首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Silencing of the O (6)-methylguanine-DNA methyltransferase (MGMT) gene, a key to DNA repair, is involved in carcinogenesis. Recent studies have focused on DNA hypermethylation of the promoter CpG island. However, cases showing silencing with DNA hypomethylation certainly exist, and the mechanism involved is not elucidated. To clarify this mechanism, we examined the dynamics of DNA methylation, histone acetylation, histone methylation, and binding of methyl-CpG binding proteins at the MGMT promoter region using four MGMT negative cell lines with various extents of DNA methylation. Histone H3K9 di-methylation (H3me2K9), not tri-methylation, and MeCP2 binding were commonly seen in all MGMT negative cell lines regardless of DNA methylation status. 5Aza-dC, but not TSA, restored gene expression, accompanied by a decrease in H3me2K9 and MeCP2 binding. In SaOS2 cells with the most hypomethylated CpG island, 5Aza-dC decreased H3me2K9 and MeCP2 binding with no effect on DNA methylation or histone acetylation. H3me2K9 and DNA methylation were restricted to in and around the island, indicating that epigenetic modification at the promoter CpG island is critical. We conclude that H3me2K9 and MeCP2 binding are common and more essential for MGMT silencing than DNA hypermethylation or histone deacetylation. The epigenetic mechanism leading to silent heterochromatin at the promoter CpG island may be the same in different types of cancer irrespective of the extent of DNA methylation.  相似文献   

2.
MGMT hypermethylation: a prognostic foe, a predictive friend   总被引:2,自引:0,他引:2  
Jacinto FV  Esteller M 《DNA Repair》2007,6(8):1155-1160
Alkylation of DNA at the O(6)-position of guanine is one of the most critical events leading to mutation, cancer, and cell death. O(6)-alkylguanine-DNA alkyltransferase (AGT), also known as O(6)-methylguanine-DNA methyltransferase (MGMT), is the DNA repair protein responsible for removing alkylation adducts from the O(6)-position of guanine in DNA. The promoter CpG island hypermethylation-associated gene silencing of MGMT is associated with a wide spectrum of human tumors. This epigenetic inactivation of MGMT has two main consequences in human cancer. First, it uncovers a new mutator pathway that causes the accumulation of G-to-A transition mutations that can affect genes required for genomic stability. Second, there is a strong and significant positive correlation between MGMT promoter hypermethylation and increased tumor sensitivity to alkylating drugs. These findings underline the importance of MGMT promoter hypermethylation in basic and translational cancer research.  相似文献   

3.
4.
Kaina B  Christmann M  Naumann S  Roos WP 《DNA Repair》2007,6(8):1079-1099
O(6)-methylguanine-DNA methyltransferase (MGMT) plays a crucial role in the defense against alkylating agents that generate, among other lesions, O(6)-alkylguanine in DNA (collectively termed O(6)-alkylating agents [O(6)AA]). The defense is highly important, since O(6)AA are common environmental carcinogens, are formed endogenously during normal cellular metabolism and possibly inflammation, and are being used in cancer therapy. O(6)AA induced DNA damage is subject to repair, which is executed by MGMT, AlkB homologous proteins (ABH) and base excision repair (BER). Although this review focuses on MGMT, the mechanism of repair by ABH and BER will also be discussed. Experimental systems, in which MGMT has been modulated, revealed that O(6)-methylguanine (O(6)MeG) and O(6)-chloroethylguanine are major mutagenic, carcinogenic, recombinogenic, clastogenic and killing lesions. O(6)MeG-induced clastogenicity and cell death require MutS alpha-dependent mismatch repair (MMR), whereas O(6)-chloroethylguanine-induced killing occurs independently of MMR. Extensive DNA replication is required for O(6)MeG to provoke cytotoxicity. In MGMT depleted cells, O(6)MeG induces apoptosis almost exclusively, barely any necrosis, which is presumably due to the remarkable ability of secondarily formed DNA double-strand breaks (DSBs) to trigger apoptosis via ATM/ATR, Chk1, Chk2, p53 and p73. Depending on the cellular background, O(6)MeG activates both the death receptor and the mitochondrial apoptotic pathway. The inter-individual expression of MGMT in human lymphocytes is highly variable. Given the key role of MGMT in cellular defense, determination of MGMT activity could be useful for assessing a patient's drug sensitivity. MGMT is expressed at highly variable amounts in human tumors. In gliomas, a correlation was found between MGMT activity, MGMT promoter methylation and response to O(6)AA. Although the human MGMT gene is inducible by glucocorticoids and genotoxins such as radiation and alkylating agents, the role of this induction in the protection against carcinogens and the development of chemotherapeutic alkylating drug resistance are still unclear. Modulation of MGMT expression in tumors and normal tissue is currently being investigated as a possible strategy for improving cancer therapy.  相似文献   

