/L for MA in human urine sample, with correlation coefficients of 0.9949, 0.9969 and 0.9904, respectively. Limits of detection were from 0.7 to 1.5 μg/L, and recoveries from spiked urine sample varied from 84.4% to 106.2% for AC, 77.3% to 85.6% for HA and 90.1% to 100.8% for MA.  相似文献   

4.
The applicability of hollow fiber liquid phase microextraction (HF-LPME) for extraction and preconcentration of trace amounts of pioglitazone (PGL) as an anti-diabetic drug in biological fluids, prior to determination by high-performance liquid chromatography (HPLC), was evaluated. In this technique, the target drug was extracted into di-n-hexyl ether immobilized in the wall pores of a porous hollow fiber from 10 mL of the aqueous sample (source phase, SP) with pH 8.0, and then back extracted into the receiving phase (RP) with pH 2.2 located in the lumen of the hollow fiber. The extraction occurred due to a pH gradient between the two sides of the hollow fiber. After extracting for a prescribed time, 24 μL of the RP solution was taken back into the syringe and injected directly into a HPLC instrument for quantification. The Taguchi orthogonal array (OAD) experimental design with an OA16 (45) matrix was employed to optimize the HF-LPME conditions. Different factors affecting the HF-LPME efficiency such as the nature of organic solvent used to impregnate the membrane, pH of the SP and RP, stirring speed, extraction time and ionic strength were studied and optimized. Under the optimum conditions (di-n-hexyl ether as membrane impregnation solvent, pHs of the SP and RP equal to 8.0 and 2.2, respectively, extraction time of 30 min, stirring speed of 500 rpm and 10% (w/v) NaCl for adjusting the ionic strength), preconcentration factor of 180, linear dynamic range (LDR) of 2.5–250 μg L?1 with good correlation of determination (r2 > 0.998) and limit of detection (LOD) of 1.0 μg L?1 were obtained for the target drug. The percent relative intra-day and inter-day standard deviations (RSDs%) based on five replicate determinations were 4.7 and 15%, respectively. Once LPME was optimized, the performance of the proposed technique was evaluated for the determination of PGL in different types of biological fluids such as plasma and urine samples. The results showed that the proposed HF-LPME method could be successfully applied to determine trace amounts of PGL in biological samples.  相似文献   

5.
An efficient and fast extraction technique for the enrichment of valproic acid from human blood serum samples using the headspace liquid phase microextraction (HS-LPME) combined with gas chromatography (GC) analysis has been developed. The extraction was conducted by suspending a 2 microL drop of organic solvent in a 1 mL serum sample; following 20 min of extraction, withdrawing organic solvent into a syringe and injection into a GC with a flame ionization detector (FID), without any further pre-treatment. Four organic solvents, 1-decanole, benzyl alcohol, 1-octanol and n-dodecane, were studied as extractants, and n-dodecane was found to be the most sensitive solvent for valproic acid. The results revealed that HS-LPME is suitable for the successful extraction of valproic acid from human blood serum samples. Parameters like extraction time, ionic strength, pH, organic solvent volume, and temperature of the sample were studied and optimized to obtain the best extraction results. An enrichment factor of 27-fold was achieved in 20 min. The procedure resulted in a relative standard deviation of <13.2% (n=7) and a linear calibration range from 2 to 20 microg mL(-1) (r>0.98), and the limit of detection was 0.8 microg mL(-1) in serum blank samples. Overall, LPME proved to be a fast, sensitive and simple tool for the preconcentration of valproic acid from real samples. The proposed method was also applied to the analysis of valproate in pharmaceutical preparations.  相似文献   

6.
Li N  Deng C  Yin X  Yao N  Shen X  Zhang X 《Analytical biochemistry》2005,342(2):318-326
In this work, we developed a new approach to the analysis of the lung cancer biomarkers, hexanal and heptanal in human blood that was based on headspace single-drop microextraction (HS-SDME) with droplet derivatization, followed by gas chromatography-mass spectrometry (GC-MS). Aldehydes in blood were headspace extracted, concentrated, and derivatized by a suspended microdrop solvent containing the derivatization agent O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride. The aldehyde oximes formed in the microdrop solvent were analyzed by GC-MS. The optimal HS-SDME with droplet derivatization parameters extraction solvent of decane, sample temperature of 40 degrees C, extraction time of 6 min, stirring rate of 1100 rpm, and solvent volume of 2.0 microL were obtained and used for analysis of hexanal and heptanal in blood. The method reproducibility, linearity, recovery, and detection limit were studied and the obtained results demonstrated the method feasibility. Finally, the proposed method was applied to the quantification of hexanal and heptanal in cancer blood and normal blood. Due to sample extraction, concentration, and derivatization being performed in a single step, the method provided a simple, rapid, low-cost, and efficient approach to analysis of aldehydes in blood samples.  相似文献   

