首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beta-cell biochemical mechanisms that account for the compensatory hyperfunction with insulin resistance (so-called beta-cell adaptation) are unknown. We investigated glucose metabolism in isolated islets from 10-12-week-old Zucker fatty (ZF) and Zucker lean (ZL) rats (results expressed per mg/islet of protein). ZF rats were obese, hyperlipidemic, and normoglycemic. They had a 3.8-fold increased beta-cell mass along with 3-10-fold increases in insulin secretion to various stimuli during pancreas perfusion despite insulin content per milligram of beta-cells being only one-third that of ZL rats. Islet glucose metabolism (utilization and oxidation) was 1.5-2-fold increased in the ZF islets despite pyruvate dehydrogenase activity being 30% lowered compared with the ZL islets. The reason was increased flux through pyruvate carboxylase (PC) and the malate-pyruvate and citrate-pyruvate shuttles based on the following observations (% ZL islets): increased V(max) of PC (160%), malate dehydrogenase (170%), and malic enzyme (275%); elevated concentrations of oxaloacetate (150%), malate (250%), citrate (140%), and pyruvate (250%); and 2-fold increased release of malate from isolated mitochondria. Inhibition of PC by 5 mm phenylacetic acid markedly lowered glucose-induced insulin secretion in ZF and ZL islets. Thus, our results suggest that PC and the pyruvate shuttles are increased in ZF islets, and this accounts for glucose mitochondrial metabolism being increased when pyruvate dehydrogenase activity is reduced. As the anaplerosis pathways are implicated in glucose-induced insulin secretion and the synthesis of glucose-derived lipid and amino acids, our results highlight the potential importance of PC and the anaplerosis pathways in the enhanced insulin secretion and beta-cell growth that characterize beta-cell adaptation to insulin resistance.  相似文献   

2.
The coupling of the quinoprotein glucose dehydrogenase to the electron transport chain has been investigated in Acinetobacter calcoaceticus. No evidence was obtained to support a previous suggestion that the soluble form of the dehydrogenase and the soluble cytochrome b associated with it are involved in the oxidation of glucose. Analysis of cytochrome content, and of reduction of cytochromes in membranes by substrates, and of sensitivity to cyanide indicated that glucose, succinate and NADH are all oxidized by way of the same b-type cytochrome(s) and cytochrome oxidases (cytochrome o and cytochrome d). Mixed inhibition studies [with KCN and hydroxyquinoline N-oxide (HQNO)] showed that the b-type cytochrome(s) formed a binary complex with the o-type oxidase and that there was thus no communication between the electron transport chains at the cytochrome level. Measurements of the reduction of ubiquinone-9 by glucose and NADH, and inhibitor studies using HQNO, indicated that the ubiquinone mediates electron transport from both the glucose and NADH dehydrogenases. In some conditions the quinone pool facilitated communication between the 'glucose oxidase' and 'NADH oxidase' electron transport chains, but in normal conditions these chains were kinetically distinct.  相似文献   

3.
The mitochondrial pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate, linking glycolysis to the tricarboxylic acid cycle and fatty acid (FA) synthesis. Knowledge of the mechanisms that regulate PDC activity is important, because PDC inactivation is crucial for glucose conservation when glucose is scarce, whereas adequate PDC activity is required to allow both ATP and FA production from glucose. The mechanisms that control mammalian PDC activity include its phosphorylation (inactivation) by a family of pyruvate dehydrogenase kinases (PDKs 1-4) and its dephosphorylation (activation, reactivation) by the pyruvate dehydrogenase phosphate phosphatases (PDPs 1 and 2). Isoform-specific differences in kinetic parameters, regulation, and phosphorylation site specificity of the PDKs introduce variations in the regulation of PDC activity in differing endocrine and metabolic states. In this review, we summarize recent significant advances in our knowledge of the mechanisms regulating PDC with emphasis on the PDKs, in particular PDK4, whose expression is linked with sustained changes in tissue lipid handling and which may represent an attractive target for pharmacological interventions aimed at modulating whole body glucose, lipid, and lactate homeostasis in disease states.  相似文献   

