首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jung EJ  Kim SC  Wee YM  Kim YH  Choi MY  Jeong SH  Lee J  Lim DG  Han DJ 《Cytotherapy》2011,13(1):19-29
Background aimsRecent evidence has suggested that transplanted bone marrow (BM)-derived mesenchymal stromal cells (MSC) are able to engraft and repair non-hematopoietic tissues successfully, including central nervous system, renal, pulmonary and skin tissue, and may possibly contribute to tissue regeneration. We examined the cytoprotective effect of BM MSC on co-cultured, isolated pancreatic isletsMethodsPancreatic islets and MSC isolated from Lewis rats were divided into four experimental groups: (a) islets cultured alone (islet control); (b) islets cultured in direct contact with MSC (IM-C); (c) islets co-cultured with MSC in a Transwell system, which allows indirect cell contact through diffusible media components (IM-I); and (d) MSC cultured alone (MSC control). The survival and function of islets were measured morphologically and by analyzing insulin secretion in response to glucose challenge. Cytokine profiles were determined using a cytokine array and enzyme-linked immunosorbent assaysResultsIslets contact-cultured with MSC (IM-C) showed sustained survival and retention of glucose-induced insulin secretory function. In addition, the levels of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) were decreased, and tissue inhibitor of metalloproteinases-1 (TIMP-1) and vascular endothelial growth factor (VEGF) levels were increased at 4 weeks in both the IM-C and IM-I groupsConclusionsThese results indicate that contact co-culture is a major factor that contributes to islet survival, maintenance of cell morphology and insulin function. There might also be a synergic effect resulting from the regulation of inflammatory cytokine production. We propose that BM MSC are suitable for generating a microenvironment favorable for the repair and longevity of pancreatic islets.  相似文献   

2.
Transplantation of human islets is an attractive alternative to daily insulin injections for patients with type 1 diabetes. However, the majority of islet recipients lose graft function within five years. Inflammation is a primary contributor to graft loss, and inhibiting pro-inflammatory cytokine activity can reverse inflammation mediated dysfunction of islet grafts. As mesenchymal stem cells (MSCs) possess numerous immunoregulatory properties, we hypothesized that MSCs could protect human islets from pro-inflammatory cytokines. Five hundred human islets were co-cultured with 0.5 or 1.0 × 10(6) human MSCs derived from bone marrow or pancreas for 24 hours followed by 48 hour exposure to interferon-γ, tumor necrosis factor-α and interleukin 1β. Controls include islets cultured alone (± cytokines) and with human dermal fibroblasts (± cytokines). For all conditions, glucose stimulated insulin secretion (GSIS), total islet cellular insulin content, islet β cell apoptosis, and potential cytoprotective factors secreted in the culture media were determined. Cytokine exposure disrupted human islet GSIS based on stimulation index and percentage insulin secretion. Conversely, culture with 1.0 × 10(6) bMSCs preserved GSIS from cytokine treated islets. Protective effects were not observed with fibroblasts, indicating that preservation of human islet GSIS after exposure to pro-inflammatory cytokines is MSC dependent. Islet β cell apoptosis was observed in the presence of cytokines; however, culture of bMSCs with islets prevented β cell apoptosis after cytokine treatment. Hepatocyte growth factor (HGF) as well as matrix metalloproteinases 2 and 9 were also identified as putative secreted cytoprotective factors; however, other secreted factors likely play a role in protection. This study, therefore, demonstrates that MSCs may be beneficial for islet engraftment by promoting cell survival and reduced inflammation.  相似文献   

3.
Adherent epithelial cells require interactions with the extracellular matrix for their survival, though the mechanism is ill-defined. In long term cultures of primary mammary epithelial cells, a laminin-rich basement membrane (BM) but not collagen I suppresses apoptosis, indicating that adhesion survival signals are specific in their response (. J. Cell Sci. 109:631-642). We now demonstrate that the signal from BM is mediated by integrins and requires both the alpha6 and beta1 subunits. In addition, a hormonal signal from insulin or insulin-like growth factors, but not hydrocortisone or prolactin, is necessary to suppress mammary cell apoptosis, indicating that BM and soluble factors cooperate in survival signaling. Insulin induced autophosphorylation of its receptor whether mammary cells were cultured on collagen I or BM substrata. However, both the tyrosine phosphorylation of insulin receptor substrate-1 and its association with phosphatidylinositol 3-kinase were enhanced in cells cultured on BM, as was the phosphorylation of the phosphatidylinositol 3-kinase effector, protein kinase B. These results suggest a novel extracellular matrix-dependent restriction point in insulin signaling in mammary epithelial cells. The proximal signal transduction event of insulin receptor phosphorylation is not dependent on extracellular matrix, but the activation of downstream effectors requires adhesion to BM. Since phosphatidylinositol 3-kinase was required for mammary epithelial cell survival, we propose that a possible mechanism for BM-mediated suppression of apoptosis is through its facilitative effects on insulin signaling.  相似文献   