7.
An HPLC system using a new, simple and rapid liquid-liquid extraction and high-performance liquid chromatography-diode array detector method (HPLC-DAD) detection was validated to determine tramadol concentration in rabbit plasma. The method described was applied to a pharmacokinetic study of intravenous tramadol injections in rabbits. The extraction with ethylacetate yielded good response. The recovery of tramadol from plasma averaged 90.40%. Serial plasma samples were obtained prior to, during and after completion of the infusion for determination of tramadol concentrations. Tramadol concentrations were measured using reverse-phase high-performance liquid chromatography and pharmacokinetic application with intravenous tramadol in rabbits revealed that tramadol followed one-compartment open model. Maximum plasma concentration (C(max)) and area under the plasma concentration-time curve (AUC) for tramadol were 14.3 microg mL(-1) and 42.2 microg h mL(-1), respectively. The method developed was successfully applied to a simple, rapid, specific, sensitive and accurate HPLC method for investigation of the pharmacokinetics of tramadol in rabbit plasma.  相似文献   

8.
Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction (UA IL-DLLME) coupled with high-performance liquid chromatography (HPLC) has been developed for the determination of celastrol in human urine samples. In the microextraction procedure, ionic liquid (IL) was used as extraction solvent and dispersed into the aqueous sample solution as fine droplets by means of dispersive solvent and ultrasonication which promoted the analyte to migrate into IL phase more easily. Several important parameters affecting the extraction efficiency were studied and optimized, including the type and volume of extraction solvent and dispersive solvent, sample pH, ultrasonication time, cooling time, centrifugation time and salting-out effect. Under the optimized conditions, 110-fold enrichment factor was obtained and the limit of detection (LOD) was 1.6 μg/L at a signal-to-noise ratio of 3. The calibration curve was linear over the range of 10-1000 μg/L for celastrol in human urine sample, with a correlation coefficient of 0.9980. Intra- and inter-assay precision were 0.43% and 2.78%, respectively. The proposed method was successfully applied to the real human urine samples and good spiked recoveries in the range of 93.2-109.3% were obtained.  相似文献   

9.
Enzyme catalyzed introduction of the 1–2 double bond into a steroid can be monitored through spectrophotometric changes accompanying electron acceptor reduction or through paper or thin-layer chromatographic analysis of the reaction product. The spectrophotometric method is not applicable to cases in which the oxidized form of the electron acceptor is continually regenerated. In studying such cases, we have found high pressure liquid chromatography (HPLC) to be a method of direct analysis more convenient than paper chromatography or tlc. Use of a water based eluant and a reverse phase column for the HPLC analysis allows direct injection of a sample of the aqueous reaction solution after acidification, and no extraction with an organic solvent is necessary.  相似文献   

10.
A method based on liquid-liquid-liquid microextraction combined with corona discharge ion mobility spectrometry was developed for the analysis of amantadine in human urine and plasma samples. Amantadine was extracted from alkaline aqueous sample as donor phase through a thin phase of organic solvent (n-dodecane) filling the pores of the hollow fiber wall and then back extracted into the organic acceptor phase (methanol) located in the lumen of the hollow fiber. All variables affecting the extraction of analyte including acceptor organic solvent type, concentration of NaOH in donor phase, ionic strength of the sample and extraction time were studied. The linear range was 20-1000 and 5-250 ng/mL for plasma and urine, respectively (r(2)≥0.990). The limits of detection were calculated to be 7.2 and 1.6 ng/mL for plasma and urine, respectively. The relative standard deviation was lower than 8.2% for both urine and plasma samples. The enrichment factors were between 45 and 54. The method was successfully applied for the analysis of amantadine in urine and plasma samples.  相似文献   

