首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modification of the previously described apparatus (Faupel et al. (1987) J. Biochem. Biophys. Methods 15, 147-162), for recycling isoelectric focusing in a segmented immobilized pH gradient, is here reported. The most important improvements are: (1) a horizontal, vs. the previously vertical assembly; (2) a reduction of the thickness of the central flow chamber to 6 mm, vs. the previous 3 cm length and (3) the introduction, at both gel extremities of each Immobiline segment, of polypropylene filters, thus efficiently blocking the gel in situ. The advantages are: (i) the spontaneous removal of air bubbles, which in the vertical apparatus tend to accumulate in the ceiling of the flow chamber and to obstruct the flow of electric current; (ii) a more efficient hydraulic flow with a reduced chance of heating the liquid stream in the flow chamber, due to its reduced length along the separation path and (iii) a reduced risk of gel detachment from the tube walls, due to osmotic swelling caused by focused protein zones in the gel phase and by the fixed Immobiline charges in the polyacrylamide matrix.  相似文献   

2.
We have recently described an apparatus for protein purification based on a segmented Immobiline gel, having one or more liquid interlayers in between. The principle is entirely new, as it is based on keeping the protein of interest isoelectric, in a flow chamber, and focusing the impurities in an Immobiline gel. For this, a hydraulic flow is coupled orthogonally to an electric flow, sweeping away the non-isoelectric impurities from the recycling chamber. We now demonstrate that the present apparatus can be efficiently used for protein desalting. Hemoglobin A samples, containing 50 mM NaCl or 50 mM ammonium acetate, could be efficiently desalted in 2 h of recycling, after which the total salt content had decreased to less than 0.005 mM (a salt decrement of more than 10,000 fold the initial input). However, with polyprotic buffers (sulphate, citrate, phosphate, oligoamines) the desalting process was much slower, typically of the order of 20 h, possibly due to interaction of these species with the surrounding Immobiline matrix. In this last case, outside pH control (e.g. with a pH-stat) is necessary during protein purification, as, due to the faster removal of the monovalent counterion, the solution in the recycling chamber can become rather acidic or alkaline. It is demonstrated that the 2 extremities of the Immobiline segments facing the sample recycling chamber act indeed as isoelectric membranes, having a good buffering capacity, preventing the protein macroion from leaving the chamber by continuously titrating it to its isoelectric point.  相似文献   

3.
Due to the high reproducibility of pH gradient slope and width, immobilized pH gradients (IPG) have been used as the first dimension of two-dimensional techniques in order to generate maps of constant spot position in the pMr. However, when coupling IPG to SDS (sodium dodecyl sulphate) gels two problems were encountered: vertical streaking, due to incomplete zone solubilization in SDS, and horizontal streaking, due to spot fusion along the pH axis caused by the electroendosmosis of the charged Immobiline gels. Two methodical modifications are herewith described to overcome these drawbacks: (a) the SDS equilibrium time of the first-dimension gel has been prolonged to at least 30 min; (b) the SDS electrophoresis gel has been cast together with a starting gel, containing 2.5 mM of each Immobiline species used in the first dimension, which serves as a transition from the charged to the uncharged gel.  相似文献   

4.
An effective preparative isoelectric focusing method has been developed using the LKB Immobiline system in a vertical slab gel apparatus. Advantages of this procedure are ease of sample application, excellent resolution, and the direct visualization of focused bands. Narrow pH gradients have been used to separate apolipoprotein E3 isoforms (pH gradient 4.9-5.9) and to resolve the apolipoprotein C mixture (pH gradient 4.0-5.0). Recoveries ranged from 40 to 70%. The method should be valuable for protein and isoform purification.  相似文献   

