首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F9 line embryonal carcinoma cells were induced to differentiate into neural direction by long-term treatment of monolayer cultures with retinoic acid and dibutyryl cyclic AMP. Bi- and multi-polar cells appeared, expressing acetylcholinesterase and neurofilament proteins but not markers of glial differentiation including GFA-protein. Nerve growth factor combined with both retinoic acid and dibutyryl cyclic AMP greatly enhanced the development of neuron-like morphology and induced expression of immunoreactivity to tyrosine hydroxylase as well as to Leu-encephalin-like peptides. Similarly, serotonin-like immunofluorescence but not substance P-like immunoreactivity was demonstrable in such cultures. In addition, synaptic-like vesicles were often found in the processes. Analysis of matrix expression in neuronally differentiated F9 cells revealed marked increase in laminin production, as judged by immunofluorescence and immuno-electron microscopy, but no demonstrable intracellular staining for fibronectin or type IV collagen. The results with neuronal cells contrast with the expression of all the three matrix components in endodermally differentiating F9 cells in the same cultures.  相似文献   

2.
3.
Hormonal responsiveness of the adenylate cyclase system of cultured F9 teratocarcinoma cells was investigated. Of numerous hormones tested only calcitonin, (−)isoproterenol, and prostaglandin E1, stimulate F9 adenylate cyclase activity. Of the active hormones, calcitonin is the most potent stimulator of cAMP formation. Treatment of intact F9 cells with calcitonin results in a time- and hormone concentration-dependent increase in the intracellular concentration of cAMP. cAMP accumulation is enhanced within 5 min after addition of 60 nM synthetic salmon calcitonin to intact F9 cells. These results raise the possibility that calcitonin may play a regulatory role in early embryonic development.  相似文献   

4.
5.
6.
We have previously demonstrated that three potent iron chelators, hinokitiol, dithizone and deferoxamine, induce differentiation of F9 embryonal carcinoma cells, as do other well-known morphogens such as retinoic acid (RA) and sodium butyrate (NaB). In this study, we compared the patterns of cell proliferation, cell death and cell cycle arrest during the process of differentiation induced by these five agents. When F9 cells were cultured with the agents at their individual differentiation-inducing concentrations, cell proliferation was rapidly inhibited by treatment with the iron chelators and NaB. In contrast, RA did not influence the rate of increase of cell number at the concentration of 1 microm. The three chelators also caused a marked reduction in cell viability, and the treated cells exhibited internucleosomal DNA fragmentation, whereas cells treated with NaB showed no apoptotic characteristics. RA induced apoptosis weakly at 1 microm and strongly at higher concentrations. In addition, all the iron chelators hindered cell cycle progression, resulting in an arrest at the G1-S interface or S phase. The phenomena observed in chelator-treated cells were considerably different from those in RA- or NaB-treated cells. It is concluded that the three iron chelators cause both severe apoptotic cell death and cell cycle arrest of proliferating F9 cells via cellular iron deprivation, and that this apoptotic change may be independent of the process of differentiation.  相似文献   

7.
Retroviral vector gene expression in F9 embryonal carcinoma cells.   总被引:2,自引:2,他引:0  
When F9 embryonal carcinoma (EC) cells are infected with retroviral vectors, the efficiency of expression of selectable genes is considerably lower than that in mouse fibroblasts infected with the same retroviral vectors. In this study, several retroviral vectors with regulatory sequences placed immediately 5' to a selectable gene were constructed, packaged, and used to infect mouse fibroblasts and F9 EC cells. With selection as an assay, there was a hierarchy of relative expression in F9 cells compared with that in mouse fibroblasts. These internally placed regulatory sequences are the source of the mRNAs detected in F9 EC cells, while both retroviral long-terminal-repeat promoters and internal promoters are the source of steady-state mRNAs in mouse fibroblasts. This effect was observable with both the internally placed herpes simplex virus thymidine kinase promoter and the Moloney murine leukemia virus promoter.  相似文献   

8.
To understand the mechanisms that control anticoagulant heparan sulfate (HSact) biosynthesis, we previously showed that HSact production in the F9 system is determined by the abundance of 3-O-sulfotransferase-1 as well as the size of the HSact precursor pool. In this study, HSact precursor structures have been studied by characterizing [6-3H]GlcN metabolically labeled F9 HS tagged with 3-O-sulfates in vitro by 3'-phosphoadenosine 5'-phospho-35S and purified 3-O-sulfotransferase-1. This later in vitro labeling allows the regions of HS destined to become the antithrombin (AT)-binding sites to be tagged for subsequent structural studies. It was shown that six 3-O-sulfation sites exist per HSact precursor chain. At least five out of six 3-O-sulfate-tagged oligosaccharides in HSact precursors bind AT, whereas none of 3-O-sulfate-tagged oligosaccharides from HSinact precursors bind AT. When treated with low pH nitrous or heparitinase, 3-O-sulfate-tagged HSact and HSinact precursors exhibit clearly different structural features. 3-O-Sulfate-tagged HSact hexasaccharides were AT affinity purified and sequenced by chemical and enzymatic degradations. The 3-O-sulfate-tagged HSact hexasaccharides exhibited the following structures, DeltaUA-[6-3H]GlcNAc6S-GlcUA-[6-3H]GlcNS3(35)S+/-6S-++ +IdceA2S-[6-3H]Glc NS6S. The underlined 6- and 3-O-sulfates constitute the most critical groups for AT binding in view of the fact that the precursor hexasaccharides possess all the elements for AT binding except for the 3-O-sulfate moiety. The presence of five potential AT-binding precursor hexasaccharides in all HSact precursor chains demonstrates for the first time the processive assembly of specific sequence in HS. The difference in structures around potential 3-O-sulfate acceptor sites in HSact and HSinact precursors suggests that these precursors might be generated by different concerted assembly mechanisms in the same cell. This study permits us to understand better the nature of the HS biosynthetic pathway that leads to the generation of specific saccharide sequences.  相似文献   

