首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kinetic refractive index spectroscopy has been applied to the study of the bacteriorhodopsin photocycle. A fully hydrated purple membrane film was examined in the temperature range from 10° to 40°C using 532 nm excitation (doubled Nd YAG laser) and 633 nm (He–Ne laser) testing beam. Multiexponential fitting of the data revealed five processes. Four of them are well known from kinetic optical absorption studies. The fifth process has only recently been observed in optical absorption experiments where it has a relatively small amplitude. In our refractive index experiments it has an amplitude of up to 30% of the full signal amplitude. It is characterized by an Arrhenius temperature dependence with an activation enthalpy of 40±5 kJ/mol and a decay time of about 0.8 ms at 20°C.  相似文献   

2.
We report a comprehensive electron crystallographic analysis of conformational changes in the photocycle of wild-type bacteriorhodopsin and in a variety of mutant proteins with kinetic defects in the photocycle. Specific intermediates that accumulate in the late stages of the photocycle of wild-type bacteriorhodopsin, the single mutants D38R, D96N, D96G, T46V, L93A and F219L, and the triple mutant D96G/F171C/F219L were trapped by freezing two-dimensional crystals in liquid ethane at varying times after illumination with a light flash. Electron diffraction patterns recorded from these crystals were used to construct projection difference Fourier maps at 3.5 A resolution to define light-driven changes in protein conformation.Our experiments demonstrate that in wild-type bacteriorhodopsin, a large protein conformational change occurs within approximately 1 ms after illumination. Analysis of structural changes in wild-type and mutant bacteriorhodopsins under conditions when either the M or the N intermediate is preferentially accumulated reveals that there are only small differences in structure between M and N intermediates trapped in the same protein. However, a considerably larger variation is observed when the same optical intermediate is trapped in different mutants. In some of the mutants, a partial conformational change is present even prior to illumination, with additional changes occurring upon illumination. Selected mutations, such as those in the D96G/F171C/F219L triple mutant, can sufficiently destabilize the wild-type structure to generate almost the full extent of the conformational change in the dark, with minimal additional light-induced changes. We conclude that the differences in structural changes observed in mutants that display long-lived M, N or O intermediates are best described as variations of one fundamental type of conformational change, rather than representing structural changes that are unique to the optical intermediate that is accumulated. Our observations thus support a simplified view of the photocycle of wild-type bacteriorhodopsin in which the structures of the initial state and the early intermediates (K, L and M1) are well approximated by one protein conformation, while the structures of the later intermediates (M2, N and O) are well approximated by the other protein conformation. We propose that in wild-type bacteriorhodopsin and in most mutants, this conformational change between the M1 and M2 states is likely to make an important contribution towards efficiently switching proton accessibility of the Schiff base from the extracellular side to the cytoplasmic side of the membrane.  相似文献   

3.
The L to M reaction of the bacteriorhodopsin photocycle includes the crucial proton transfer from the retinal Schiff base to Asp85. In spite of the importance of the L state in deciding central issues of the transport mechanism in this pump, the serious disagreements among the three published crystallographic structures of L have remained unresolved. Here, we report on the X-ray diffraction structure of the L state, to 1.53-1.73 A resolutions, from replicate data sets collected from six independent crystals. Unlike earlier studies, the partial occupancy refinement uses diffraction intensities from the same crystals before and after the illumination to produce the trapped L state. The high reproducibility of inter-atomic distances, and bond angles and torsions of the retinal, lends credibility to the structural model. The photoisomerized 13-cis retinal in L is twisted at the C(13)=C(14) and C(15)=NZ double-bonds, and the Schiff base does not lose its connection to Wat402 and, therefore, to the proton acceptor Asp85. The protonation of Asp85 by the Schiff base in the L-->M reaction is likely to occur, therefore, via Wat402. It is evident from the structure of the L state that various conformational changes involving hydrogen-bonding residues and bound water molecules begin to propagate from the retinal to the protein at this stage already, and in both extracellular and cytoplasmic directions. Their rationales in the transport can be deduced from the way their amplitudes increase in the intermediates that follow L in the reaction cycle, and from the proton transfer reactions with which they are associated.  相似文献   