4.
An adhE, ldhA double mutant Escherichia coli strain, SBS110MG, has been constructed to produce succinic acid in the presence of heterologous pyruvate carboxylase (PYC). The strategic design aims at diverting maximum quantities of NADH for succinate synthesis by inactivation of NADH competing pathways to increase succinate yield and productivity. Additionally an operational PFL enzyme allows formation of acetyl-CoA for biosynthesis and formate as a potential source of reducing equivalents. Furthermore, PYC diverts pyruvate toward OAA to favor succinate generation. SBS110MG harboring plasmid pHL413, which encodes the heterologous pyruvate carboxylase from Lactococcus lactis, produced 15.6 g/L (132 mM) of succinate from 18.7 g/L (104 mM) of glucose after 24 h of culture in an atmosphere of CO(2) yielding 1.3 mol of succinate per mole of glucose. This molar yield exceeded the maximum theoretical yield of succinate that can be achieved from glucose (1 mol/mol) under anaerobic conditions in terms of NADH balance. The current work further explores the importance of the presence of formate as a source of reducing equivalents in SBS110MG(pHL413). Inactivation of the native formate dehydrogenase pathway (FDH) in this strain significantly reduced succinate yield, suggesting that reducing power was lost in the form of formate. Additionally we investigated the effect of ptsG inactivation in SBS110MG(pHL413) to evaluate the possibility of a further increase in succinate yield. Elimination of the ptsG system increased the succinate yield to 1.4 mol/mol at the expense of a reduction in glucose consumption of 33%. In the presence of PYC and an efficient conversion of glucose to products, the ptsG mutation is not indispensable since PEP converted to pyruvate as a result of glucose phosphorylation by the glucose specific PTS permease EIICB(glu) can be rediverted toward OAA favoring succinate production.  相似文献   

5.
Glucose-6-phosphate dehydrogenase (G6PDH) is an important lens enzyme diverting about 14% of the tissue glucose to the hexose monophosphate shunt pathway. The main function of such a pronounced activity of the enzyme is to support reductive biosyntheses, as well as to maintain a reducing environment in the tissue so as to prevent oxy-radical induced damage and consequent cataract formation. Sugars are one of the well-known cataractogenic agents. Several reports suggest that the cataractogenic effect of the sugars in diabetes as well as in normal aging is initiated by the glycation of the proteins including the enzymes and subsequent formation of more complex and biologically inactive or harmful structures. In a diabetic lens the concentration of fructose exceeds significantly the concentration of glucose, suggesting that the contribution of fructosylation may be greater than that of glucosylation. These studies were undertaken to examine further the possibility that in addition to glycation, generation of oxygen free radicals by fructose and consequent oxidative modifications in certain enzymes may be an important participant in the cataractogenic process. This hypothesis was tested by using G6PDH. The enzyme was incubated with various levels of fructose (0–20 mM) and its activity determined as a function of time. This led to a significant loss of its activity, which was prevented by superoxide dismutase, catalase, mannitol and myoinositol. Most interestingly, pyruvate at levels between 0.2 and 1.0 mM also offered substantial protection. Hence, the results, while elucidating further the mechanism of enzyme deactivation by sugars such as fructose, also demonstrate the possibility of therapeutic prevention of cataracts by pyruvate and other such keto acids, in diabetes and other disabilities involving oxygen free radicals in the pathogenetic process.  相似文献   

6.
Glucose-6-phosphate dehydrogenase (G6PDH) is an important lens enzyme diverting about 14% of the tissue glucose to the hexose monophosphate shunt pathway. The main function of such a pronounced activity of the enzyme is to support reductive biosyntheses, as well as to maintain a reducing environment in the tissue so as to prevent oxy-radical induced damage and consequent cataract formation. Sugars are one of the well-known cataractogenic agents. Several reports suggest that the cataractogenic effect of the sugars in diabetes as well as in normal aging is initiated by the glycation of the proteins including the enzymes and subsequent formation of more complex and biologically inactive or harmful structures. In a diabetic lens the concentration of fructose exceeds significantly the concentration of glucose, suggesting that the contribution of fructosylation may be greater than that of glucosylation. These studies were undertaken to examine further the possibility that in addition to glycation, generation of oxygen free radicals by fructose and consequent oxidative modifications in certain enzymes may be an important participant in the cataractogenic process. This hypothesis was tested by using G6PDH. The enzyme was incubated with various levels of fructose (0-20 mM) and its activity determined as a function of time. This led to a significant loss of its activity, which was prevented by superoxide dismutase, catalase, mannitol and myoinositol. Most interestingly, pyruvate at levels between 0.2 and 1.0 mM also offered substantial protection. Hence, the results, while elucidating further the mechanism of enzyme deactivation by sugars such as fructose, also demonstrate the possibility of therapeutic prevention of cataracts by pyruvate and other such keto acids, in diabetes and other disabilities involving oxygen free radicals in the pathogenetic process.  相似文献   