5.
In mixed-bed, carrier ampholyte-Immobiline gels, a primary, insolubilized pH gradient is admixed with a secondary, soluble pH gradient generated by amphoteric buffers. The latter are the standard carrier ampholytes (e.g. Ampholine, Pharmalyte, Biolyte, Servalyte), used in conventional isoelectric focusing, admixed to Immobiline gels in levels of approximately 0.5-1%. It is here shown that polybuffers 96 (covering the pH 6-9 range) and 74 (covering the pH 4-7 interval) used as eluents in chromatofocusing, can effectively substitute the standard carrier ampholytes with considerable savings (they are 1/16th as expensive as the latter chemicals).  相似文献   

6.
The preparative aspects of isoelectric focusing (IEF) in immobilized pH gradients (IPG) have been investigated as a function of the following parameters: environmental ionic strength (I), gel geometry and shape of pH gradient. As model proteins, hemoglobin (Hb) A and a minor, glycosylated component (HbA1c), with a delta pI = 0.04 pH units, have been selected. The load capacity increases almost linearly, as a function of progressively higher I values, from 0.5 X up to 2 X molarity of buffering Immobiline (pK 7.0) to abruptly reach a plateau at 3 X concentration of buffering ion. The load capacity also increases almost linearly as a function of gel thickness from 1 to 5 mm, without apparently levelling off. When decreasing the pH interval from 1 pH unit (pH 6.8-7.8) to 1/2 pH unit (pH 7.05-7.55) the amount of protein loaded in the HbA zone could be increased by 40%. In 5 mm thick gels, at 2 X pK 7.0 Immobiline concentration, over a 1/2 pH unit span, up to 350 mg HbA (in a 12.5 X 11 cm gel) could be loaded in a single zone, the load limit of the system being around 45 mg protein/ml gel volume.  相似文献   

7.
Using isoelectrofocusing in three pH gradients differing in the initial pH value of the ampholyte gel mixture and in gradient pH range, the isoelectric points for the dimeric and octameric forms of mitochondrial creatine kinase from bovine heart and pigeon breast muscle were determined. The isoelectric points for the dimer and octamer are equal to 9.67 +/- 0.01 and 8.93 +/- 0.05 for the heart enzyme and to 9.56 +/- 0.08 and 8.91 +/- 0.23 for the skeletal muscle enzyme. The correctness of identification of the oligomeric forms of mitochondrial creatine kinase was confirmed by ultracentrifugation in a sucrose density linear gradient. Since creatine kinase is known to bind to mitochondrial membrane cardiolipin by electrostatic forces, it can be assumed that both oligomeric forms of the enzymes can bind to the membranes. However, the properties of the creatine kinase dimer suggest its greater ability to bind to mitochondrial membranes.  相似文献   

8.
A new technique for generating pH gradients in isoelectric focusing is described, based on the principle that the buffering groups are covalently linked to the matrix used as anticonvective medium. For the generation of this type of pH gradient in polyacrylamide gels, a set of buffering monomers, called Immobiline (in analogy with Ampholine), is used. The pH gradient gels are cast in the same way as pore gradient gels, but instead of varying the acrylamide content, the light and heavy solutions are adjusted to different pH values with the aid of the Immobiline buffers. Available Immobiline species make it possible to generate any narrow linear pH gradient between pH 3 and 10. The behaviour of these types of gradients in isoelectric focusing is described.Immobilized pH gradients show a number of advantages compared with carrier ampholyte generated pH gradients. The most important are: (1) the cathodic drift is completely abolished; (2) they give higher resolution and higher loading capacitu; (3) they have uniform conductivity and buffering capacity; (4) they represent a milieu of known and controlled ionic strenght.  相似文献   

9.
A further improvement on the preparative aspects of immobilized pH gradients (IPG) (J. Biochem. Biophys. Methods (1983) 8, 135–172) is described, based on the use of soft (highly diluted) polyacrylamide gels. While in conventional IPGs in 5%T gels an upper load limit of 40–45 mg protein/ml gel volume is found, in 2.5%T gels, containing the same amount of Immobiline, as much as 90 mg protein/ml gel can be applied, without overloading effects. This is an extraordinary amount of material to ba carried by a gel phase, and renders IPG by far the leading technique in any electrophoretic fractionation. A new, two-step casting technique, based on the formation of a %T step and a pH plateau around the application trench, is described. A new method for electrophoretic protein recovery from IPG gel strips, based on embedding on low-gelling agarose (37°C), is reported. The physico-chemical properties of highly diluted gels, in relation to their protein loading ability, are evaluated and discussed. It is recommended that diluted gels (e.g. 3.5%T) be used also in analytical runs, since sharper protein zones are obtained, due to the increased charge density on the polymer coil.  相似文献   