11.
A rapid, selective and sensitive HPLC assay has been developed for the routine analysis of amoxicillin in rat plasma, gastric juice aspirate and gastric tissue which is applicable to low concentrations of amoxicillin (<1 microg mL(-1)) or small sample volumes. Amoxicillin was converted, via an internal rearrangement, to form a fluorescent product which was subsequently recovered using liquid-liquid extraction. A Kromasil ODS 3 microm (150 x 3.2 mm I.D.) column was maintained at 40 degrees C and used with a mobile phase consisting of methanol-water (55:45, v/v). Fluorimetric detection was at an lambda(ex) of 365 nm and an lambda(em) of 445 nm. The limits of quantitation for amoxicillin were 0.1 microg mL(-1) for gastric juice aspirate (500 microL), 0.5 microg mL(-1) for plasma (50 microL) and 0.075 microg g(-1) for gastric tissue (250 mg). The method was linear up to at least 15 microg mL(-1) in gastric juice aspirate, up to 200 microg mL(-1) in plasma and up to 100 microg g(-1) in gastric tissue, with inter- and intra-day RSDs being less than 19%. The assay has been applied to the measurement of amoxicillin in rat plasma, gastric juice aspirate and gastric tissue for pharmacokinetic studies in individual rats.  相似文献   

12.
This paper describes an HPLC method for the determination of tramadol and its major active metabolite, O-desmethyltramadol (ODT), in human plasma. Sample preparation involved liquid-liquid extraction with diethyl ether-dichloromethane-butanol (5:3:2, v/v/v) and back extraction with sulphuric acid. Tramadol, ODT and the internal standard, sotalol, were separated by reversed phase HPLC using 35% acetonitrile and an aqueous solution containing 20 mM sodium phosphate buffer, 30 mM sodium dodecyl sulphate and 15 mM tetraethylammonium bromide pH 3.9. Detection was by fluorescence with excitation and emission wavelengths of 275 and 300 nm, respectively. The method was linear for tramadol (3-768 ng/ml) and ODT (1.5-384 ng/ml) with mean recoveries of 87.2% and 89.8%, respectively. Intra- and inter-day precisions were 10.34% and 8.43% for tramadol and 9.43% and 8.75% for ODT at the respective limits of quantitation (3 and 1.5 ng/ml). Accuracy for tramadol ranged from 96.2% to 105.3%. The method was applied to a pharmacokinetic study of tramadol in human volunteers.  相似文献   

13.
Supported liquid membrane (SLM) technique for sample work-up and enrichment was used for determination of tricyclic antidepressant drugs in urine by high-performance liquid chromatography (HPLC) with UV detection. The studied antidepressant drugs were amitriptyline, opipramol, noxiptyline and additionally diethazine was used as possible internal standard. Alkaline phosphoric buffer with urine sample, as the donor solution, was passed over the liquid membrane into which investigated substances were extracted. On the other side of the membrane, analyzed compounds were trapped due to creating non-extractable form in acidic acceptor solution. Enriched and cleaned up drugs were then injected into a HPLC system with ultraviolet detection to analyze of their concentration in acceptor solution. Optimum extraction efficiency was determined by changing acceptor and donor solutions pH, application of different flow rates of donor solution and by using different solvents in the membrane. Also, donor solution volume, extraction time and concentration of analytes were varied to check the linearity of extraction process. The highest extraction efficiency: 43% for opipramol, 56% for noxiptyline, 43% for amitriptyline and 42% for diethazine (R.S.D. values were <6% and n=3) was achieved when 0.05 M phosphate buffer pH 4.0 and 9.5 were used as donor and acceptor solutions, respectively, n-undecane with 5% tri-n-octylphosphine oxide (TOPO) was used as liquid membrane. Limit of quantification (LOQ) for tricyclic antidepressants after enrichment of 100ml of urine sample was about 1 ng/ml.  相似文献   