7.
8.
This study aimed at increasing the pyruvate productivity of a multi-vitamin auxotrophic yeast Torulopsis glabrata by redirecting NADH oxidation from adenosine triphosphate (ATP)-production pathway (oxidative phosphorylation pathway) to non-ATP production pathway (fermentative pathway). Two respiratory-deficient mutants, RD-17 and RD-18, were screened and selected after ethidium bromide (EtBr) mutagenesis of the parent strain T. glabrata CCTCC M202019. Compared with the parent strain, cytochrome aa 3 and b in electron transfer chain (ETC) of RD-18 and cytochrome b in RD-17 were disrupted. As a consequence, the activities of key ETC enzymes of the mutant RD-18, including F0F1-ATP synthase, complex I, complex I + III, complex II + III, and complex IV, decreased by 22.2, 41.6, 53.1, 23.6, and 84.7%, respectively. With the deficiency of cytochromes in ETC, a large amount of excessive cytosolic NADH was accumulated, which hampered the further increase of the glycolytic flux. An exogenous electron acceptor, acetaldehyde, was added to the strain RD-18 culture to oxidize the excessive NADH. Compared with the parent strain, the concentration of pyruvate and the glucose consumption rate of strain RD-18 were increased by 26.5 and 17.6%, respectively, upon addition of 2.1 mM of acetaldehyde. The strategy for increasing the glycolytic flux in T. glabrata by redirecting the NADH oxidation pathway may provide an alternative approach to enhance the glycolytic flux in yeast.  相似文献   

9.
Oxytocin, a nonapeptide posterior pituitary hormone, which is known to increase glucose oxidation in fat cells like insulin, is shown here to stimulate pyruvate dehydrogenase activity in these cells. The process appears to involve the activation of preexisting molecules since there was no change in the total enzyme content after full activation. The effect of oxytocin, as well as of insulin, appears to be mediated by endogenous H2O2 formation, as evident from (i) the enhanced [14C]formate oxidation and its greater inhibition by 3-amino-1,2,4-triazole in the hormone-treated cells than in the control. This is a measure of the catalase:H2O2 complex, and the dose dependence of this response is found to be identical with that of glucose oxidation via the hexose monophosphate shunt pathway and of pyruvate dehydrogenase activity; and (ii) treatment of the cells with low concentration of exogenous H2O2 causes the activation of pyruvate dehydrogenase to the extent which is comparable with the effect of the hormones. The ED50 of oxytocin was 7 × 10?9m, whereas the ED50 of insulin was 5 × 10?11m. The reduced, inactive (SH) derivatives of the hormones had the same dose-response relationship, but considerably lower effect (10 to 20% of the native molecules of the hormones), indicating the significant role of the disulfide bridge(s) in eliciting these metabolic responses. The stimulation of PDH by oxytocin or insulin is found to be essentially independent of medium glucose which, however, can sustain the response apparently by recycling the intracellular oxidation-reduction state. However, unlike insulin, oxytocin fails to stimulate the rapid uptake of 3-O-[3H]methyl-d-glucose in these cells. The data illustrate that the major metabolic actions of insulin, viz., glucose utilization and lipogenesis, are shared by another heterologous polypeptide hormone, e.g., oxytocin, through a common effector, H2O2. It is suggested that (i) oxytocin may play a limited surrogate role for insulin in these cells; and (ii) H2O2 production may be the general basis of oxytocin's action.  相似文献   

