首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BORRILL  MARTIN 《Annals of botany》1961,25(3):303-312
The length of successive leaves on the main shoot was studiedin six closely related populations of Dactylis, and the epidermalcell pattern of the 6th leaf was examined in detail. In general,cell and blade length increased together in consecutive leaves.The cell pattern was sufficiently distinctive for the cultivarsto be separable using epidermal cell length and width, in asimple replicated test.  相似文献   

2.
Quantitative anatomical and other measurements were made onfully expanded flag leaves of a series of diploid, tetraploidand hexaploid Triticum and Aegilops species, and photosyntheticrates per unit leaf area were measured at light saturation (Pmax). Diploids had the highest Pmax, hexaploids the lowest with tetraploidsbeing intermediate. The anatomical features of tetraploids andhexaploids were generally similar, but different from the diploids.The diploids had thinner leaves with less dry matter and chlorophyllper unit area. The surface area of the mesophyll cells per unitvolume of mesophyll tissue was similar for all ploidy levels,as was the ratio mesophyil cell surface area per unit leaf area.It is argued that while these anatomical features are unlikelyto account for the observed variation in Pmax, it is possiblethat other structural factors with which they are correlatedmay causally influence Pmax. One such feature is the averagediffusion path length from the plasmalemma at the cell surfaceto the sites of carboxylation. Anatomy, photosynthesis, mesophyll, cell size, Triticum, Aegilops, polyploidy  相似文献   

3.
Variation in Mesophyll Cell Number and Size in Wheat Leaves   总被引:1,自引:0,他引:1  
The numbers of mesophyll cells in wheat leaves were determinedin a variety of wheat species differing in ploidy level andin leaves from different positions on the wheat plant. Leafsize and mesophyll cell number are linearly related in bothcases but differences were observed in mesophyll cell numberper unit leaf area with changing leaf size. Where changes incell size are caused either by nuclear ploidy or leaf position,differences in mesophyll cell number per unit leaf are negativelycorrelated with mesophyll cell plan area. The decrease in cellsize with increasing leaf position also results in a greaternumber of chloroplasts per unit leaf area. These results arediscussed in relation to anatomical variation of the wheat leaf. Mesophyll cell, cell numbers, leaf size, Triticum  相似文献   

4.
SASAHARA  T. 《Annals of botany》1982,50(4):491-497
The leaf mesophyll of Triticum and Aegilops is constructed fromcells with one to ten arms. Volume of mesophyll cells per unitleaf area was larger in some monogenomic (A and B genome) plantsthan in polyploids, while leaf volume per unit leaf area wassmaller in the former than in the latter. Consequently, thecompactness of leaf blade is higher in these monogenomic plantsthan in the polyploids. D genome plants showed a much lowervolume of both mesophyll cells and leaf blade per unit leafarea, but the compactness of the leaf blade was generally higherthan in the polyploids. Mesophyll surface area per unit leaf area tended to be largerin the A and B genome than in the D genome and polyploid plants.Out of the polyploids, AB genome plants showed a larger mesophyllsurface area per unit leaf area as compared with AG and ABDgenome plants. Therefore, either the D or the G genome seemsto have the effect of decreasing the mesophyll surface areaper unit leaf area. A decrease of the compactness of leaf bladeand the mesophyll surface area per unit leaf area in the polyploidswas considered to be associated with the reduction of theirphysiological activities on the unit leaf area basis. Triticum, Aegilops, wheat, mesophyll surface area, leaf anatomy, genome, photosynthesis  相似文献   

5.
We wished to determine the nature of differences in epidermalcell numbers and dimensions between leaves of different lengthin mutants of barley (Hordeum vulgare L. ‘Himalaya’).Three comparisons were made: leaf one (L1)vs. leaf four (L4);wild typevs. nine dwarf mutants and wild typevs. a slender mutant.L1 was shorter than L4, and for most lines this was associatedwith a change in epidermal cell number for the blade, and inboth cell number and length for the sheath. Compared to wildtype, the smaller leaves of dwarf plants generally had shorterand fewer cells in both blade and sheath. The blade of slenderplants was the same length (L1) or longer (L4) than wild type,while the sheath was longer than that of wild type for bothL1 and L4. Slender plants had longer but fewer cells than thewild type along the blade of L1, and shorter but more cellsfor the blade of L4. In the sheath, slender plants had longerand more (L1) or fewer (L4) cells than did the wild type. ForL1, variation in blade width amongst the barley lines was associatedwith a change in file width and file number. For L4, blade widthvaried only with file number, except for slender plants wherenarrow blades were associated with reduced file width. Hencethere was no consistent correlation between changes in cellsize or cell (or file) number with changes in leaf length orwidth. Differences depended on the leaf (L1vs. L4), leaf part(bladevs. sheath), and the nature of the mutation (dwarfvs.slender). Barley (Hordeum vulgare L. ‘Himalaya’); leaf epidermis; dwarf mutant; slender mutant  相似文献   