5.
Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA damage sensor and contributes to both DNA repair and cell death processes. However, how PARP-1 signaling is regulated to switch its function from DNA repair to cell death remains largely unknown. Here, we found that PARP-1 plays a central role in alkylating agent-induced PARthanatic cancer cell death. Lysine demethylase 6B (KDM6B) was identified as a key regulator of PARthanatos. Loss of KDM6B protein or its demethylase activity conferred cancer cell resistance to PARthanatic cell death in response to alkylating agents. Mechanistically, KDM6B knockout suppressed methylation at the promoter of O6-methylguanine-DNA methyltransferase (MGMT) to enhance MGMT expression and its direct DNA repair function, thereby inhibiting DNA damage-evoked PARP-1 hyperactivation and subsequent cell death. Moreover, KDM6B knockout triggered sustained Chk1 phosphorylation and activated a second XRCC1-dependent repair machinery to fix DNA damage evading from MGMT repair. Inhibition of MGMT or checkpoint response re-sensitized KDM6B deficient cells to PARthanatos induced by alkylating agents. These findings provide new molecular insights into epigenetic regulation of PARP-1 signaling mediating DNA repair or cell death and identify KDM6B as a biomarker for prediction of cancer cell vulnerability to alkylating agent treatment.  相似文献   

6.
7.
8.
O(6)-Methylguanine-DNA methyltransferase (MGMT) is a suicide enzyme that repairs the pre-mutagenic, pre-carcinogenic and pre-toxic DNA damage O(6)-methylguanine. It also repairs larger adducts on the O(6)-position of guanine, such as O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine and O(6)-chloroethylguanine. These adducts are formed in response to alkylating environmental pollutants, tobacco-specific carcinogens and methylating (procarbazine, dacarbazine, streptozotocine, and temozolomide) as well as chloroethylating (lomustine, nimustine, carmustine, and fotemustine) anticancer drugs. MGMT is therefore a key node in the defense against commonly found carcinogens, and a marker of resistance of normal and cancer cells exposed to alkylating therapeutics. MGMT also likely protects against therapy-related tumor formation caused by these highly mutagenic drugs. Since the amount of MGMT determines the level of repair of toxic DNA alkylation adducts, the MGMT expression level provides important information as to cancer susceptibility and the success of therapy. In this article, we describe the methods employed for detecting MGMT and review the literature with special focus on MGMT activity in normal and neoplastic tissues. The available data show that the expression of MGMT varies greatly in normal tissues and in some cases this has been related to cancer predisposition. MGMT silencing in tumors is mainly regulated epigenetically and in brain tumors this correlates with a better therapeutic response. Conversely, up-regulation of MGMT during cancer treatment limits the therapeutic response. In malignant melanoma, MGMT is not related to the therapeutic response, which is due to other mechanisms of inherent drug resistance. For most cancers, studies that relate MGMT activity to therapeutic outcome following O(6)-alkylating drugs are still lacking.  相似文献   

9.
Briegert M  Enk AH  Kaina B 《DNA Repair》2007,6(9):1255-1263
Dendritic cells (DCs) maturated from monocytes play an important role in the immune system, not only in defense against conventional infections but also in cancer rejection. Because of the central role of DCs in tumor host defense it is highly important that DCs as well as the progenitor cell population are protected during cancer therapy. Since most anticancer drugs target DNA, the DNA repair capacity is most importance for the response of DCs and their precursor cells. Here, we studied the expression of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) in monocytes obtained from peripheral blood of healthy donors and DCs maturated from monocytes (moDCs). We show that MGMT is expressed at high level in monocytes, comparable to peripheral lymphocytes. The MGMT expression level declines, however, during DC maturation reaching the low level of CD34+ haematopoetic stem cells. Decline of MGMT was observed on activity, protein and RNA level. It is not related to MGMT promoter methylation, suggesting silencing of the MGMT gene in moDCs occurs by other means. Since maturation of monocytes into DCs is provoked by IL-4 and GM-CSF, the data indicate that MGMT is subject to cytokine-mediated regulation. Despite of the high MGMT level, monocytes were more sensitive to methylating agents (MNNG, temozolomide) and equally sensitive to the chloroethylating agent fotemustine than moDCs, undergoing apoptosis upon treatment. The data provide an example that high MGMT expression level does not necessarily implicate a higher level of resistance against O6-alkylating agents.  相似文献   

