首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The spin-lattice relaxation time of the 31P nucleus in the phosphate group of egg yolk phosphatidylcholine multilamellar dispersions has been investigated at four resonant frequencies (38.9, 81.0, 108.9, and 145.7 MHz) in the temperature range from -30 degrees to 60 degrees C. The observed frequency dependence of the relaxation indicates that both dipolar relaxation and relaxation due to anisotropic chemical shielding are significant mechanisms. The experimental data have thus been modeled assuming both mechanisms and the analysis has allowed the contribution of each to the relaxation to be determined along with the correlation time for the molecular reorientation as a function of temperature. Dipolar relaxation was found to dominate at low nuclear magnetic resonance frequencies while at high frequencies the anisotropic chemical shift dominates. The correlation time of the phosphate group is on the order of 10(-9) s at 60 degrees C and increases to approximately 10(-7) s at -30 degrees C. It is observed that the freezing of the buffer which occurs at approximately -8 degrees C has a significant effect on the phosphate group reorientation. This effect of the freezing is to change the activation energy for the phosphate group reorientation from 16.9 KJ/mol above -8 degrees C to 32.5 KJ/mol below -8 degrees C.  相似文献   

2.
Diffusional water permeability was measured in renal proximal tubule cell membranes by pulsed nuclear magnetic resonance using proton spin-lattice relaxation times (T1). A suspension of viable proximal tubules was prepared from rabbit renal cortex by Dounce homogenization and differential sieving. T1 measured in a tubule suspension (22% of exchangeable water in the intracellular compartment) containing 20 mM extracellular MnCl2 was biexponential with time constants 1.8 +/- 0.1 ms and 8.3 +/- 0.2 ms (mean +/- SD, n = 8, 37 degrees C, 10 MHz). The slower time constant, representing diffusional exchange of water between intracellular and extracellular compartments, increased to 11.6 +/- 0.6 ms (n = 6) after incubation of tubules with 5 mM parachloromercuribenzene sulfonate (pCMBS) for 60 min at 4 degrees C and was temperature dependent with activation energy Ea = 2.9 +/- 0.4 kcal/mol. To relate T1 data to cell membrane diffusional water permeabilities (Pd), a three-compartment exchange model was developed that included intrinsic decay of proton magnetization in each compartment and apical and basolateral membrane water transport. The model predicted that the slow T1 was relatively insensitive to apical membrane Pd because of low luminal/cell volume ratio. Based on this analysis, basolateral Pd (corrected for basolateral membrane surface convolutions) is 2.0 X 10(-3) cm/s, much lower than corresponding values for basolateral Pf (10-30 X 10(-3) cm/s) measured in the intact tubule and in isolated basolateral membrane vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The anisotropy of the spin-lattice relaxation time (T1) and the spin-spin relaxation times (T2) of water protons in skeletal muscle tissue have been studied by the spin-echo technique. Both T1 and T2 have been measured for the water protons of the tibialis anterior muscle of mature male rats for theta = 0, 55, and 90 degrees, where theta is the orientation of the muscle fiber with respect to the static field. The anisotropy in T1 and T2 has been measured at temperatures of 28, -5 and -10 degrees C. No significant anisotropy was observed in the T1 of the tissue water, while an average anisotropy of approximately 5% was observed in T2 at room temperature. The average anisotropy of T2 at -5 and -10 degrees C was found to be approximately 2 and 1.3%, respectively.  相似文献   

4.
The temperature and cell volume dependence of the NMR water proton line-width, spin-lattice, and spin-spin relaxation times have been studied for normal and sickle erythrocytes as well as hemoglobin A and hemoglobin S solutions. Upon deoxygenation, the spin-spin relaxation time (T2) decreases by a factor of 2 for sickle cells and hemoglobin S solutions but remains relatively constant for normal cells and hemoglobin A solutions. The spin-lattice relaxation time (T1) shows no significant change upon deoxygenation for normal or sickle packed red cells. Studies of the change in the NMR linewidth, T1 and T2 as the cell hydration is changed indicate that these parameters are affected only slightly by a 10-20% cell dehydration. This result suggests that the reported 10% cell dehydration observed with sickling is not important in the altered NMR properties. Low temperature studies of the linewidth and T1 for oxy and deoxy hemoglobin A and hemoglobin S solutions suggest that the "bound" water possesses similar properties for all four species. The low temperature linewidth ranges from about 250 Hz at -15 degrees C to 500 Hz at -36 degrees C and analysis of the NMR curves yield hydration values near 0.4 g water/g hemoglobin for all four species. The low temperature T1 data go through a minimum at -35 degrees C for measurements at 44.4 MHz and -50 degrees C for measurements at 17.1 MHz and are similar for oxy and deoxy hemoglobin A and hemoglobin S. These similarities in the low temperature NMR data for oxy and deoxy hemoglobin A and hemoglobin S suggest a hydrophobically driven sickling mechanism. The room temperature and low temperature relaxation time data for normal and sickle cells are interpreted in terms of a three-state model for intracellular water. In the context of this model the relaxation time data imply that type III, or irrotationally bound water, is altered during the sickling process.  相似文献   