10.
A new method is described for preparative protein purification, based on isoelectric focusing on immobilized pH gradients. The principle is entirely new, as it is based on keeping the protein of interest isoelectric, in a flow-chamber, and focusing the impurities in the Immobiline gel. For this, a hydraulic flow is coupled orthogonally to an electric flow, sweeping away the non-isoelectric impurities from the recycling chamber. The sample flow-chamber is built in the centre of the apparatus, and is coupled to an upper and lower segment of an immobilized pH gradient. The protein to be purified is kept isoelectric in the flow-chamber and prevented from leaving it by arranging for the extremities of the immobilized pH gradient, forming the ceiling and the floor of this chamber, to have isoelectric points just higher (e.g. +0.05 pH units, on the cathodic side) and just lower (e.g. -0.05 pH units, on the anodic side) than the known pI of the species of interest. Macromolecules and small ions leave the flow chamber at a rate corresponding to a first order reaction kinetics (the plot of log C vs. time being linear). In general, for macromolecules, 12 h of recycling under current allow removal of 95% impurities. After 24 h of recycling, the protein of interest is more than 99.5% pure. The recoveries are very high (approaching 100%) as the sample under purification never enters the Immobiline gel and thus does not have to be extracted from a hydrophilic matrix, as typical of preparative gel electrophoresis.  相似文献   

11.
A new method for preparative protein purification is described, based on the use of Immobiline matrices. After electrofocusing, the protein zone of interest is recovered by electrophoretic transfer to a hydroxyapatite gel, from which it is eluted with 0.2 M phosphate buffer, pH 6.8, with yields for the proteins studied in the range 76-98%. For six different proteins, the focusing step gives a common upper limit of approximately 45 mg protein/ml gel as mean concentration in a focused protein zone. It is demonstrated that in practical preparative work, components with a pI difference of 0.007 pH units can be completely resolved, and that on a 5-mm-thick gel of dimensions 240 X 110 mm, samples containing as much as 400 mg of the major protein component can be applied. Focusing of large amounts of a salt-containing sample is demonstrated with the aid of human serum. A theoretical expression is given relating the concentration distribution and maximum protein concentration within a focused zone to the applied voltage, the pH slope used and the zone width. Based on this expression and the finding of an upper concentration limit for a protein we shown how to optimize the parameters in preparative work with immobilized pH gradients in relation to the separation power needed. Finally, it is shown that, in comparison with conventional preparative electrofocusing in polyacrylamide gels, immobilized pH gradients allow a ten-fold increase in load, whilst still giving a resolution comparable to that of analytical isoelectric focusing.  相似文献   

12.
B Lorber  R Giégé 《FEBS letters》1983,156(2):209-216
Isoelectric points and isoelectric focusing behaviour of 10 highly purified eukaryotic aminoacyl-tRNA synthetases from 3 sources, Saccharomyces cerevisiae, Euglena gracilis and Phaseolus vulgaris were examined. The pI-values measured on polyacrylamide gels under native conditions are situated between pH 5.0-7.5. A microheterogeneity was observed for 9 enzymes appearing otherwise homogeneous on gel electrophoresis. A compilation of the isoelectric points of aminoacyl-tRNA synthetases is given and literature data are compared with our experimental results.  相似文献   