4.
Islet transplantation represents a viable treatment for type 1 diabetes. However, due to loss of substantial mass of islets early after transplantation, islets from two or more donors are required to achieve insulin independence. Islet-extracellular matrix disengagement, which occurs during islet isolation process, leads to subsequent islet cell apoptosis and is an important contributing factor to early islet loss. In this study, we developed a fibroblast populated collagen matrix (FPCM) as a novel scaffold to improve islet cell viability and function post-transplantation. FPCM was developed by embedding fibroblasts within type-I collagen and used as scaffold for islet grafts. Viability and insulin secretory function of islets embedded within FPCM was evaluated in vitro and in a syngeneic murine islet transplantation model. Islets embedded within acellular matrix or naked islets were used as control. Islet cell survival and function was markedly improved particularly after embedding within FPCM. The composite scaffold significantly promoted islet isograft survival and reduced the critical islet mass required for diabetes reversal by half (from 200 to 100 islets per recipient). Fibroblast embedded within FPCM produced fibronectin and growth factors and induced islet cell proliferation. No evidence of fibroblast over-growth within composite grafts was noticed. These results confirm that FPCM significantly promotes islet viability and functionality, enhances engraftment of islet grafts and decreases the critical islet mass needed to reverse hyperglycemia. This promising finding offers a new approach to reducing the number of islet donors per recipient and improving islet transplant outcome.  相似文献   

5.
Clinical studies have demonstrated that islet transplantation may be a useful procedure to replace beta cell function in patients with Type 1 diabetes. Islet transplantation faces many challenges, including complications associated with the procedure itself, the toxicity of immunosuppression regimens, and to the loss of islet function and insulin-independence with time. Despite the current successes, and residual challenges, these studies have pointed out an enormous scarcity of islet tissue that precludes the use of islet transplantation in a clinical setting on a wider scale. To address this problem, many research groups are trying to identify different islet growth factors and intracellular molecules capable of improving islet graft survival and function, therefore reducing the number of islets needed for successful transplantation. Among these growth factors, hepatocyte growth factor (HGF), a factor known to improve transplantation of a variety of organs/cells, has shown promising results in increasing islet graft survival and reducing the number of islets needed for successful transplantation in four different rodent models of islet transplantation. Protein kinase B (PKB)/Akt, a pro-survival intracellular signaling molecule is known to be activated in the beta cell by several different growth factors, including HGF. PKB/Akt has also shown promising results for improving human islet graft survival and function in a minimal islet mass model of islet transplantation in diabetic SCID mice. Increasing our knowledge on how HGF, PKB/Akt and other emerging molecules work for improving islet transplantation may provide substrate for future therapeutic approaches aimed at increasing the number of patients in which beta cell function can be successfully replaced.  相似文献   

6.
Reg family proteins have been implicated in islet β-cell proliferation, survival, and regeneration. The expression of Reg3β (pancreatitis-associated protein) is highly induced in experimental diabetes and acute pancreatitis, but its precise role has not been established. Through knockout studies, this protein was shown to be mitogenic, antiapoptotic, and anti-inflammatory in the liver and pancreatic acinars. To test whether it can promote islet cell growth or survival against experimental damage, we developed β-cell-specific overexpression using rat insulin I promoter, evaluated the changes in normal islet function, gene expression profile, and the response to streptozotocin-induced diabetes. Significant and specific overexpression of Reg3β was achieved in the pancreatic islets of RIP-I/Reg3β mice, which exhibited normal islet histology, β-cell mass, and in vivo and in vitro insulin secretion in response to high glucose yet were slightly hyperglycemic and low in islet GLUT2 level. Upon streptozotocin treatment, in contrast to wild-type littermates that became hyperglycemic in 3 days and lost 15% of their weight, RIP-I/Reg3β mice were significantly protected from hyperglycemia and weight loss. To identify specific targets affected by Reg3β overexpression, a whole genome DNA microarray on islet RNA isolated from the transgenic mice revealed more than 45 genes significantly either up- or downregulated. Among them, islet-protective osteopontin/SPP1 and acute responsive nuclear protein p8/NUPR1 were significantly induced, a result further confirmed by real-time PCR, Western blots, and immunohistochemistry. Our results suggest that Reg3β is unlikely an islet growth factor but a putative protector that prevents streptozotocin-induced damage by inducing the expression of specific genes.  相似文献   