10.
11.
12.
Epigenetic gene silencing, and associated promoter CpG island DNA hypermethylation, is an alternative mechanism to mutations by which tumor suppressor genes may be inactivated within a cancer cell 1-4,5-7. These epigenetic changes are prevalent in all types of cancer, and their appearance may precede genetic changes in pre-malignant cells and foster the accumulation of additional genetic and epigenetic hits8. These epigenetically modified genes constitute important categories of tumor suppressor genes including cell cycle regulators, pro-differentiation factors, and anti-apoptotic genes3, and many of these genes are known to play a role in normal development 9-11. While the silencing of these genes may play an essential role in tumor initiation or progression, the mechanisms underlying the specific targeting of these genes for DNA hypermethylation remains to be determined. The large numbers of epigenetically silenced genes that may be present in any given tumor, and the clustering of silenced genes within single cell pathways12, begs the question of whether gene silencing is a series of random events resulting in an enhanced survival of a pre-malignant clone, or whether silencing is the result of a directed, instructive program for silencing initiation reflective of the cells of origin for tumors. In this regard, the current review stresses the latter hypothesis and the important possibility that the program is linked, at least for silencing of some cancer genes, to the epigenetic control of stem/precursor cell gene expression patterns.  相似文献   

13.
14.
During tumorigenesis, selective proliferative advantage in certain cell subsets is associated with accumulation of multiple genetic alterations. For instance, multiple myeloma is characterized by frequent karyotypic instability at the earliest stage, progressing to extreme genetic abnormalities as the disease progresses. These successive genetic alterations can be attributed, in part, to defects in DNA repair pathways, perhaps based on epigenetic gene silencing of proteins involved in DNA damage repair. Here we report epigenetic hypermethylation of the hHR23B gene, a key component of the nucleotide excision repair in response to DNA damage, in interleukin-6 (IL-6)-responsive myeloma KAS-6/1 cells. This hypermethylation was significantly abated by Zebularine, a potent demethylating agent, with a consequent increase in the hHR23B mRNA level. Subsequent removal of this drug and supplementation with IL-6 in the culture medium re-established DNA hypermethylation of the hHR23B gene and silencing of mRNA expression levels. The inclination of DNA to be remethylated, at least within the hHR23B gene promoter region, reflects an epigenetic driving force by the cytogenetic/tumorigenic status of KAS-6/1 myeloma. The IL-6 response of KAS-6/1 myeloma also raises a question of whether the proneoplastic growth factor, such as IL-6, supports the epigenetic silencing of important DNA repair genes via promoter hypermethylation during the development of multiple myeloma.  相似文献   

15.
克隆了Hela细胞O6 甲基鸟嘌呤 DNA 甲基转移酶 (MGMT)基因的cDNA序列 ,该序列与国外发表的cDNA完全一致。将此cDNA插入原核表达载体pET 2 1a后转化大肠杆菌BL2 1(DE3)获得表达的重组菌株pET 2 1a MGMT E .coliBL2 1(DE3) ,经IPTG诱导后产生分子量为 2 4kD的蛋白质。烷化类诱变剂致死突变实验表明 ,MGMT蛋白的表达能修复受体菌DNA分子因烷化类诱变剂导致的突变。  相似文献   

16.
The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT, alkyltransferase) is an important suicide enzyme involved in defense against O6-alkylating endogenous metabolites and environmental carcinogens. It also plays a pivotal role in primary and acquired resistance of tumors to alkylating anticancer drugs targeting the O6-position of guanine (i.e., methylating and chloroethylating agents). MGMT can thus be considered a crucial biomarker for individual susceptibility to alkylating carcinogens and tumor drug resistance. This implies a need for a fast and convenient method for determination of MGMT. Routinely, MGMT is being quantified by radioactive assays which are relatively laborious. Here we report a nonradioactive MGMT enzyme-linked immunosorbent assay (ELISA) for quantification of MGMT in cell and tissue homogenates. We compared the MGMT-ELISA with the standard radioactive assay and found it to be as sensitive but less time consuming. Therefore, it represents an alternative for the quantification of MGMT in cell and tissue homogenates. We applied the assay for determining MGMT in normal and tumor tissue of testes. In both normal and tumor tissue MGMT was quite variable, ranging from zero to 1300 fmol/mg protein. In various tumor samples MGMT was lower than MGMT in the normal tissue from the same patient or was even not detectable. The MGMT-ELISA might become a useful tool for MGMT determination in clinical routine and health control.  相似文献   