13.
The efficient use of preparative protein purification in a multicompartment electrolyzer with Immobiline membranes depends on the knowledge of membrane characteristics. For that purpose, an experimental investigation of the effects of ionic charges on the membrane characteristics has been carried out through the measurements of membrane swelling and conductance. We also investigated the effects on the electrolyzer behaviour of operating parameters such as the Immobiline concentration and the presence of ion-exchange membranes. Data show that polyacrylamide gel degree of swelling is strongly dependent upon the pH and the ionic strength of the bathing solution as well as on the type and molarity of charges incorporated in the gel. The conductance of supported Immobiline gels in contact with uni-univalent chloride solutions has been measured by means of a mercury cell. The membrane conductance is also influenced by the ionic strength of the equilibrium solution and the presence of weak ionizable groups in the gel matrix. This study has demonstrated the close link between electrochemical and electromechanical properties of Immobiline membranes.  相似文献   

14.
A new technique for generating extended pH gradients (5 pH units) in Immobiline gels is reported. The previously described (J. Biochem. Biophys. Methods 7, 1983, 123-142) five-chamber gradient mixer has been replaced by a two-vessel device. A single mixture of the available Immobilines (pK 3.6, 4.6, 6.2, 7.0, 8.5 and 9.3) is made, with relative concentrations adjusted so as to produce the most uniform buffering power throughout the desired pH interval. This mixture is then divided into two portions, which are titrated to the extremes of the required pH span with an acidic titrant (Immobiline pK approximately 1) and a basic species (Immobiline pK 9.95). Highly reproducible pH gradients (pH 4-9) are thus generated, which appear extremely useful for the first dimensioned of 2-dimensional techniques. Our previously reported computer program has been implemented with an optimization algorithm which, given any cocktail of Immobilines, automatically adjusts the relative initial concentrations until the smoothest possible beta power is found. For the first time it is possible to perform IEF under controlled physico-chemical parameters: pH span and linearity, beta power, ionic strength and molarity of the buffering species.  相似文献   

15.
With the synthesis of a new, strongly basic Immobiline (pK 10.3 at 10 degrees C) it has been possible to formulate a new pH 10-11 recipe for focusing very alkaline proteins, not amenable to fractionation with conventional isoelectric focusing in carrier ampholyte buffers. In this formulation, water is added as an acidic Immobiline having pK = 14 and a unit molar concentration (or with a pK = 15.74 and standard 55.56 molarity) since around pH 11 its buffering power becomes significant. The gel contains a 'conductivity quencher', i.e. a density gradient incorporated in the matrix, with the dense region located on the cathodic side (pH 11) for (a) smoothing the voltage gradient on the separation cell and (b) reducing the anodic electrosmotic flow due to the net positive charge acquired by the matrix at pH 11 (1 mM excess protonated amino groups to act as counterions to the 1 mm OH- groups in the bulk water solution generated by the local value of pH 11). Excellent focusing is obtained for such alkaline proteins as lysozyme (pI 10.55), So-6 (a leaf protein, pI 10.49), cytochrome c (pI 10.45) and ribonuclease (pI 10.12).  相似文献   

16.
The production of concentration P.D.''s across the skin of the frog is very intimately related to the pH of the applied solutions. On the alkaline side of an isoelectric point the dilute solution is electropositive; on the acid side this solution becomes electronegative. When the pH is suddenly lowered from a value more alkaline than this isoelectric point to one considerably more acid the change in polarity may occur within a few seconds. The effect is reversible. When a series of unbuffered solutions at different pH values are applied reversal curves may be obtained. When the concentration gradient is .1 N-.001 N KCl the reversal points lie between pH 4.1 and 4.8. When studied in acetate buffers this electromotive reversal is found to be closely correlated with the electrical charge upon the membrane, as determined by electroendosmosis through it. Reversal occurs between pH 4.9 and 5.2. It is concluded that the electromotive behavior of this material is controlled by some ampholyte, or group of ampholytes, within the membrane. This ampholyte is probably a protein. On both sides of their isoelectric point these membranes, in common with protein membranes, behave as if they retarded or prevented the movement through them of ions of the same electrical sign as they themselves bear, while permitting the movement of ions of the opposite sign. It is suggested that this correlation arises because of electrostatic effects between the charged surfaces and ions in the solution.  相似文献   

