首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A designed mRNA consisting of 42 ribonucleotides having the cap structure was synthesized. The capped leader sequence of the brome mosaic virus (BMV) mRNA 4, m7G5'pppGUAUUAAUA (F-1), was synthesized by the phosphotriester method and followed by the capping reaction. A 32-mer consisting of an initiation codon (AUG), the coding region corresponding to a bacterial pheromone cAD1 and two stop codons, was constructed by the 18-mer (F-2) and 14-mer (F-3), which were synthesized by the phosphoramidite method. 2'-,3'-O-Methoxymethylene-guanosine 5'-phosphate was condensed with F-3 using P1-2',3'-O-methoxymethyleneguanosine-5'-yl P2-adenosine-5'-yl pyrophosphate (9) with T4 RNA ligase. The chemically synthesized RNA fragments were ligated successively with T4 RNa ligase to afford the whole RNA molecule.  相似文献   

2.
Chemically synthesized fragments corresponding to the 3' end of tRNAfMet from Escherichia coli were joined by T4-induced RNA ligase to yield a heptadecanucleotide (bases 61--77). The 3' terminus of C-C-A was modified by introduction of the ethoxymethylidene group to prevent intra- and intermolecular self-joining reactions at the 3' end. The terminal trimer was phosphorylated using polynucleotide kinase and joined to C-A-A with RNA ligase. The hexamer [C-A-A-C-C-A(ethoxymethylidene)] corresponding to bases 72--77 was obtained in a yield of 60%. An undecanucleotide (bases 61--71) which had been synthesized in a yield of 34% by similar enzymatic joining of U-C-C-G-G to pC-C-C-C-C-G was allowed to react with the 5'-phosphorylated hexamer (bases 72--77) using an excess of RNA ligase to yield the heptadecanucleotide U-C-C-G-G-C-C-C-C-C-G-C-A-A-C-C-A (bases 61--77). The product was identified by homochromatography and nearest neighbor analysis.  相似文献   

3.
4.
We describe a new protocol, which does not require (4S)UpG, for introducing (4S)U into specific sites in a pre-mRNA substrate. A 5'-half and a full-length RNA are first synthesized by phage RNA polymerase. p(4S)Up, which is derived from (4S)UpU and can therefore be 32P-labeled, is then ligated to the 3' end of the 5'-half RNA with T4 RNA ligase. The 3' phosphate of the ligated product is removed subsequently by CIP (calf intestinal alkaline phosphatase) to produce a 3'-OH group. The 3'-half RNA with a 5' phosphate is produced by site-specific RNase H cleavage of the full-length pre-mRNA directed by a 2'-O-methyl RNA-DNA chimera. The two half RNAs are then aligned with a bridging oligonucleotide and ligated with T4 DNA ligase. Our results show that 32P-p(4S)Up ligation to the 3' end of the 5'-half RNA is comparable to 32P-pCp ligation. Also, the efficiency of the bridging oligonucleotide-mediated two-piece ligation is quite high, approximately 30-50%. This strategy has been applied to the P120 pre-mRNA containing an AT-AC intron, but should be applicable to many other RNAs.  相似文献   

5.
Trypanosoma brucei mRNA is discontinuously synthesized via the 5' addition of a "mini-exon" sequence. The mini-exon-specific cap structure was purified from a complete RNase T2 and phosphatase digest of in vivo 32P-labeled poly(A)+RNA. The purified cap structure was sequenced by a series of partial and complete enzymatic digests by nuclease P1 and venom phosphodiesterase. This approach demonstrated that the T. brucei mini-exon cap structure consists of N7-methylguanosine linked in a conventional 5'-5' triphosphate bond to five nucleotides, in the sequence A*A*C(2'-O)mU*A (asterisks denote modifications that were not fully characterized in this work). 2'-O-methylations and other modifications appear to be present in this novel cap structure, which could have a functional role in the metabolism of the mini-exon.  相似文献   

6.
A T Profy  K M Lo    D A Usher 《Nucleic acids research》1983,11(5):1617-1632
2'(3')-O-DL-Alanyl (Ip)5I was synthesized by a new method. An alanine ortho ester of inosine 5'-phosphate was added to (Ip)4I using the ATP-independent reaction of T4 RNA ligase, and the product was converted smoothly to the desired ester. The enzymic reverse transfer reaction was conveniently suppressed by the dephosphorylation of the adenosine 5'-phosphate coproduct, catalyzed in situ by alkaline phosphatase.  相似文献   