7.
Background aimsWe recently showed that co-transplantation of mesenchymal stromal cells (MSCs) improves islet function and revascularization in vivo. Pre-transplant islet culture is associated with the loss of islet cells. MSCs may enhance islet cell survival or function by direct cell contact mechanisms and soluble mediators. We investigated the capacity of MSCs to improve islet cell survival or β-cell function in vitro using direct and indirect contact islet-MSC configurations. We also investigated whether pre-culturing islets with MSCs improves islet transplantation outcome.MethodsThe effect of pre-culturing islets with MSCs on islet function in vitro was investigated by measuring glucose-stimulated insulin secretion. The endothelial cell density of fresh islets and islets cultured with or without MSCs was determined by immunohistochemistry. The efficacy of transplanted islets was tested in vivo using a syngeneic streptozotocin-diabetic minimal islet mass model. Graft function was investigated by monitoring blood glucose concentrations.ResultsIndirect islet-MSC co-culture configurations did not improve islet function in vitro. Pre-culturing islets using a direct contact MSC monolayer configuration improved glucose-stimulated insulin secretion in vitro, which correlated with superior islet graft function in vivo. MSC pre-culture had no effect on islet endothelial cell number in vitro or in vivo.ConclusionsPre-culturing islets with MSCs using a direct contact configuration maintains functional β-cell mass in vitro and the capacity of cultured islets to reverse hyperglycemia in diabetic mice.  相似文献   

8.
The reasons for the failure of clinical islet transplantation remain obscure. Islet isolation, however, exposes the islet to variety of cellular stresses, including disruption of the cell-matrix relationship, an event associated with apoptosis. The cell-matrix relationship is characterized by an interaction between cell surface integrin receptors and matrix molecules of the surrounding basement membrane (BM). The purpose of this study was to characterize integrin expression and the distribution of the peri-insular BM in human, porcine, canine, and hamster pancreas, and after routine islet isolation. Whereas islets in the porcine pancreas do not have a demonstrable BM, islets in the human, canine, and hamster pancreas have an almost continuous BM with very little direct exocrine to endocrine cell-cell contact. After islet isolation, the BM was destroyed, only to be reestablished during the period of culture. In the pancreas of all four species, integrin alpha3 was expressed only on islet cells, and integrin alpha5 was present on islet cells as well as on acinar, centroacinar, and duct cells. Integrin alphaV was detected only in human and canine pancreas. Integrin beta1 was demonstrated only in the human pancreas. In isolated islets, integrin alpha3, alpha5, and alphaV expression decreased during the culture period and the intensity of the staining was observed to be coincident with the distribution of the BM. In summary, this is the first report of integrin expression in hamster, canine, porcine, and human islets. After islet isolation, the altered islet cell-matrix relationship is reflected both in the decrease in integrin expression and in the destruction of the peri-insular BM. These profound changes will need to be considered as the process of islet isolation for transplantation is refined. (J Histochem Cytochem 47:499-506, 1999)  相似文献   

9.
The receptor, c-Kit, and its ligand, stem cell factor (SCF), are critical for hematopoietic stem cell differentiation and have been implicated in the development, function, and survival of rodent islets. Previously, we reported that exogenous SCF treatments of cultured human fetal (14-16 wk fetal age) islet-epithelial clusters enhanced islet cell differentiation and proliferation (Li J, Goodyer CG, Fellows F, Wang R. Int J Biochem Cell Biol 38: 961-972, 2006). In the present study, we examined the expression pattern of c-Kit in early to midgestation human fetal pancreata and the relevance of c-Kit receptor tyrosine kinase for insulin gene expression and beta-cell survival. c-Kit is expressed in the intact pancreas in a cell-specific manner, with a significant decrease in immunoreactivity in the duct regions from 8 to 21 wk fetal age, paralleled by a significant increase in expression within endocrine regions. These c-Kit-positive cells are highly proliferative and show frequent coexpression with insulin and glucagon. Treatment of islet-epithelial clusters with anti-ACK45 antibody stimulates c-Kit phosphorylation paralleled by a significant increase in PDX-1 and insulin expression, increased cell proliferation, and reduced beta-cell death. In contrast, transient transfection with c-Kit siRNA results in a three- to fourfold decrease in c-Kit, PDX-1, and insulin expression and decreased cell proliferation. This study describes important changes in the distribution and dynamics of c-Kit-expressing cells during human fetal pancreatic neogenesis, suggesting that c-Kit may be a marker for human pancreatic islet progenitor cells. Functional analysis of the c-Kit receptor tyrosine kinase provides evidence that phosphorylation of c-Kit receptor may be involved in mediating early beta-cell differentiation and survival.  相似文献   