4.
Absorption, fluorescence and excitation spectra of three-dimensional bacteriorhodopsin crystals harvested from a lipidic cubic phase are presented. The combination of the spectroscopic experiments performed at room temperature, controlled pH and full external hydration reveals the presence of three distinct protein species. Besides the well-known form observed in purple membrane, we find two other species with a relative contribution of up to 30%. As the spectra are similar to those of dehydrated or deionized membranes containing bacteriorhodopsin, we suggest that amino acid residues, located in the vicinity of the retinal chromophore, have changed their protonation state. We propose partial dehydration during crystallization and/or room temperature conditions as the main source of this heterogeneity. This assignment is supported by an experiment showing interconversion of the species upon intentional dehydration and by crystallographic data, which have indicated an in-plane unit cell in 3D crystals comparable to that of dehydrated bacteriorhodopsin membranes. Full hydration of the proteins after the water-withdrawing crystallization process is hampered. We suggest that this hindered water diffusion originates mainly from a closure of hydrophobic crystal surfaces by lipid bilayers. The present spectroscopic work complements the crystallographic data, due to its ability to determine quantitatively compositional heterogeneity resulting from proteins in different protonation states.  相似文献   

5.
Jackson JB 《FEBS letters》2003,545(1):18-24
Transhydrogenase, in animal mitochondria and bacteria, couples hydride transfer between NADH and NADP(+) to proton translocation across a membrane. Within the protein, the redox reaction occurs at some distance from the proton translocation pathway and coupling is achieved through conformational changes. In an 'open' conformation of transhydrogenase, in which substrate nucleotides bind and product nucleotides dissociate, the dihydronicotinamide and nicotinamide rings are held apart to block hydride transfer; in an 'occluded' conformation, they are moved into apposition to permit the redox chemistry. In the two monomers of transhydrogenase, there is a reciprocating, out-of-phase alternation of these conformations during turnover.  相似文献   

6.
A variety of neutron, X-ray and electron diffraction experiments have established that the transmembrane regions of bacteriorhodopsin undergo significant light-induced changes in conformation during the course of the photocycle. A recent comprehensive electron crystallographic analysis of light-driven structural changes in wild-type bacteriorhodopsin and a number of mutants has established that a single, large protein conformational change occurs within 1 ms after illumination, roughly coincident with the time scale of formation of the M(2) intermediate in the photocycle of wild-type bacteriorhodopsin. Minor differences in structural changes that are observed in mutants that display long-lived M(2), N or O intermediates are best described as variations of one fundamental type of conformational change, rather than representing structural changes that are unique to the optical intermediate that is accumulated. These observations support a model for the photocycle of wild-type bacteriorhodopsin in which the structures of the initial state and the early intermediates (K, L and M(1)) are well approximated by one protein conformation in which the Schiff base has extracellular accessibility, while the structures of the later intermediates (M(2), N and O) are well approximated by the other protein conformation in which the Schiff base has cytoplasmic accessibility.  相似文献   

7.
Fourier transform infrared difference spectroscopy has been used to study the effect of water on the conformation of bacteriorhodopsin. The infrared spectra as a function of water content show a conformational change at about 0.06 g H2O/g bacteriorhodopsin. By an interference method the thickness of the sample was measured and shows similar behavior as a function of water content. This study gives insight into the process of water absorption by purple membrane. The observations are in good agreement with those found for other proteins.Abbreviations IR infrared - FTIR Fourier transform IR  相似文献   