6.
Elaeocarpus hookerianus Raoul is a profoundly heteroblastictree native to New Zealand. We describe and quantify changesin leaf morphology and anatomy, and in branching pattern atdifferent levels of insertion. Discrete juvenile, adolescentand adult phases were identified. The divaricating juvenilebore small leaves with thin laminae and an anatomy typical ofshade-plants. Juveniles had dense canopies, many thin horizontaland vertical axes, wide branch angles and highly variable branchingpatterns. Adolescents had larger leaves, fewer horizontal axeson a single, leading vertical axis, and a more consistent branchingpattern. Adults were arborescent, producing the largest, mostdifferentiated leaves on the stoutest and longest horizontalbranches. Data indicate a three-phased strategy for: (a ) providingresponsive, energy-efficient shoot systems under low-light regimes;(b ) growing rapidly to the forest canopy; and (c ) exploitingfor the forest canopy environment. Elaeocarpus hookerianus Raoul; heteroblasty; leaf morphology; leaf anatomy; branching pattern  相似文献   

7.
The second leaf of wheat was used as a model system to examinethe effects of the Rht3 dwarfing gene on leaf growth. Comparedto the rht3 wild type, the Rht3allele decreased final leaf length,surface area and dry mass by reducing the maximum growth rates,but without affecting growth duration. Gibberellic acid (GA3)increased final leaf length and maximum growth rate in the rht3wild type, but was without effect on the Rht3 mutant, whichis generally regarded as being non-responsive to gibberellin(GA). Paclobutrazol, an inhibitor of GA biosynthesis, decreasedfinal leaf length and maximum growth rate in the rht3 wild typeto values similar to those in the untreated Rht3 mutant. NeitherGA3 nor paclobutrazol affected the duration of leaf growth.The decrease in leaf length was produced by reduction of celllength rather than cell number. The maximum relative elementalgrowth rate (REGR) for cell extension was essentially the samein all treatments, as was the time between the cells leavingthe meristem and achieving maximum extension rate. The differencesbetween the genotypes and treatments were all almost entirelydue to differences in the time taken from the attainment ofmaximum REGR of cell extension to the cessation of extension.This was reflected in the length of the extension zone, whichwas approximately 6–8 per cent of final leaf length. Theeffects of the Rht3 allele, GA3 and paclobutrazol all appearto be on the processes which promote the cessation of cell elongation. Key words: Cell extension, gibberellin, leaf growth, Rht3 gene, Triticum, wheat  相似文献   

8.
Epidermal Cell Division and the Coordination of Leaf and Tiller Development   总被引:7,自引:2,他引:5  
Initiation and development of grass leaves and tillers are oftendescribed individually with little attention to possible interrelationshipsamong organs. In order to better understand these interrelationships,this research examined epidermal cell division during developmentaltransitions at the apical meristem of tall fescue (Festuca arundinaceaSchreb.). Ten seedlings were harvested each day for a 9-d period,and lengths of main shoot leaves and primary tillers were measured.In addition, numbers and lengths of epidermal cells were determinedfor 0·5 mm segments along the basal 3 mm of each leafand tiller. Primordia development and onset of rapid leaf elongationwere characterized by an increase in the number of cells perepidermal file with mean cell length remaining near 20 µmper cell. After the leaf had lengthened to 1-1·5 mm,cells near the leaf tip ceased dividing and increased in length,at which time leaf elongation rate increased rapidly. Liguleformation, marking the boundary between blade and sheath cells,occurred prior to leaf tip emergence above the whorl of oldersheaths, while the earliest differentiation between blade andsheath cells probably began when leaves were < 1 mm long.Major transitions in leaf and tiller development appeared tobe synchronized among at least three adjacent nodes. At theoldest node, cessation of cell division in the leaf sheath wasaccompanied by initiation of cell division and elongation inthe associated tiller bud. At the next younger node the ligulewas being initiated, while at the youngest node cell divisioncommenced in the leaf primordium, as elongation of a new leafblade began. This synchronization of events suggests a key rolefor the cell division process in regulating leaf and tillerdevelopment.Copyright 1994, 1999 Academic Press Festuca arundinacea Schreb., tall fescue, cell division, leaf initiation, tillering, ligule development  相似文献   