10.
THE New Zealand obese (NZO) mouse is characterized by genetically determined obesity, accompanied by insulin resistance, glucose intolerance and hyperinsulinaemia1–4. The pattern of insulin release in response to stimuli has not been described. In the experiments reported here, a marked functional abnormality of the islets of Langerhans in vivo was observed, with no response of plasma insulin to glucose, glucagon and tolbutamide but a greatly exaggerated response to arginine. This observation of a selective defect of islet function not only has important implications concerning the normal physiology of insulin release but may also aid in understanding the evolution of the abnormalities of islet cell function in human diabetes5.  相似文献   

11.
Abstract. Objectives: Islet‐like clusters (ILCs), differentiated from human embryonic stem cells (hESCs), were characterized both before and after transplantation under the kidney capsule of streptozotocin‐induced diabetic immuno‐incompetent mice. Materials and methods: Multiple independent ILC preparations (n = 8) were characterized by immunohistochemistry, flow cytometry and cell insulin content, with six preparations transplanted into diabetic mice (n = 42), compared to controls, which were transplanted with either a human fibroblast cell line or undifferentiated hESCs (n = 28). Results: Prior to transplantation, ILCs were immunoreactive for the islet hormones insulin, C‐peptide and glucagon, and for the ductal epithelial marker cytokeratin‐19. ILCs also had cellular insulin contents similar to or higher than human foetal islets. Expression of islet and pancreas‐specific cell markers was maintained for 70 days post‐transplantation. The mean survival of recipients was increased by transplanted ILCs as compared to transplanted human fibroblast cells (P < 0.0001), or undifferentiated hESCs (P < 0.042). Graft function was confirmed by secretion of human C‐peptide in response to an oral bolus of glucose. Conclusions: hESC‐derived ILC grafts continued to contain cells that were positive for islet endocrine hormones and were shown to be functional by their ability to secrete human C‐peptide. Further enrichment and maturation of ILCs could lead to generation of a sufficient source of insulin‐producing cells for transplantation into patients with type 1 diabetes.  相似文献   

12.
Basement membranes (BM) in the pancreatic islet are important for islet survival and function, but supplementation of isolated islets with these components have had limited success. Currently, little is understood about which BM components and proteoglycans are essential to maintaining islet homeostasis. This study therefore aimed to characterize the BM components and proteoglycans of the islet in the mouse, rat and rabbit species. The BM of the mouse islet was varied in continuity around the islet and was discontinuous in the rat and rabbit islets. The BM consisted of collagen IV, laminin, fibronectin and perlecan in the mouse and was in tight association with the underlying islet endothelium. None of these components were found directly associated with the β-cells in tissue and in the MIN6 β-cell line. In contrast, heparan sulfate (HS) was distributed throughout the islet in all three species in a pattern distinctly different to that of perlecan and was observed mainly on the β-cells and not the α-cells in the mouse and rat. Similarly, syndecan-4 showed a staining pattern almost identical to that of HS and was mostly observed on the β-cells, not α-cells, in the mouse and rat. Both HS and syndecan-4 were also observed in the MIN6 β-cell line. The mouse islet and MIN6 syndecan-4 were both ~37?kDa in size, after deglycosylation with heparitinase. These results indicate that syndecan-4 may play an important role in β-cell function and that the cell-surface HS proteoglycans may be the missing link to maintaining islet longevity after isolation.  相似文献   