8.
The existence of two different M-state structures in the photocycle of the bacteriorhodopsin mutant ASP38ARG was proved. At pH 6.7 (0 to -6 degreesC) a spectroscopic M intermediate (M1) that does not differ significantly in its tertiary structure from the light-adapted ground state accumulates under illumination. At pH > 9 another state (M2), characterized by additional pronounced changes in the Fourier transform infrared difference spectrum in the region of the amide I and II bands, accumulates. The M2 intermediate trapped at pH 9.6 displays the same changes in the x-ray diffraction intensities under continuous illumination as previously described for x-ray experiments with the mutant ASP96ASN. These observations indicate that in this mutant the altered charge distribution at neutral pH controls the tertiary structural changes that seem to be necessary for proton translocation.  相似文献   

9.
Bacteriorhodopsin is the smallest autonomous light-driven proton pump. Proposals as to how it achieves the directionality of its trans-membrane proton transport fall into two categories: accessibility-switch models in which proton transfer pathways in different parts of the molecule are opened and closed during the photocycle, and affinity-switch models, which focus on changes in proton affinity of groups along the transport chain during the photocycle. Using newly available structural data, and adapting current methods of protein protonation-state prediction to the non-equilibrium case, we have calculated the relative free energies of protonation microstates of groups on the transport chain during key conformational states of the photocycle. Proton flow is modeled using accessibility limitations that do not change during the photocycle. The results show that changes in affinity (microstate energy) calculable from the structural models are sufficient to drive unidirectional proton transport without invoking an accessibility switch. Modeling studies for the N state relative to late M suggest that small structural re-arrangements in the cytoplasmic side may be enough to produce the crucial affinity change of Asp96 during N that allows it to participate in the reprotonation of the Schiff base from the cytoplasmic side. Methodologically, the work represents a conceptual advance compared to the usual calculations of pK(a) using macroscopic electrostatic models. We operate with collective states of protonation involving all key groups, rather than the individual-group pK(a) values traditionally used. When combined with state-to-state transition rules based on accessibility considerations, a model for non-equilibrium proton flow is obtained. Such methods should also be applicable to other active proton-transport systems.  相似文献   

10.
J Cladera  J Torres    E Padrós 《Biophysical journal》1996,70(6):2882-2887
The conformation of bacterioopsin in the apomembrane has been studied by Fourier transform infrared spectroscopy. Resolution enhancement techniques and curve-fitting procedures have been used to determine the secondary structural components from the amide I region. Bacterioopsin contains about 54% helicoidal structure (alpha I and alpha II helices + 3(10) turns), 21% sheets, 16% reverse turns, and 9% unordered structure. Thus, after retinal removal, all of the secondary structural types of bacteriorhodopsin remain present, and only slight quantitative differences appear. On the other hand, H/D exchange studies show that there is a higher degree of exchange for reverse turns and protonated carboxylic lateral chains in bacterioopsin as compared to bacteriorhodopsin. This gives further support to the idea of a more open tertiary structure of bacterioopsin, and to the consideration of the retinal molecule as an important element in complementing the interhelical interactions in bacteriorhodopsin folding.  相似文献   

11.
We examined the effects of volatile anesthetics on the structure of the bacteriorhodopsin in the purple membrane by measurements of the absorption spectrum and the visible circular dichroism (CD) spectrum and assay of the retinal composition. As the concentrations of halothane, enflurane and methoxyflurane were increased, the absorption at 560 nm decreased but that at 480 nm increased with an isosbestic point around 510 nm. These anesthetic-induced spectroscopic changes were reversible. The CD spectrum showed the biphasic pattern with a positive and a negative band. As the concentration of halothane was increased from 4 mM to 8mM, the negative band reversibly diminished more drastically than the positive band, and at 8 mM of halothane the positive band shifted to around 480 nm. These results show that halothane disturbed the exciton coupling among bacteriorhodopsin molecules. The retinal isomer composition was analyzed using high performance liquid chromatography. The ratio of 13-cis- to all-trans-retinal was 47:53, 34:66 and 19:81 at control, 7.4 mM and 14.9 mM enflurane, respectively. After elimination of enflurane, the ratio returned to the control value. These findings indicate that volatile anesthetic directly affect a bacteriorhodopsin in the purple membrane and induce conformational changes in it.  相似文献   