7.
2-Azidoadenosine was synthesized from 2-chloroadenosine by sequential reaction with hydrazine and nitrous acid and then bisphosphorylated with pyrophosphoryl chloride to form 2-azidoadenosine 3',5'-bisphosphate. The bisphosphate was labeled in the 5'-position using the exchange reaction catalyzed by T4 polynucleotide kinase in the presence of [gamma-32P]ATP. Polynucleotide kinase from a T4 mutant which lacks 3'-phosphatase activity (ATP:5'-dephosphopolynucleotide 5'-phosphotransferase, EC 2.7.1.78) was required to facilitate this reaction. 2-Azidoadenosine 3',5'-[5'-32P]bisphosphate can serve as an efficient donor in the T4 RNA ligase reaction and can replace the 3'-terminal adenosine of yeast tRNAPhe with little effect on the amino acid acceptor activity of the tRNA. In addition, we show that the modified tRNAPhe derivative can be photochemically cross-linked to the Escherichia coli ribosome.  相似文献   

8.
G Keith 《Biochimie》1983,65(6):367-370
For several years most primary structure studies of ribonucleic acids have used the [32P] in vitro post-labeling techniques. We adapted our methods from the literature, and simplified them to make them accessible to any laboratory. These procedures are especially useful for preparation and purification of post labeling enzymes: T4 polynucleotide kinase, T4 RNA ligase and of gamma [32P] ATP. We developed a test tube method for 5' [32P] pCp preparation followed by tRNA labeling with T4 RNA ligase. The parameters for optimal labeling were determined. Labeling of 3.10(6) to 5.10(6) Cerenkov CPM per microgram tRNA are currently obtained.  相似文献   

9.
M Amitsur  R Levitz    G Kaufmann 《The EMBO journal》1987,6(8):2499-2503
Host tRNAs cleaved near the anticodon occur specifically in T4-infected Escherichia coli prr strains which restrict polynucleotide kinase (pnk) or RNA ligase (rli) phage mutants. The cleavage products are transient with wt but accumulate in pnk- or rli- infections, implicating the affected enzymes in repair of the damaged tRNAs. Their roles in the pathway were elucidated by comparing the mutant infection intermediates with intact tRNA counterparts before or late in wt infection. Thus, the T4-induced anticodon nuclease cleaves lysine tRNA 5' to the wobble position, yielding 2':3'-P greater than and 5'-OH termini. Polynucleotide kinase converts them into a 3'-OH and 5' P pair joined in turn by RNA ligase. Presumably, lysine tRNA depletion, in the absence of polynucleotide kinase and RNA ligase mediated repair, underlies prr restriction. However, the nuclease, kinase and ligase may benefit T4 directly, by adapting levels or decoding specificities of host tRNAs to T4 codon usage.  相似文献   

10.
The 2'-5' RNA ligase family members are bacterial and archaeal RNA ligases that ligate 5' and 3' half-tRNA molecules with 2',3'-cyclic phosphate and 5'-hydroxyl termini, respectively, to the product containing the 2'-5' phosphodiester linkage. Here, the crystal structure of the 2'-5' RNA ligase protein from an extreme thermophile, Thermus thermophilus HB8, was solved at 2.5A resolution. The structure of the 2'-5' RNA ligase superimposes well on that of the Arabidopsis thaliana cyclic phosphodiesterase (CPDase), which hydrolyzes ADP-ribose 1",2"-cyclic phosphate (a product of the tRNA splicing reaction) to the monoester ADP-ribose 1"-phosphate. Although the sequence identity between the two proteins is remarkably low (9.3%), the 2'-5' RNA ligase and CPDase structures have two HX(T/S)X motifs in their corresponding positions. The HX(T/S)X motifs play important roles in the CPDase activity, and are conserved in both the CPDases and 2'-5' RNA ligases. Therefore, the catalytic mechanism of the 2'-5' RNA ligase may be similar to that of the CPDase. On the other hand, the electrostatic potential of the cavity of the 2'-5' RNA ligase is positive, but that of the CPDase is negative. Furthermore, in the CPDase, two loops with low B-factors cover the cavity. In contrast, in the 2'-5' RNA ligase, the corresponding loops form an open conformation and are flexible. These characteristics may be due to the differences in the substrates, tRNA and ADP-ribose 1",2"-cyclic phosphate.  相似文献   