9.
Measurements of the epidermal cells in Lolium temulentum andassessments of cell number indicate that differences in bladewidth are due mostly to variations in cell number, whereas changesin blade and sheath length result mainly from differences incell length. A marked increase in length of the flag-leaf aheath,however, was related to an increase in cell number. Considerable changes in the relative proportions of leaf bladeand sheath were observed in the flag leaf, and the leaves immediatelypreceding it, associated with inflorescence initiation. As oneconsequence of this the area of the flag leaf, the largest onthe shoot, is virtually constant under different environmentalcondi-tions. It is suggested that this aspect of correlateddevelopment is related to the nutrition of the panicle, sincein annual grasses such as the cereals the flag leaf may be responsiblefor producing up to 30 per cent. of the starch in the grain.  相似文献   

10.
The experimental growth retardant WL83801, applied as a root drench, had a rapid and persistent effect in retarding the growth and development of leaves in L. perenne. Leaves of the main shoot were greatly reduced in length, were broader, and appeared faster than in control plants. The rate of extension of individual leaves was greatly reduced in retarded plants but still followed a diurnal pattern that closely corresponded with temperature. There was evidence that leaf extension was far less responsive to temperature in treated plants. At the cellular level WL83801 had no significant effect on leaf blade cell number, thus reductions in leaf length were associated with the retardation of cell elongation. Changes in leaf structure were also observed. These changes in the pattern of leaf growth and development are discussed in relation to the primary mode of action of the growth retardant in interfering with gibberellin biosynthesis.  相似文献   

11.
The wildtype leaf blade of Pisum sativum possesses proximalleaflets and distal tendrils, which may be altered by two recessivemutations that affect pinna morphology, afila (afaf) and tendrilless(tltl). Using morphological observations and SEM, the variationin leaf forms along the plant axis and leaf development werecharacterized for plants heterozygous at the Af and/or Tl loci.The Af and Tl genes interacted to affect many characteristicsof shoot ontogeny, including rate changes in leaf blade lengthand complexity increases, as well as time to flowering. TheAf gene retarded early vegetative development and acceleratedthe time to flowering. The leaf phenotypes of these heterozygousgenotypes were specified mainly by changes in the timing ofmajor developmental events. The data support the hypothesesthat both genes are heterochronic in nature and that the pealeaf blade consists of three genetically- and developmentally-determined regions: proximal, distal and terminal. Copyright2000 Annals of Botany Company Heterochrony, leaf development, shoot ontogeny, Pisum sativum L., garden pea, afila,tendrilless .  相似文献   

12.
Seino  Tatsuyuki 《Annals of botany》2001,87(3):347-354
The shoot growth of a deciduous tree, Acanthopanax sciadophylloidesFranch. et Savat. shows inter-annual intermittent repetitionof two distinctive phases, a stagnant growth phase (S-phase)and vigorous extension-growth (E-phase). To help understandthe differentiation mechanism, shoot development was studiedover time in both shoot phases. S-phase and E-phase shoots weredistinguished from each other by morphological traits: S-phaseshoots are characterized by higher allocation to leaves anda shorter period of stem growth, while E-phase shoots show continuousstem extension over the growing season. Specific leaf area didnot differ between the two phases. This shoot differentiationwas similar to the morphological differentiation of shoots betweenlong vs. short shoots found in some temperate trees. Leavesof both phases were well-dispersed through adjustment of petiolelength and leaf-blade size to reduce mutual shading within ashoot. Stem-wood density of current-year shoots was lower inE-phase compared with S-phase shoots. Leaves produced earlyin the season affected the growth phase of the following year.These results suggest that annual shoot differentiation of A.sciadophylloides was determined during the previous season andreflects leaf productivity in a given habitat during that growingseason. Copyright 2001 Annals of Botany Company Acanthopanax sciadophylloides, Araliaceae, biomass allocation, intermittent shoot growth, leaf display, shoot architecture, shoot differentiation  相似文献   