12.
The elucidation of the physical principles that govern the folding and stability of membrane proteins is one of the greatest challenges in protein science. Several insights into the folding of α-helical membrane proteins have come from the investigation of the conformational equilibrium of H. halobium bacteriorhodopsin (bR) in mixed micelles using SDS as a denaturant. In an effort to confirm that folded bR and SDS-denatured bR reach the same conformational equilibrium, we found that bR folding is significantly slower than has been previously known. Interrogation of the effect of the experimental variables on folding kinetics reveals that the rate of folding is dependent not only on the mole fraction of SDS but also on the molar concentrations of mixed micelle components, a variable that was not controlled in the previous study of bR folding kinetics. Moreover, when the molar concentrations of mixed micelle components are fixed at the concentrations commonly employed for bR equilibrium studies, conformational relaxation in the transition zone is slower than hydrolysis of the retinal Schiff base. As a result, the conformational equilibrium between folded bR and SDS-denatured bR cannot be achieved under the conventional condition. Our finding suggests that the molar concentrations of mixed micelle components are important experimental variables in the investigation of the kinetics and thermodynamics of bR folding and should be accounted for to ensure the accurate assessment of the conformational equilibrium of bR without the interference of retinal hydrolysis.  相似文献   

13.
Bacteriorhodopsin, the sole membrane protein of the purple membrane of Halobacterium salinarum, functions as a light-driven proton pump. A 3-D crystal of bacteriorhodopsin, which was prepared by the membrane fusion method, was used to investigate structural changes in the primary photoreaction. It was observed that when a frozen crystal was exposed to a low flux of X-ray radiation (5 x 10(14)photons mm(-2)), nearly half of the protein was converted into an orange species, exhibiting absorption peaks at 450 nm, 478 nm and 510 nm. The remainder retained the normal photochemical activity until Asp85 in the active site was decarboxlyated by a higher flux of X-ray radiation (10(16)photons mm(-2)). The procedure of diffraction measurement was improved so as to minimize the effects of the radiation damage and determine the true structural change associated with the primary photoreaction. Our structural model of the K intermediate indicates that the Schiff base linkage and the adjacent bonds in the polyene chain of retinal are largely twisted so that the Schiff base nitrogen atom still interacts with a water molecule located near Asp85. With respect to the other part of the protein, no appreciable displacement is induced in the primary photoreaction.  相似文献   

14.
  1. Download : Download high-res image (187KB)
  2. Download : Download full-size image
  相似文献   

15.
Electric field induced conformational changes of bacteriorhodopsin were studied in six types of dried film (randomly and electrically oriented membranes of purple as well as cation-depleted blue bacteriorhodopsin) by measuring the frequency dependence of the optical absorbance change and the dielectric dispersion and absorption. For the purple bacteriorhodopsin the optical absorbance change induced by alternating rectangular electric fields of ±300 kV/cm altered the sign twice in the frequency range from 0.001 Hz to 100 kHz (around 0.03 Hz and 100 kHz), indicating that the electric field induced conformational change in these samples consists of, at least, three steps. Similarly, it was found for the blue bacteriorhodopsin that at least two steps are involved. In accord with optical measurements, the dielectric behaviour due to alternating sinusoidal electric fields of±6kV/cm in the frequency range from 10 Hz to 10 MHz showed two broad dispersion/absorption regions, one below 1 kHz and the other around 10–100 kHz. This suggests that the conformational change of bacteriorhodopsin is also reflected by its dielectrical properties and that it is partially induced at 6 kV/cm. Including previous results obtained by analysis of the action of DC fields on purple membrane films, a model for a field-induced cyclic reaction for purple as well as blue bacteriorhodopsin is proposed. In addition it was found that there are electrical interactions among purple membrane fragments in dried films.  相似文献   