14.
Progesterone in saliva was monitored using a new method called magnetic particle-based immuno supported liquid membrane assay (m-ISLMA) in a sequential injection (SI) setup, allowing automatic sample cleanup, analyte enrichment, and detection in a single analysis unit. Progesterone (Ag) diffuses from a continuous flowing sample - the donor - into a supported organic liquid membrane (SLM), based on analyte partitioning (solubility) between the aqueous donor and the organic phase. The Ag is re-extracted from the SLM into a second stagnant aqueous acceptor, containing antibodies (Ab) immobilized on magnetic beads, held at the bottom of the acceptor by a magnet. Due to the formation of strong Ag-Ab-bead complexes and a large excess of Ab-beads, the Ag is accumulated and selectively enriched in the acceptor. The extracted progesterone was quantified by injecting into the acceptor a horseradish peroxidase (HRP) labeled analyte tracer, the substrate (luminol, H(2)O(2), and p-iodophenol), and finally detection of the generated chemiluminescence by a photomultiplier tube. After optimization of experimental parameters (e.g., sample flow rate, extraction time, type of organic solvent and antibody-bead concentration in the acceptor), a detection limit of 8.50+/-0.17 fgL(-1) and a dynamic range between 35 fgL(-1) and 10 pgL(-1) was reached. The progesterone level of saliva for three subjects (women in different period of ovarian cycle) was investigated, and the corresponding progesterone concentrations detected with m-ISLMA coincided well with the expected values.  相似文献   

15.
Two novel methods for the analysis of ellagic acid in pomegranate (Punica granatum) rinds are proposed. Capillary electrophoresis (CE) was performed in a bare fused-silica capillary using a buffer solution of tri(hydroxymethyl)aminomethane:potassium dihydrogen phosphate (pH 8.4) with an applied voltage of 20 kV and UV detection at 254 nm. HPLC analysis was performed with a Zobax SB C(18) column and a mobile phase consisting of methanol:ethyl acetate:potassium dihydrogen phosphate: phosphoric acid at a flow rate of 1.0 mL/min. Under optimised conditions, the HPLC retention and the CE migration times for ellagic acid were 10.32 and 12.23 min, respectively. Calibration curves of peak area vs. concentration gave correlation coefficients of 0.9999 for HPLC and 0.9990 for CE. The detection limits for HPLC and CE were 2.8 and 2.2 microg/mL, respectively. Average recoveries were 98.32 +/- 1.2% for HPLC and 96.52 +/- 2.8% for CE. Both methods were shown to be suitable for the determination of ellagic acid in pomegranate rinds extraction; however, the CE method required less solvent and gave better column efficiency, whilst the HPLC provided superior precision.  相似文献   

16.
A fast, simple and sensitive high performance liquid chromatographic (HPLC) method has been described for determination of acyclovir in human serum. Since acyclovir is a polar compound and soluble in aqueous medium and practically insoluble in most of organic solvents, its analysis in biological fluids in currently published HPLC methods, involve pre-treatment of acyclovir plasma sample including deproteinization or solid phase extraction. In present method liquid-liquid extraction of acyclovir and internal standard (vanillin) is achieved using dichloromethane-isopropyl alcohol (1:1, v/v) as an extracting solvent. Analysis was carried out on ODS column using methanol-phosphate buffer (0.05 M) containing sodium dodecyl sulfate (200 mg/L) and triethylamine (2 mL/L, v/v) as mobile phase (pH=2.3; 5:95, v/v) at flow rate of 2 ml/min. The method was shown to be selective and linear into the concentration range of 10-2560 ng/mL. Accuracy and precision of the method were also studied. The limit of quantitation was evaluated to be 10 ng/mL. This method was applied in bioequivalence study of two different acyclovir preparations after administration of 400mg in 12 healthy volunteers.  相似文献   

17.
A high-performance liquid chromatographic (HPLC) assay for the determination of nicotine and cotinine in human milk was developed using an extraction by liquid-liquid partition combined with back extraction into acid, and followed by reverse-phase chromatography with UV detection of analytes. The assay was linear up to 500 microg/l for both nicotine and cotinine. Intra- and inter-day relative standard deviations (R.S.D.) were <10% (25-500 microg/l) for both nicotine and cotinine. Limits of quantitation (LOQ) were 10 and 12 microg/l for nicotine and cotinine, respectively, while the limits of detection (LOD) were 8 and 10 microg/l for nicotine and cotinine, respectively. The mean recoveries were 79-93% (range 25-500 microg/l) for nicotine and 78-89% (range 25-500 microg/l) for cotinine. The amount of fat in the milk did not affect the recovery. We found that this method was sensitive and reliable in measuring nicotine and cotinine concentrations in milk from a nursing mother who participated in a trial of the nicotine patch for smoking cessation.  相似文献   