17.
A Lim  B F Li 《The EMBO journal》1996,15(15):4050-4060
Human O6-methylguanine-DNA methyltransferase (MGMT) protects human cells from the mutagenic effects of alkylating agents by repairing the O6-alkylguanine residues formed by these agents in the nuclear DNA. We report here a study showing a possible two-step model for the nuclear localization of the 21 kDa human protein. The first step is the translocation of the protein from the cytosol to the nucleus. This appears to require the nuclear targeting property associated with the holoprotein in combination with a cellular factor(s) to effect the nuclear translocation of MGMT. The second step involves the nuclear retention of MGMT (to prevent its export from the nucleus). This requires a basic region (PKAAR, codons 124-128) that can bind to the non-diffusible DNA elements in the nucleus. Supporting data for such mechanisms are: (i) the holoprotein can target the cytosolic 110 kDa beta-galactosidase into the nucleus; (ii) purified recombinant MGMT requires a cellular factor for transport across the nuclear membrane; (iii) nuclear MGMT can be removed selectively by DNase I; (iv) the repair-positive K125L mutant, which alters the PKAAR motif, remains in the cytosol and fails to bind DNA in vitro; and (v) polypeptide containing the PKAAR motif has no nuclear targeting property. Interestingly, mutants in another basic region, KLLKVVK (codons 101-107) are DNA binding and repair deficient but entirely nuclear. As these substitutions affect the functional properties of human MGMT, they are potential targets for genetic screening of individuals for risk assessment to alkylating agents.  相似文献   

18.
We have previously shown that fibroblast growth factor receptor 2 (FGFR2) plays an important role in gastric carcinogenesis. In this study, we assessed DNA methylation status in the promoter region of FGFR2 gene in gastric cancer cell lines, and indicated that this region was highly methylated, compared with FGFR2-expressing gastric cancer cell lines. Moreover, the restoration of FGFR2 expression by treating methylated cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine strongly suggests that the loss of FGFR2 expression may be due to the aberrant hypermethylation in the promoter region of the FGFR2 gene. Thus, our results suggest that the epigenetic silencing of FGFR2 through DNA methylation in gastric cancer may contribute to tumor progression.  相似文献   

19.
Aberrant epigenetic silencing of tumor suppressor genes by promoter DNA hypermethylation and histone deacetylation plays an important role in the pathogenesis of cancer. The potential reversibility of epigenetic abnormalities encouraged the development of pharmacologic inhibitors of DNA methylation and histone deacetylation as anti-cancer therapeutics. (Pre)clinical studies of DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors have yielded encouraging results, especially against hematologic malignancies. Recently, several studies demonstrated that DNMT and HDAC inhibitors are also potent angiostatic agents, inhibiting (tumor) endothelial cells and angiogenesis in vitro and in vivo. By reactivation of epigenetically silenced tumor suppressor genes with angiogenesis inhibiting properties, DNMT and HDAC inhibitors might indirectly - via their effects on tumor cells - decrease tumor angiogenesis in vivo. However, this does not explain the direct angiostatic effects of these agents, which can be unraveled by gene expression studies and examination of epigenetic promoter modifications in endothelial cells treated with DNMT and HDAC inhibitors. Clearly, the dual targeting of epigenetic therapy on both tumor cells and tumor vasculature makes them attractive combinatorial anti-tumor therapeutics. Here we review the therapeutic potential of DNMT and HDAC inhibitors as anti-cancer drugs, as evaluated in clinical trials, and their angiostatic activities, apart from their inhibitory effects on tumor cells.  相似文献   

20.
Roth RB  Samson LD 《Mutation research》2000,462(2-3):107-120
Alkylating agents represent a highly cytotoxic class of chemotherapeutic compounds that are extremely effective anti-tumor agents. Unfortunately, alkylating agents damage both malignant and non-malignant tissues. Bone marrow is especially sensitive to damage by alkylating agent chemotherapy, and is a dose-limiting tissue when treating cancer patients. One strategy to overcome bone marrow sensitivity to alkylating agent exposure involves gene transfer of the DNA repair protein O(6)-methylguanine DNA methyltransferase (O(6)MeG DNA MTase) into bone marrow cells. O(6)MeG DNA MTase is of particular interest because it functions to protect against the mutagenic, clastogenic and cytotoxic effects of many chemotherapeutic alkylating agents. By increasing the O(6)MeG DNA MTase repair capacity of bone marrow cells, it is hoped that this tissue will become alkylation resistant, thereby increasing the therapeutic window for the selective destruction of malignant tissue. In this review, the field of O(6)MeG DNA MTase gene transfer into bone marrow cells will be summarized with an emphasis placed on strategies used for suppressing the deleterious side effects of chemotherapeutic alkylating agent treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号