16.
Electric field-induced absorption changes of bacteriorhodopsin were studied with different samples of purple membranes which were prepared as randomly oriented and electrically oriented films of purple as well as cation-depleted blue bacteriorhodopsin. The absorption changes were proportional to the square of the field strength up to 300 kV/cm. The electric field from the intracellular side to the extracellular side of the purple bacteriorhodopsin induces a spectrum change, resulting in a spectrum similar to that of the cation-depleted blue bacteriorhodopsin. When the field was removed, the purple state was regenerated. The blue state was mainly affected by an electric field in the opposite direction, suggesting a reversible interaction with the Schiff's base bond of the retinal. Since the field-induced reaction of bacteriorhodopsin was observed in the presence of a concomitant steady ion flux, it is assumed that the generation of a local diffusion potential may play an important role in these spectral reactions. Although the fragments were fixed in the dried film, electric dichroism was observed. The dichroic contribution of the total absorbance change was about 15%. The angular displacement of the retinal transition moment was calculated to be 1.5° toward the membrane normal.  相似文献   

17.
Janos K. Lanyi 《BBA》2006,1757(8):1012-1018
The steps in the mechanism of proton transport in bacteriorhodopsin include examples for most kinds of proton transfer reactions that might occur in a transmembrane pump: proton transfer via a bridging water molecule, coupled protonation/deprotonation of two buried groups separated by a considerable distance, long-range proton migration over a hydrogen-bonded aqueous chain, and capture as well as release of protons at the membrane-water interface. The conceptual and technical advantages of this system have allowed close examination of many of these model reactions, some at an atomic level.  相似文献   

18.
Molecular dynamics simulation techniques, together with semiempirical PM3 calculations, have been used to investigate the effect of photoisomerization of the 4-hydroxy-cinnamic acid chromophore on the structural properties of the photoactive yellow protein (PYP) from Ectothiorodospira halophila. In this bacteria, exposure to blue light leads to a negative photoactic response. The calculations suggest that the isomerization does not directly destabilize the protein. However, because of the isomerization, a proton transfer from a glutamic acid residue (Glu46) to the phenolate oxygen atom of the chromophore becomes energetically favorable. The proton transfer initiates conformational changes within the protein, which are in turn believed to lead to signaling.  相似文献   

19.
By means of time-resolved electron paramagnetic resonance (EPR) spectroscopy, the photoexcited structural changes of site-directed spin-labeled bacteriorhodopsin are studied. A complete set of cysteine mutants of the C-D loop, positions 100-107, and of the E-F loop, including the first alpha-helical turns of helices E and F, positions 154-171, was modified with a methanethiosulfonate spin label. The EPR spectral changes occurring during the photocycle are consistent with a small movement of helix C and an outward tilt of helix F. These helix movements are accompanied by a rearrangement of the E-F loop and of the C-terminal turn of helix E. The kinetic analysis of the transient EPR data and the absorbance changes in the visible spectrum reveals that the conformational change occurs during the lifetime of the M intermediate. Prominent rearrangements of nitroxide side chains in the vicinity of D96 may indicate the preparation of the reprotonation of the Schiff base. All structural changes reverse with the recovery of the bacteriorhodopsin initial state.  相似文献   

20.
The atomic structure of the trans isomer of bacteriorhodopsin was determined previously by using a 3D crystal belonging to the space group P622. Here, a structure is reported for another isomer with the 13-cis, 15-syn retinal in a dark-adapted crystal. Structural comparison of the two isomers indicates that retinal isomerization around the C13[double bond]C14 and the C15[double bond]N bonds is accompanied by noticeable displacements of a few residues in the vicinity of the retinal Schiff base and small re-arrangement of the hydrogen-bonding network in the proton release channel. On the other hand, aromatic residues surrounding the retinal polyene chain were found to scarcely move during the dark/light adaptation. This result suggests that variation in the structural rigidity within the retinal-binding pocket is one of the important factors ensuring the stereospecific isomerization of retinal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号