10.
The aim of this investigation was to further characterize the process of interleukin-1 beta (IL-1 beta) induced nitric oxide production in isolated pancreatic islets. It was found that both IL-1 beta and nitroprusside increased islet nitrite production. This effect was paralleled by inhibition of islet aconitase activity and glucose oxidation rates. Neither trifluoroperazinen or aminopterin could prevent the IL-1 beta induced increase in nitrite production, aconitase inhibition and decrease in glucose oxidation rates. In a second series of experiments, isolated mouse pancreatic islets were exposed to IL-1 beta for 24 h and subsequently used for nitrite production, aconitase activity and glucose oxidation determinations. The islets responded to IL-1 beta with an increased nitrite production and a decreased activity of aconitase, whereas the islet glucose oxidation rates were not decreased. It is concluded that IL-1 beta in both rat and mouse islets induces nitric oxide formation and that this induction leads to the inhibition of the Krebs cycle enzyme aconitase. In rat islets this probably leads to an inhibited insulin secretion, whereas IL-1 beta in mouse islets suppresses insulin secretion by a non-mitochondrial mechanism.  相似文献   

11.
A method was developed to prepare peroxisome-enriched fractions depleted of microsomes and mitochondria from cultured skin fibroblasts. The method consists of differential centrifugation of a postnuclear supernatant followed by density gradient centrifugation on a discontinuous Metrizamide gradient. The activity of hexacosanoyl-CoA synthetase was subsequently measured in postnuclear supernatants and peroxisome-enriched fractions prepared from cultured skin fibroblasts from control subjects and patients with X-linked adrenoleukodystrophy. Whereas the hexacosanoyl-CoA synthetase activity in postnuclear supernatants of X-linked adrenoleukodystrophy fibroblasts was only slightly decreased (77.8 +/- 4.4% of control (n = 15], enzyme activity was found to be much more markedly reduced in peroxisomal fractions isolated from the mutant fibroblasts (19.6 +/- 6.7% of control (n = 5]. This is a direct demonstration that the defect in X-linked adrenoleukodystrophy is at the level of a deficient ability of peroxisomes to activate very long chain fatty acids, as first suggested by Hashmi et al. [Hashmi, M., Stanley, W. and Singh, I. (1986) FEBS Lett. 86, 247-250].  相似文献   

12.
13.
Rat heart mitochondria have been incubated with concentrations of pyruvate from 50 to 500 μm as substrate in the presence or absence of an optimal concentration of palmitoylcarnitine and with respiration limited by phosphate acceptor. The rate of pyruvate utilization has been determined and compared with the amount of active (dephosphorylated) pyruvate dehydrogenase measured in samples of mitochondria taken throughout the experiments and assayed under Vmax conditions. At a given pyruvate concentration, differences in pyruvate utilization as a proportion of the content of active pyruvate dehydrogenase are attributed to differences in feed-back inhibition and interpreted in terms of the ratios of mitochondrial NAD+NADH and CoA/acetyl-CoA. Under most conditions, differences in inhibition can be attributed to differences in the CoA/acetyl-CoA ratio. Feed-back inhibition is very pronounced in the presence of palmitoylcarnitine. These parameters are also examined in the presence of dichloroacetate, used to raise the steady-state levels of active pyruvate dehydrogenase in the absence of changing the pyruvate concentration, and in the presence of various ratios of carnitine/acetylcarnitine, which predominantly change the mitochondrial CoA/acetyl-CoA ratio. The latter experiment provides evidence that a decrease in mitochondrial NAD+NADH ratio from 3.5 to 2.2 essentially balances an increase in CoA/acetyl-CoA ratio from 0.67 to 12 in modulating enzyme interconversion, whereas the change in CoA/acetyl-CoA ratio is preponderant in effecting feed-back inhibition. Increasing the free Ca2+ concentration of incubation media from 10?7 to 10?6m using CaCl2-ethylene glycol bis(β-aminoethyl ether)-N,N′-tetraacetic acid buffers is shown to increase the steady-state level of active pyruvate dehydrogenase in intact mitochondria, in the absence of added ionophores. Moreover, this activation is reversible. Effects of Ca2+ ions are dependent upon the poise of the enzyme interconversion system and were only seen in these experiments in the presence of palmitoylcarnitine.  相似文献   