9.
10.
11.
F9 embryonal carcinoma (EC) cells, cultured in suspension in medium containing 5 X 10(-8) M retinoic acid, aggregate and differentiate into embryoid bodies with an outer layer of visceral endoderm cells that synthesize and secrete alphafetoprotein (AFP) (Hogan, B. L. M., A. Taylor, and E. Adamson, 1981, Nature (Lond.). 291:235-237). Here we analyze the formation of the outer layer of cells as a model for epithelial differentiation. Three morphological phases are described, but analyses of cell numbers and the synthetic rates of some proteins, as well as the appearance of markers of visceral endoderm and basement membrane, show that the formation of the outer layer occurs as an orderly progression of multiple events. The markers used to follow the ontogeny of epithelial layer formation include SSEA-1, l, and i blood group antigens, laminin, fibronectin, type IV collagen, cytoskeletal intermediate filament proteins (vimentin, Endo A, and B), and AFP. The onset of epithelium formation occurs between the third and fourth day of culture, but its function is maximally expressed only when it is well organized. We found the rate of AFP secretion to be a measure of the proper alignment and maturity of the epithelium which occurs at the seventh or eighth day. This model of epithelium formation may help to explain how similar processes occur during embryogenesis.  相似文献   

12.
13.
14.
The mouse insulin-like growth factor II (Igf2) and H19 genes are located adjacent to each other on chromosome 7q11-13 and are reciprocally imprinted. It is believed that the allelic expression of these two genes is regulated by the binding of CTCF insulators to four parent-specific DNA methylation sites in an imprinting control center (ICR) located between these two genes. Although monoallelically expressed in peripheral tissues, Igf2 is biallelically transcribed in the CNS. In this study, we examined the allelic DNA methylation and CTCF binding in the Igf2/H19 imprinting center in CNS, hypothesizing that the aberrant CTCF binding as one of the mechanisms leads to biallelic expression of Igf2 in CNS. Using hybrid F1 mice (M. spretus males x C57BL/6 females), we showed that in CNS, CTCF binding sites in the ICR were methylated exclusively on the paternal allele, and CTCF bound only to the unmethylated maternal allele, showing no differences from the imprinted peripheral tissues. Among three other epigenetic modifications examined, histone H3 lysine 9 methylation correlated well with Igf2 allelic expression in CNS. These results suggest that CTCF binding to the ICR alone is not sufficient to insulate the Igf2 maternal promoter and to regulate the allelic expression of the gene in the CNS, thus challenging the aberrant CTCF binding as a common mechanism for lack of Igf2 imprinting in CNS. Further studies should be focused on the identification of factors that are involved in histone methylation and CTCF-associated factors that may be needed to coordinate Igf2 imprinting.  相似文献   

15.
16.
17.
A double immunofluorescence method was developed for the monitoring of proliferation and differentiation of F9 embryonal carcinoma cells. Cytokeratin filament expression was used as a marker for differentiation, and proliferating cell nuclear antigen (PCNA)/cyclin or bromodeoxyuridine labeling were used as markers for proliferation. F9 cells had a high proliferation rate and were cytokeratin-filament-negative. Upon treatment with retinoic acid and dibutyryl cyclic AMP, cytokeratin-filament-positive cells with differentiated phenotype appeared. After 3 days, the extent of proliferation of cytokeratin-filament-positive cells was comparable to, but after 5 days significantly lower than, that of cytokeratin-filament-negative cells in the same culture. In differentiating F9 cells, cytokeratin filament expression is associated with, and even slightly precedes, the dramatic decrease in the rate of proliferation.  相似文献   

18.
19.
Embryonal carcinoma F9 cells were labelled with [125I]-lactoperoxidase either in monolayer culture or after their dissociation and also as dissociated multilayer aggregates. Two-dimensional gel electrophoresis analysis of iodinated proteins revealed two groups of surface proteins, characteristic of non-attached surface (group A) and of attached surface (group B). The content of group A proteins was 40.7 % in the case of monolayer culture and 10.2 % in the case of multilayer aggregates, as compared to the total value of their common surface proteins. With a direct method for detection of lectin-binding proteins it was shown that three major Concanavalin A-binding proteins belong to group A and one to group B. Two wheat germ agglutinin binding proteins were identified as surface proteins of group B.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号