17.
Modifications of the LKB Immobiline isoelectric focusing (IEF) technique are described for use under conditions that solubilize and denature most proteins (8 M urea and 2% Nonidet-P40). This procedure permits pH gradients that are four- to fivefold shallower than previously available with conventional ampholine-IEF procedures. It can also be used as a first dimension in two-dimensional gel electrophoresis. The advantage of the stable ultranarrow pH gradient is demonstrated by directly comparing the resolution of vertebrate brain tubulins using (i) denaturing conventional ampholine-IEF and (ii) denaturing Immobiline-IEF. Analysis of tubulin on the Immobiline-IEF gel increases the separation distance between the individual tubulins and distinguishes differences among tubulin samples that could not be resolved by conventional ampholine isoelectric focusing.  相似文献   

18.
Most of the problems connected with the use of the Immobiline chemicals (a set of six, non-amphoteric, acrylamido buffers having pK values in the pH 3.5-9.5 interval) can be attributed to the alkaline species (with pK values 6.2, 7.0, 8.5 and 9.3). These compounds, to varying degrees are subjected to two degradation pathways: (a) hydrolysis of the amido bond, producing free acrylic acid and a diamine, the latter unable to be incorporated into the polyacrylamide matrix; (b) spontaneous auto-polymerization, producing a number of oligomers up to n-mers, able to aggregate and precipitate large proteins. Storage of their water solutions as frozen aliquots, a method widely employed, only partially alleviates the problem. Addition of trace-amounts of inhibitors, as lately adopted by the manufacturer, could only reduce the problem of auto-polymerization, but not block the hydrolysis of the amido bond. A new solution has been found, which abolishes both phenomena: storage in n-propanol. As demonstrated by gas chromatography, HPLC analyses and two-dimensional separations of complex samples, storage in organic solvent completely abolishes both hydrolysis and auto-polymerization and allows production of highly reproducible focusing patterns.  相似文献   

19.
The isoelectric points of rat brain synaptosomes, mitochondria and mitoplasts have been determined by using different charged two-phase systems containing dextran and poly(ethylene glycol). The cross-partition diagrams of these organelles show isoelectric points at pH 4.1, 4.5 and 4.7, respectively. The influence of the conformational state of mitochondrial membranes upon their partition in two-phase systems has been studied. Shrunk mitoplasts showed a large change in their partition behavior as reflected by an increased affinity for the lower dextran phase, while shrinkage of mitochondria did not affect their partition. Shrunk mitoplasts showed the same isoelectric point of pH 4.7 as swollen mitoplasts, which indicates that no charge changes occurred on the outer side of the inner mitochondrial membrane during shrinkage of mitoplasts.  相似文献   

20.
Cytoplasmic membranes were isolated from late-exponential phase Staphylococcus aureus 6539 P and the membrane proteins examined under non-denaturing conditions by thin-layer isoelectric focusing (TLIEF) in a pH 3.5-9.5 gradient. Isolated membrane preparations retained protein integrity as judged by the demonstration of membrane bound adenosine triphosphatase (ATPase) activity in addition to four other solubilized membrane enzyme markers. Membranes were effectively solubilized with 2.5% Triton X-100 (final concentration). Examination of Triton X-100 solubilized membrane preparations established the presence of 22 membrane proteins with isoelectric points between 3.7 and 6.0. The focused proteins displayed the following enzymatic activities and isoelectric points by zymogram methods: ATPase (EC 3.6.1.3), 4.20; malate dehydrogenase (EC 1.1.1.37), 3.90; lactate dehydrogenase (EC 1.1.1.27), 3.85; two membrane proteins exhibited multiple bands upon enzymatic staining NADH dehydrogenase (EC 1.6.99.3), 4.25, 4.35; succinate dehydrogenase (EC 1.3.99.1), 4.85, 5.10, 5.35.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号