14.
Intravenous administration of the fatty acid oxidation inhibitor 2-tetradecylglycidic acid had no effect on the proportion of pyruvate dehydrogenase complex in the active form in heart, diaphragm or gastrocnemius muscles or in liver, kidney or adipose tissue of fed normal rats. The compound reversed the effect of 48h starvation (which decreased the proportion of active complex) in heart muscle, partially reversed the effect of starvation in kidney, but had no effect in the other tissues listed. The compound failed to reverse the effect of alloxan-diabetes (which decreased the proportion of active complex) in any of these tissues. In perfused hearts of fed normal rats, 2-tetradecylglycidate reversed effects of palmitate (which decreased the proportion of active complex), but it had no effect in the absence of palmitate. In perfused hearts of 48h-starved rats the compound increased the proportion of active complex to that found in fed normal rats in the presence or absence of insulin. In perfused hearts of diabetic rats the compound normalized the proportion of active complex in the presence of insulin, but not in its absence. Palmitate reversed the effects of 2-tetradecylglycidate in perfused hearts of starved or diabetic rats. Evidence is given that 2-tetradecylglycidate only reverses effects of starvation and alloxan-diabetes on the proportion of active complex in heart muscle under conditions in which it inhibits fatty acid oxidation. It is concluded that effects of starvation and alloxan-diabetes on the proportion of active complex in heart muscle are dependent on fatty acid oxidation. Insulin had no effect on the proportion of active complex in hearts or diaphragms of fed or starved rats in vitro. In perfused hearts of alloxan-diabetic rats, insulin induced a modest increase in the proportion of active complex in the presence of albumin, but not in its absence.  相似文献   

15.
Summary Agrobacterium radiobacter NCIB 11 883 does not produce gluconate under conditions of glucose excess in batch or continuous culture. However, the addition of micromolar concentrations of pyrrolo quinoline quinone (PQQ) to fermentation media resulted in rapid excretion of gluconate by batch and continuous cultures. This rapid dehydrogenation of glucose was found in cells grown under carbon and nitrogen limitation and is constitutive which suggests that the only reason why this activity is not normally expressed is due to the inability of the organism to synthesize the prosthetic group (PQQ) of the glucose dehydrogenase enzyme.Although the addition of PQQ to batch and continuous cultures caused a very rapid specific rate of gluconate production (0.6–1.1 g gluconate g-1 dry wt. h-1) the rate of exopolysaccharide production remained unaltered. Indeed, when the rates of substrate and oxygen uptake are corrected for the rate of gluconate production in the presence of PQQ there appears to be little physiological consequence as a result of this oxidation.  相似文献   

16.
The activity of the cerebral pyruvate recycling pathway and energy metabolism in mice infected with Trichinella spiralis were investigated using (13)C-NMR and in vivo (31)P-NMR spectroscopy, respectively. The (13)C-NMR analysis, using [1,2-(13)C(2)] acetate as a substrate, of whole-brain extracts demonstrated that activity of the pathway increased when T. spiralis infection induced hypoglycemia in the host. The in vivo (31)P-NMR observation showed that the cerebral ATP in normal level sustained throughout this experiment. These findings indicate that the pyruvate recycling pathway plays a role in the energy supply to the host in hypoglycemia induced by T. spiralis infection.  相似文献   

17.
Intraocular generation of reactive oxygen species (ROS) with consequent oxidative stress has been shown to be a significant factor in the pathogenesis of many vision-impairing diseases such as cataracts and retinal degenerations. Previous studies have shown that pyruvate can inhibit such oxidative stress. This is attributable to its property of scavenging various ROS and consequently inhibiting many of the apparent toxic reactions such as lipid peroxidation and loss of tissue thiols. It is hence expected that ROS will have an adverse effect on tissue metabolism also. The present investigations were hence undertaken to study the possibility that while scavenging ROS, the compound could be effective also in preventing the inhibition of tissue metabolism as well. Since glycolysis constitutes the major bioenergetic source of the retina, the objective of the present studies was to ascertain if the effects of pyruvate are indeed reflected in the maintenance of this pathway even when the tissue is exposed to ROS. This hypothesis was examined by incubating retinal explants in ROS-generating medium in the absence and presence of pyruvate and measuring 3H2O generated from 5-3H glucose. In addition, the lactate generated was also measured. As hypothesized, ROS-induced inhibition of glycolysis indexed by the decrease in 3H2O as well as lactate formation was significantly prevented by pyruvate. This effect was also reflected by the elevation of NAD/NADH ratio, a major pacemaker of glycolysis.  相似文献   