13.
The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) has been used to promote monolayer formation in cultured islets isolated from fetal human or neonatal rat pancreas. Immunofluorescence with specific antiserum to insulin revealed B-cells in the outgrown monolayers. The rat islet cells were further characterized by their secretory and biosynthetic response to the action of IBMX. Both glucose-stimulated insulin release and recoverable insulin, i.e. intracellular insulin plus insulin secreted, were increased by the addition of IBMX (0.1 mmol/l) to the medium containing 10 mmol/l glucose. 3H-leucine incorporation into (pro)insulin was significantly higher following culture in 10 mmol/l glucose plus IBMX (0.1 and 1.0 mmol/l) than after cultivation with glucose alone. However, the percentage of (pro)insulin synthesized in relation to total protein synthesis was increased to a lesser extent after an acute incubation for 3 h at 1.5 mmol/l or in the absence of glucose. Moreover, the culture system employed in the present study proved to be useful for detecting islet cell antibodies bound to human as well as rat islet cells after exposure to islet cell antibody-positive sera.  相似文献   

14.
Genetic analysis of early endocrine pancreas formation in zebrafish   总被引:3,自引:0,他引:3  
Endocrine pancreas of zebrafish consist of at least four different cell types that function similarly to mammalian pancreatic islet. No mutants specifically affecting formation of the endocrine pancreas have been identified during the previous large-scale mutagenesis screens in zebrafish due to invisibility of a pancreatic islet. We combined in situ hybridization method to visualize pancreatic islet with an ethyl-nitroso-urea mutagenesis screen to identify novel genes involved in pancreatic islet formation in zebrafish. We screened 900 genomes and identified 11 mutations belonging to nine different complementation groups. These mutants fall into three major phenotypic classes displaying severely reduced insulin expression, reduced insulin expression with abnormal islet morphology, or abnormal islet morphology with relatively normal number of insulin expressing cells. Seven of these mutants do not have any other visible phenotypes associated. These mutations affect different processes in pancreatic islet development. Additional analysis on glucagon and somatostatin cell specification revealed that somatostatin cells are specified at a separate domain from insulin cells whereas glucagon cells are specified adjacent to insulin cells. Furthermore, glucagon cells and somatostatin cells are always associated with insulin cells in mutants that have scattered insulin expression. These data indicate that there are separate mechanisms regulating endocrine cell migration, proliferation, and differentiation. Further study on these mutants will reveal important information on novel genes involved in pancreatic islet cell specification and morphogenesis.  相似文献   

15.
Type 2 diabetes, insulin secretion and beta-cell mass   总被引:4,自引:0,他引:4  
In nondiabetic subjects, insulin secretion is sufficiently increased as a compensatory adaptation to insulin resistance whereas in subjects with type 2 diabetes, the adaptation is insufficient. Evidences for the islet dysfunction in type 2 diabetes are a)impaired insulin response to various challenges such as glucose, arginine and isoproterenol, b)defective dynamic of insulin secretion resulting in preferential reduction on first phase insulin secretion and irregular oscillations of plasma insulin and c)defective conversion of proinsulin to insulin leading to elevated proinsulin to insulin ratio. In addition, recent studies have also presented evidence of a reduced beta cell mass in diabetes, caused predominantly by enhanced islet apoptosis, although this needs to be confirmed in more studies. These defects may be caused by primary beta cell defects, such as seen in the monogenic diabetes forms of MODY, or by secondary beta cell defects, caused by glucotoxicity, lipotoxicity or islet amyloid aggregation. The defects may also be secondary to defective beta cell stimulation by incretin hormones or the autonomic nerves. The appreciation of islet dysfunction as a key factor underlying the progression from an insulin resistant state into type 2 diabetes has therapeutic implications, since besides improvement of insulin sensitivity, treatment should also aim at improving the islet compensation. This may possibly be achieved by stimulating insulin secretion, supporting islet stimulating mechanisms, removing toxic beta-cell insults and inhibiting beta cell apoptosis.  相似文献   

16.
Recent studies have suggested that gastric factors other than gastrin may be released in response to gastric test meals and stimulate islet cell function. The present study was designed to examine this further. In anesthetised, laparotomized dogs with a bisected pylorus and a gastric fistula, a liver meal at pH 2 or pH 7 was instilled intragastrically. Although gastrin levels were lower with the acidified meal, inferior vena cava, insulin, glucagon and plasma glucose levels were significantly higher than after a meal at pH 7. These differences were not changed by truncal vagotomy. The differences in insulin or plasma glucose levels were not altered by infusion of atropine, although the difference in glucagon levels was reduced considerably. The present data suggest that factors other than gastrin and unrelated to the vagus or to atropine sensitive pathways are able to influence islet cell function and possibly glucose homeostasis.  相似文献   