18.
This paper describes design of a new cartridge for selective solid phase extraction (SPE) using molecularly imprinted polymers (MIPs). The apparatus which is termed solvent extraction-MISPE (SE-MISPE) cartridge, consisted of a modified conventional micro test tube and has been developed to perform simultaneous forward-extraction of analyte from aqueous sample solution to an organic phase and back-extraction to MIP solid phase. In order to evaluate the performance of the proposed method, extraction of theophylline (THP) from human serum sample was investigated. An appropriate amount of THP-imprinted polymer was placed in the bottom of the micro tube and an organic solvent pipetted onto it and left to swell the polymer completely. A polyethylene frit to secure MIP particles was positioned by two Teflon rings such that it was fixed below the level of the organic layer. Then, aqueous sample solution containing THP was layered over the organic phase and the lid was closed. After completion of extraction, the organic and aqueous phases were removed and the adsorbed analyte was desorbed using a polar organic solvent. In order to reach the highest recovery, the experimental parameters such as the type of organic solvent, pH and ionic strength of aqueous phase, organic to aqueous volume ratio, time of extraction, type and amount of desorbent solvent were optimized. Under the experimental conditions, a plot of HPLC peak areas vs. initial concentrations of THP in the concentration interval of 0.5–30 μg ml−1 showed a good linearity (r = 0.9974). The limit of detection (LOD) and limit of quantification (LOQ) based on three and ten times of the noise of HPLC profile were 0.09 and 0.3 μg ml−1, respectively. The relative standard deviation (RSD) of the proposed method for the extraction and determination of 5 μg THP from 200 μl standard sample solution for 3 replicate measurements was 3.5%. The results showed that by means of the proposed cartridge, THP could significantly separate from the other structurally related compounds such as theobromine (THB) and caffeine (CAF). The added THP could be quantitatively recovered (79–83%) from the serum samples by the proposed procedure, being thus a guarantee of the accuracy of the SE-MISPE procedure. In addition, the loss of capability of the SE-MISPE cartridge was not considerably observed after 10 times loading and elution cycles.  相似文献   

19.
A HPLC method with UV detection at 262nm was developed to analyze inositol hexanicotinate in rat plasma. Plasma samples were extracted with an equal volume of acetonitrile, followed by dilution with mobile phase buffer (5mM phosphate buffer, pH 6.0) to eliminate any solvent effects. Inositol hexanicotinate and the internal standard (mebendazole) were separated isocratically using a mobile phase of acetonitrile/phosphate buffer (35:65, v/v, pH 6.0) at a flow rate of 1.0mL/min and a reverse-phase XTerra MS C(18) column (4.6mmx150mm, 3.5microm). The standard curve was linear over a concentration range of 1.5-100.0microg/mL of inositol hexanicotinate in rat plasma. The HPLC method was validated with intra- and inter-day precisions of 1.55-4.30% and 2.69-21.5%, respectively. The intra- and inter-day biases were -0.75 to 19.8% and 2.58-22.0%, respectively. At plasma concentrations of 1.5-100microg/mL, the mean recovery of inositol hexanicotinate was 99.6%. The results of a stability study indicated that inositol hexanicotinate was unstable in rat plasma samples, but was stable in acetonitrile extracts of rat plasma for up to 24h at 4 degrees C. The assay is simple, rapid, specific, sensitive, and reproducible and has been used successfully to analyze inositol hexanicotinate plasma concentrations in a pharmacokinetic study using the rat as an animal model.  相似文献   

20.
A sensitive and selective high-performance liquid chromatographic (HPLC) method with ultra-violet detection has been developed and validated for the simultaneous determination of posaconazole and voriconazole, two systemic anti-fungal agents. An internal standard diazepam was added to 100 microL of human plasma followed by 3 mL of hexane-methylene chloride (70:30, v/v). The organic layer was evaporated to dryness and the residue was reconstituted with 100 microL of mobile phase before being injected in the chromatographic system. The compounds were separated on a C8 column using sodium potassium phosphate buffer (0.04 M, pH 6.0): acetonitrile:ultrapure water (45:52.5:2.5, v/v/v) as mobile phase. All compounds were detected at a wavelength of 255 nm. The assay was linear and validated over the range 0.2-10.0 mg/L for voriconazole and 0.05-10.0 mg/L for posaconazole. The biases were comprised between -3 and 5% for voriconazole and -2 and 8% for posaconazole. The intra- and inter-day precisions of the method were lower than 8% for the routine quality control (QC). The mean recovery was 98% for voriconazole and 108% for posaconazole. This method provides a useful tool for therapeutic drug monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号