11.
12.
Complete enzymatic synthesis of DNA containing the SV40 origin of replication   总被引:62,自引:0,他引:62  
The replication of simian virus 40 origin-containing DNA has been reconstituted in vitro with SV40 large T antigen and purified proteins isolated from HeLa cells. Covalently closed circular DNA (RF I') daughter molecules are formed in the presence of T antigen, a single-stranded DNA binding protein and DNA polymerase alpha-primase complex, together with ribonuclease H, DNA ligase, topoisomerase II, and a double-stranded specific exonuclease that has been purified to homogeneity. The 44-kDa exonuclease-digested oligo(rA) annealed to poly(dT) in the 5'----3' direction. DNA ligase and the 5'----3' exonuclease were essential for RF I' formation. Covalently closed circular duplex DNA and full length linear single-stranded DNA were detected by alkaline gel electrophoresis as products of the complete system. DNA replication in the absence of either DNA ligase or the 5'----3' exonuclease yielded DNA products that were half length (approximately 1500 nucleotides) and smaller Okazaki-like fragments (approximately 200 nucleotides). Hybridization experiments showed that the longer chains were synthesized from the leading strand template, while the small products were synthesized from the lagging strand template. These results suggest that the RNA primers attached to 5' ends of replicated DNA are completely removed by the 5'----3' exonuclease, with the assistance of RNase H.  相似文献   

13.
14.
U3 small nucleolar RNA (snoRNA) is an abundant small RNA involved in the processing of pre-ribosomal RNA of eukaryotic cells. U3 snoRNA has been previously characterized from several sources, including human, rat, mouse, frog, fruit fly, dinoflagellates, slime mold, and yeast; in all these organisms, U3 snoRNA contains trimethylguanosine cap structure. In all instances where investigated, the trimethylguanosine-capped snRNAs including U3 snoRNA, are synthesized by RNA polymerase II. However, in higher plants, the U3 snoRNA is synthesized by RNA polymerase III and contains a cap structure different from trimethylguanosine (Kiss, T., and Solymosy, F. (1990) Nucleic Acids Res. 18, 1941-1949; Marshallsay, C., Kiss, T., and Filipowicz, W. (1990) Nucleic Acids Res. 18, 3451-3458; Kiss, T., Marshallsay, C., and Filipowicz, W. (1991) Cell 65, 517-526). In this study, we present evidence that cowpea and, most likely, tomato plant U3 snoRNA contains a methyl-pppA cap structure. These data show that the same U3 snoRNA contains different cap structures in different species and suggest that the kind of cap structure that an uridylic acid-rich small nuclear RNA contains is dependent on the RNA polymerase responsible for its synthesis. In vitro synthesized plant U3 snoRNA, with pppA or pppG as its 5' end, was converted to methyl-pppA/G cap structure in vitro when incubated with extracts prepared from wheat germ or HeLa cells. These data show that the capping machinery is conserved in organisms as evolutionarily distant as plants and mammals. Nucleotides 1-45 of tomato U3 snoRNA, which are capable of forming a stem-loop structure, are sufficient to direct the methyl cap formation in vitro.  相似文献   

15.
The inhibiting effect of adenosine, AMP, ADP, ATP, gamma-thio ATP (I), beta,gamma-imine ATP (II), beta,gamma-methylene ATP (III), P1,P3-di(adenosine-5') triphosphate (IV), P1,P4-di(adenosine-5') tetraphosphate (V) and adenosine 5'-tetraphosphate (VI) on the first step of the T4 RNA ligase reaction was studied. All the compounds tested, with the exception of adenosine, appeared to be competitive inhibitors of the first step of the enzymatic reaction. The inhibition constants (Ki) for the ATP analogs were determined. The data obtained suggest that the efficiency of inhibition depends on the number of phosphate groups and on the structure of ATP analogs. All the compounds under study (I-VI), except for AMP and ADP, form covalent AMP-RNA ligase complexes.  相似文献   