13.
The objective of this experiment was to determine how diurnalvariations in rates of leaf extension of wheat plants in anirrigated field crop were related to temperatures and carbohydrateconcentrations of the extension zone. Leaves 3, 4. 5 of themain shoot were studied as each emerged from the encirclingsheath. The carbohydrates in the extension zone of the emergingleaf were analysed by converting them to glucose-6-phosphateand then measuring the reduction of NADP in the presence ofglucose-6-phosphate dehydrogenase. Average hexose concentrations(glucose and fructose) increased each day from 4 up to 5 mgg–1 fr. wt. and sucrose from 3 up to 7 mg g–1 fr.wt. with the maximum in mid-afternoon; there were no differencesamong the three leaves. Concentrations of fructans were constantthroughout the day for leaves 3 and 4 but showed a mid-afternoonrise in leaf 5. The average concentrations of fructans in theextension zones increased from 0 to 5 to 11 mg g–1 fr.wt. for leaves 3, 4, and 5 respectively and was consistent withthe conclusion that there was an increasing over-supply of carbohydratesfor growth of the shoot as the plant increased in size. Ratesof leaf extension were correlated with temperature but not withhexose concentrations. We concluded that the supply of carbohydratesdid not limit the growth of leaves under field conditions buttheir utilization in leaf growth was limited by temperature.The rates of leaf extension increased exponentially with temperatureand the relationship was described by the Arrhenius equation.The Q10 at 15 °C for leaf extension was 2.7 for leaves 4and 5 and 3.2 for leaf 3.  相似文献   

14.
The gibberellin insensitivity genes, Rht1 and Rht2, reducedepidermal cell lengths in leaves of isogenic lines of field-and laboratory-grown wheat (Triticum aestivum L.). Rht dosagesof zero (wild type), two (semi-dwarf) and four alleles (doubledwarf) had a linear negative effect on cell length in flag leavesof field-grown plants, and in the sheaths and blades of leafnumber 1 in laboratory grown plants. Decrease in cell length,rather than reduced cell number, accounted for most to all ofthe reduction in blade and sheath length. In sheaths, cell widthincreased with Rht dosage, but not sufficiently to compensatefor decreased length in determining average projected surfacearea. Rates of extension of leaf number 1 in laboratory-grownplants were negatively and linearly correlated with Rht dosage.Maximal growth rate was maintained longer in wild type thanin double dwarf, but the total duration of measurable extensionin leaf number 1 was not affected by Rht dosage. Cell size, elongation, Rht, wheat, Triticum aestivum L  相似文献   

15.
The temperature of the roots and shoots of Zea mays plants werevaried independently of each other and the rates of leaf extensionand leaf water potentials were measured. Restrictions of leafextension occurred when root temperatures were lowered from35 to 0 °C, but leaf water potentials were lowered onlyat root temperatures below 5 °C. Similar changes in ratesof leaf extension were measured at air temperatures from 30to 5 °. Between 30 and 35 °C air temperature, in anunsaturated atmosphere, restrictions of leaf extension wereassociated with low leaf water potentials. It was concluded that, at root temperatures 5 to 35 °C,and shoot temperatures 5 to 30 °C, water stress was notthe main factor restricting the extension of Zea mays leaves.  相似文献   

16.
The wildtype leaf of the garden pea possesses proximal pairsof leaflets and distal pairs of tendrils in the blade region.Theafila (af) mutation causes leaflets to be replaced by compound(branched) tendrils. We characterized the morphological variationin leaf form along the plant axis and leaf development in earlyand late postembryonic leaves onafilaplants to infer the roleof theAfgene. Leaf forms are more diverse early in shoot ontogenyonafilaplants.Afinfluences pinna length and pinna branchingin addition to pinna type. Pinna initiation in the proximalregion ofafilaleaf primordia is basipetal and delayed comparedto wildtype plants. In addition, pinna development in the proximalregion ofafilaleaves occurs for a longer period of time thanon wildtype leaf primordia. Therefore,Afregulates the timingand direction of leaf developmental processes in the proximalregion of the leaf, but has little effect on the distal region.These data support the heterochronic model of pea leaf morphogenesisproposed by Luet al. (International Journal of Plant Science157:311–355, 1996).Copyright 1999 Annals of Botany Company. afila,Fabaceae, garden pea, heterochrony, leaf morphogenesis,Pisum sativum.  相似文献   