17.
Hepatocyte growth factor (HGF) increases beta cell proliferation and function in rat insulin promoter (RIP)-targeted transgenic mice. RIP-HGF mouse islets also function superiorly to normal islets in a transplant setting. Here, we aimed to determine whether viral gene transfer of the HGF gene into mouse islets ex vivo could enhance the performance of normal islets in a streptozotocin-diabetic severe combined immunodeficient mouse marginal islet mass model in which 300 uninfected or adenovirus (Adv) LacZ-transduced islet equivalents were insufficient to correct hyperglycemia. In dramatic contrast, 300 AdvHGF-transduced islet equivalents promptly (day 1) and significantly (p < 0.01) decreased random non-fasting blood glucose levels, from 351 +/- 20 mg/dl to an average of 191 +/- 7 mg/dl over 8 weeks. At day 1 post-transplant, beta cell death was significantly (p < 0.05) decreased, and the total insulin content was significantly (p < 0.05) increased in AdvHGF-transduced islets containing grafts. This anti-beta cell death action of HGF was independently confirmed in RIP-HGF mice and in INS-1 cells, both treated with streptozotocin. Activation of the phosphatidylinositol 3-kinase/Akt intracellular-signaling pathway appeared to be involved in this beta cell protective effect of HGF in vitro. In summary, adenoviral delivery of HGF to murine islets ex vivo improves islet transplant survival and blood glucose control in a subcapsular renal graft model in immuno-incompetent diabetic mice.  相似文献   

18.
19.
Tilapia, a teleost fish species with large anatomically discrete islet organs (Brockmann bodies; BBs) that can be easily harvested without expensive and fickle islet isolation procedures, make an excellent donor species for experimental islet xenotransplantation research. When transplanted into streptozotocin-diabetic nude or severe combined immunodeficient mice, BBs provide long-term normoglycemia and mammalian-like glucose tolerance profiles. However, when transplanted into euthymic recipients, the mechanism of islet xenograft rejection appears very similar to that of islets from "large animal" donor species such as the very popular fetal/neonatal porcine islet cell clusters (ICCs). Tilapia islets are more versatile than ICCs and can be transplanted (1) into the renal subcapsular space, the cryptorchid or noncryptorchid testis, or intraportally as neovascularized cell transplants; (2) as directly vascularized organ transplants; or (3) intraperitoneally after microencapsulation. Unlike the popular porcine ICCs, BBs function immediately after transplantation; thus, their rejection can be assessed on the basis of loss of function as well as other parameters. We have also shown that transplantation of tilapia BBs into nude mice can be used to study the possible implications of cross-species physiological incompatibilities in xenotransplantation. Unfortunately, tilapia BBs might be unsuitable for clinical islet xenotransplantation because tilapia insulin differs from human insulin by 17 amino acids and, thus, would be immunogenic and less biologically active in humans. Therefore, we have produced transgenic tilapia that express a "humanized" tilapia insulin gene. Future improvements on these transgenic fish may allow tilapia to play an important role in clinical islet xenotransplantation.  相似文献   

20.
Both IGF-I and its receptor (IGF-IR) are specifically expressed in various cell types of the endocrine pancreas. IGF-I has long been considered a growth factor for islet cells as it induces DNA synthesis in a glucose-dependent manner, prevents Fas-mediated autoimmune β-cell destruction and delays onset of diabetes in non-obese diabetic (NOD) mice. Islet-specific IGF-I overexpression promotes islet cell regeneration in diabetic mice. However, in the last few years, results from most gene-targeted mice have challenged this view. For instance, combined inactivation of insulin receptor and IGF-IR or IGF-I and IGF-II genes in early embryos results in no defect on islet cell development; islet β-cell-specific inactivation of IGF-IR gene causes no change in β-cell mass; liver- and pancreatic-specific IGF-I gene deficiency (LID and PID mice) suggests that IGF-I exerts an inhibitory effect on islet cell growth albeit indirectly through controlling growth hormone release or expression of Reg family genes. These results need to be evaluated with potential gene redundancy, model limitations, indirect effects and ligand-receptor cross-activations within the insulin/IGF family. Although IGF-I causes islet β-cell proliferation and neogenesis directly, what occur in normal physiology, pathophysiology or during development of an organism might be different. Locally produced and systemic IGF-I does not seem to play a positive role in islet cell growth. Rather, it is probably a negative regulator through controlling growth hormone and insulin release, hyperglycemia, or Reg gene expression. These results complicate the perspective of an IGF-I therapy for β-cell loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号