16.
17.
Donor activation in the T4 RNA ligase reaction   总被引:4,自引:0,他引:4  
T4 RNA ligase catalyzes the adenylation of donor oligonucleotide substrates. These activated intermediates react with an acceptor oligonucleotide which results in phosphodiester bond formation and the concomitant release of AMP. Adenylation of the four common nucleoside 3',5'-bisphosphates as catalyzed by T4 RNA ligase in the absence of an acceptor oligonucleotide has been examined. The extents of product formation indicate that pCp is the best substrate in the reaction and pGp is the poorest. Kinetic parameters for the joining reaction between the preadenylated nucleoside 3',5'-bisphosphates, A(5')pp(5')Cp or A(5')pp(5')Gp, and a good acceptor substrate (ApApA) or a poor acceptor substrate (UpUpU) have been determined. The apparent Km values for both preadenylated donors in the joining reaction are similar, and the reaction velocity is much faster than observed in the overall joining reaction. The nonnucleotide adenylated substrate P1-(5'-adenosyl) P2-(o-nitrobenzyl) diphosphate also exhibits a similar apparent Km but reacts with a velocity 80-fold slower than the adenylated nucleoside 3',5'-bisphosphates. By use of preadenylated donors, oligonucleotide substrates can be elongated more efficiently than occurs with the nucleoside 3',5'-bisphosphates.  相似文献   

18.
P1-Adenosine 5'-P2-o-nitrobenzyl pyrophosphate (nbzlppA) has been synthesized as a substrate for T4 RNA ligase catalyzed 3'-phosphorylation. Incubation of oligoribonucleotides and nbzlppA with RNA ligase yielded oligoribonucleotides having a 3'-o-(o-nitrobenzyl) phosphate. Photochemical removal of the o-nitrobenzyl group provided the free 3'-phosphate. Using [P2-32P] nbzlppA, 3'-termini of oligoribonucleotides could be labelled with 32P. This reaction was applied to modify the 3'-end of donor molecules in joining reaction with RNA ligase. A trinucleotide U-A-G was converted to U-A-Gpnbzl and phosphorylated with polynucleotide kinase. pU-A-Gpnbzl was then joined to an acceptor trinucleotide A-U-G to yield A-U-G-U-A-Gp.  相似文献   

19.
Reactions at the termini of tRNA with T4 RNA ligase.   总被引:4,自引:1,他引:3       下载免费PDF全文
T4 RNA ligase will catalyze the addition of nucleoside 3', 5'-bisphosphates onto the 3' terminus of tRNA resulting in tRNA molecule one nucleotide longer with a 3' terminal phosphate. Under appropriate conditions the reaction is quantitative and, if high specific radioactivity bisphosphates are used, it provides an efficient means for in vitro labeling of tRNA. Although the 3' terminal hydroxyl is a good acceptor, the 5' terminal phosphate in most tRNA's is not an effective donor in the RNA ligase reaction. This poor reactivity is due to the secondary structure of the 5' terminal nucleotide. If E. Coli tRNAf Met is used, the 5' phosphate is reactive and the major product with RNA ligase is the cyclic tRNA.  相似文献   

20.
The double-stranded form of adeno-associated virus (AAV) DNA has about 20 sites sensitive to endonuclease R.Hae III from Haemophilus aegypitus; the fragments produced fall into about 13 size classes, 8 of which contain single fragments. The location of the Hae III-produced AAV fragments relative to the three EcoR1 fragments was determined. Using revised figures for the molecular weights of the Hae III cleavage products of phiX174 replicative form DNA, we calculated that AAV DNA contains about 4,000 nucleotides. After Hae III digestiion of duplex DNA terminally labeled with 32P using polynucleotide kinase, the majority of fragments containing a 5' 32P label were about 40 nucleotides in length, and fragments of similar size were generated from each end, suggesting that the Hae site closest to the end is within the terminal repetition. Two more-slowly-migrating cleavage products also bore 5' 32P end label. These three terminally labeled species were also generated from single-stranded AAV DNA by digestion with Hae III, and evidence that one may have a nonlinear ("rabbit-ear") structure is presented. The predominant 5' terminal base was identified as thymine for both the plus and minus strands of AAV. Single-stranded AAV molecules could not be efficiently covalently circularized by incubation with polynucleotide ligase or ligase plus T4 DNA polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号