18.
Despite the fact that lactate and pyruvate are potential substrates for energy production in vivo, our understanding of the control and regulation of carbohydrate metabolism is based principally on studies where glucose is the only available carbohydrate. Therefore, the purpose of this study was to determine the contributions of lactate, pyruvate, and glucose to energy production in the isolated, perfused rat heart over a range of insulin concentrations and after activation of pyruvate dehydrogenase with dichloroacetate (DCA). Hearts were perfused with physiological concentrations of [1-13C]glucose, [U-13C]lactate, [2-13C]pyruvate, and unlabeled palmitate for 45 min. Hearts were freeze clamped, and 13C NMR glutamate isotopomer analysis was performed on tissue extracts. Glucose, lactate, and pyruvate all contributed significantly to myocardial energy production; however, in the absence of insulin, glucose contributed only 25-30% of total pyruvate oxidation. Even under conditions where carbohydrates represented >95% of substrate entering the tricarboxylic acid (TCA) cycle, we found that glucose contributed at most 50-60% of total carbohydrate oxidation. Despite being present at only 0.1 mM, pyruvate contributed between approximately 10% and 30% of total acetyl-CoA entry into the TCA cycle. We also found that insulin and DCA not only increased glucose oxidation but also exogenous pyruvate oxidation; however, lactate oxidation was not increased. The differential effects of insulin and DCA on pyruvate and lactate oxidation provide further evidence for compartmentation of cardiac carbohydrate metabolism. These results may have important implications for understanding the mechanisms underlying the beneficial effects of increasing cardiac carbohydrate metabolism.  相似文献   

19.
1. Adipocytes from rat epididymal fat-pads were incubated for 30 min with 5 mM-glucose and concentrations of lactate, pyruvate and amino acids typical of those found in rat plasma. 2. PDHa (active form of pyruvate dehydrogenase) activity was significantly increased after incubation of the cells with insulin (200 micro-i.u./ml), and decreased by incubation with palmitate (0.5--2 mM). 3. In the presence of insulin, palmitate did not decrease PDHa activity. 4. Dichloroacetate (1 mM) increased PDHa activity in the absence of palmitate to the same extent as did insulin. In the presence of dichloroacetate but the absence of insulin, palmitate decreased PDHa activity. In the presence of dichloroacetate and insulin, palmitate again did not decrease PDHa activity. 5. It is concluded that, in the presence of glucose, insulin has a strong protective action against inactivation of adipocyte PDHa by fatty acids.  相似文献   

20.
The occurrence of pyruvate recycling in the rat brain was studied in either pentobarbital anesthetized animals or awake animals receiving a light analgesic dose of morphine, which were infused with either [1-13C]glucose + acetate or glucose + [2-13C]acetate for various periods of time. Metabolite enrichments in the brain, blood and the liver were determined from NMR analyses of tissue extracts. They indicated that: (i) Pyruvate recycling was revealed in the brain of both the anesthetized and awake animals, as well as from lactate and alanine enrichments as from glutamate isotopomer composition, but only after infusion of glucose + [2-13C]acetate. (ii) Brain glucose was labelled from [2-13C]acetate at the same level in anaesthetized and awake rats (approximately 4%). Comparing its enrichment with that of blood and liver glucose indicated that brain glucose labelling resulted from hepatic gluconeogenesis. (iii) Analysing glucose 13C-13C coupling in the brain, blood and the liver confirmed that brain glucose could be labelled in the liver through the activities of both pyruvate recycling and gluconeogenesis. (iv) The rate of appearance and the amount of brain glutamate C4-C5 coupling, a marker of pyruvate recycling when starting from [2-13C]acetate, were lower than those of brain glucose labelling from hepatic metabolism. (v) The evaluation of the contributions of glucose and acetate to glutamate metabolism revealed that more than 60% of brain glutamate was synthesized from glucose whereas only 7% was from acetate and that glutamate C4-C5 coupling was mainly due to the metabolism of glucose labelled through hepatic gluconeogenesis. All these results indicate that, under the present conditions, the pyruvate recycling observed through the labelling of brain metabolites mainly originates from peripheral metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号