17.
The effect of light quality on the extension growth of vegetativeshoots and on the final size of their leaves was investigatedin plants of Lolium multiflorum, Sporobolus indicus and Paspalumdilatatum. Three experimental approaches were used, (a) redor far-red end-of-day irradiations of sunlight-grown plants,(b) different red/far-red ratios of white light in a growthroom and (c) sunlight enrichment with radiation of differentred/far-red ratios or with different amounts of far-red lightduring the photoperiod. Plants treated with end-of-day far-redor low red/far-red ratios throughout the photoperiod developedlonger leaves and, as a result, longer shoots. This effect wasmore marked in leaf sheaths than in blades. Tiller extensionand leaf sheath length increased with the amount of far-redadded to sunlight in a simple hyperbolic relationship. Theseresults show that vegetative grass shoots respond to light qualityin a way similar to internodes of dicotyledonous plants. Lolium multiflorum Lam., Sporobolus indicus (L.), Paspalum dilatatum (Poir.), leaf growth, tiller growth, photomorphogenesis  相似文献   

18.
SMITH  D. L. 《Annals of botany》1969,33(3):505-514
By using aseptic culture methods it has proved possible to studythe roles of leaves and roots in the control of inflorescenceinitiation and development in Carex. Removal of leaves upsetsinitiation and growth of the inflorescence and it is concludedthat the continued stimuli from the leaves essential for normaldevelopment are not supplied by leaves appreciably less thanhalf grown. Removal of roots or root apices upsets inflorescenceinitiation and branching. It is probable that a stimulus fromthe roots promotes initiation but is not essential, whereasa factor produced by actively growing roots is essential fornormal branching to occur. The only substance tested which couldalter the degree of branching was benzyladenine. On the evidenceavailable it is suggested that normal branching of the inflorescencemay depend on an adequate supply of cytokinin from the roots.  相似文献   

19.
Partial inhibition of extension growth of the primary leaf occurswhen whole Triticum seedlings are immersed in aerated solutionsof IAA but is replaced by growth promotion when sucrose is addedto the external solution. In seedlings in which the coleoptilehas been excised, IAA increases the growth of the leaf bothwith and without additional sucrose. Inhibition of the leaf by moderate concentrations of IAA nolonger occurs when the seedling is detached from the endosperm.Sucrose added to the external solution raised the percentageelongation of the coleoptile almost to the level of that attainedin intact seedlings without additional carbohydrate. It alsoenabled the leaf to show a positive growth response with IAA. The results indicate that in intact seedlings treated with IAAthe growth of the primary leaf is markedly diminished owingto diversion of carbohydrate to the coleoptile if the growthof the latter is promoted as a result of the treatment. Whenthe competition of the coleoptile for carbohydrate is diminishedor eliminated, acceleration of the growth of the primary leafby IAA becomes apparent. In addition to the endogenous rhythm, with a period close to24 hours, induced in the growth-rate of the coleoptile whenseedlings of Avena are transferred from red light to darkness,a similar rhythm, with a slightly longer period, is inducedin the growth-rate of the primary leaf. This rhythm persistsin elongating leaves so long as they remain within the coleoptile.It can be recorded for at least 100 hours in deseeded seedlings. When intact seedlings of Avena are immersed for one hour inrelatively high concentrations of IAA and then transferred todistilled water for 18 hours, the elongation of the coleoptileis greater and the inhibition of the leaf is less than whenthey are transferred to humid air. Sections of the leaf of Triticum showed a slight increase inelongation in concentrations of IAA up to 5 mg./l., but no evidencewas obtained that sections of leaf and coleoptile exert any.influenceon each other's elongation when floated together on solutionsof IAA.  相似文献   

20.
Light microscopy demonstrated that the apparently amorphous,achlorophyllous tissue at the base of in vitro shoot clump cultureof Narcissus was comparable in structure to the basal plateof Narcissus bulbs. Both had very complex vascularisation andsmall, densely packed parenchymatous cells. In shoot clump cultures, primordia were produced by meristematiczones at the surface of this achlorophyllous tissue, very closeto the base of leaves. Single leaf units excised from the invitro shoot clump cultures with a wedge of basal achlorophylloustissue were highly organogenic when used as secondary explantsfor in vitro culture of Narcissus. No organogenesis occurredin the absence of the leaf base and achlorophyllous (basal plate)tissue and little organogenesis occurred unless the leaf baseand basal plate tissue were immersed in the culture medium (i.e.explants inoculated into liquid medium or upright in agar-solidifiedmedium). After two 5-week culture passages in liquid medium, more thanfive leaves were produced per leaf base inoculated. Thus rapidmicropropagation of Narcissus can be achieved using only thebase of single leaf units excised from shoot clump cultures.Copyright1993, 1999 Academic Press Anatomy, basal plate, bulb, in vitro, leaf culture, Narcissus, organogenesis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号