5.
Differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR) spectroscopy are applied to characterize the nonfreezable water molecules in fully hydrated D2O/sphingomyelin at temperatures below 0 degrees C. Upon cooling, DSC thermogram displays two thermal transitions peaked at -11 and -34 degrees C. The high-temperature exothermic transition corresponds to the freezing of the bulk D2O, and the low-temperature transition, which has not previously been reported, can be ascribed to the freezing of the phosphocholine headgroup in the lipid bilayer. The dynamics of nonfreezable water are also studied by 2H NMR T1 (spin-lattice relaxation time) and T2e (spin-spin relaxation time obtained by two pulse echo) measurements at 30.7 MHz and at temperatures down to -110 degrees C. The temperature dependence of the T1 relaxation time is characterized by a distinct minimum value of 2.1 +/- 0.1 ms at -30 degrees C. T2e is discontinuous at temperature around -70 degrees C, indicating another freezing-like event for the bound water at this temperature. Analysis of the relaxation data suggest that nonfreezable water undergoes both fast and slow motions at characteristic NMR time scales. The slow motions are affected when the lipid headgroup freezes.  相似文献   

6.
P A Mirau  R W Behling  D R Kearns 《Biochemistry》1985,24(22):6200-6211
Proton NMR relaxation measurements are used to compare the molecular dynamics of 60 base pair duplexes of B- and Z-form poly(dG-dC).poly(dG-dC). The relaxation rates of the exchangeable guanine imino protons (Gim) in H2O and in 90% D2O show that below 20 degrees C spin-lattice relaxation is exclusively from proton-proton magnetic dipolar interactions while proton-nitrogen interactions contribute about 30% to the spin-spin relaxation. The observation that the spin-lattice relaxation is nonexponential and that the initial spin-lattice relaxation rate of the Gim, G-H8 and C-H6 protons depends on the selectivity of the exciting pulse shows that spin-diffusion dominates the spin-lattice relaxation. The relaxation rates of the Gim, C-H5, and C-H6 in B- and Z-form poly(dG-dC).poly(dG-dC) cannot be explained by assuming the DNA behaves as a rigid rod. The data can be fit by assuming large-amplitude out of plane motions (+/- 30-40 degrees, tau = 1-100 ns) and fast, large-amplitude local torsional motions (+/- 25-90 degrees, tau = 0.1-1.5 ns) in addition to collective torsional motions. The results for the B and Z forms show that the rapid internal motions are similar and large in both conformations although backbone motions are slightly slower, or of lower amplitude, in Z DNA. At high temperatures (greater than 60 degrees C), imino proton exchange with solvent dominates the spin-lattice relaxation of B-form poly(dG-dC).poly(dG-dC), but in the Z form no exchange contribution (less than 2 s-1) is observed at temperatures as high as 85 degrees C. Conformational fluctuations that expose the imino protons to the solvent are strikingly different in the B and Z forms. The results obtained here are compared with those previously reported for poly(dA-dT).poly(dA-dT).  相似文献   

7.
The lateral mobility of unliganded low density lipoprotein-receptor (LDL-R) on the surface of human fibroblasts has been investigated by studying the generation and relaxation of concentration differences induced by exposure of the cultured cells to steady electric fields. The topographic distribution of receptors was determined by fluorescence microscopy of cells labeled with the intensely fluorescent, biologically active LDL derivative dioctadecylindolcarbocyanine LDL (dil(3)-LDL), or with native LDL and anti-LDL indirect immunofluorescence. Exposure of the LDL-receptor-internalization defective J. D. cells (GM2408A) to an electric field of 10 V/cm for 1 h at 22 degrees C causes greater than 80% of the cells to have an asymmetric distribution of LDL-R; receptors accumulate at the more negative pole of the cell. In contrast, only 20% of LDL-internalization normal GM3348 cells exposed to identical conditions have asymmetrical distributions. Phase micrographs taken during electric-field exposure rule out cell movement as the responsible mechanism for the effect. In both cell types, postfield labeling with the F-actin-specific fluorescent probe nitrobenzoxadiazole-phallacidin shows that no topographic alteration of the actin cytoskeleton accompanies the redistribution of cell surface LDL-Rs, and indirect immunofluorescence labeling of the coat protein clathrin shows that coated pits do not redistribute asymmetrically. Measurements of the postfield relaxation in the percentage of GM2408A cells showing an asymmetric distribution allow an estimate of the effective postfield diffusion coefficient of the unliganded LDL-R. At 37 degrees C, D = 2.0 X 10(-9) cm2/s, decreasing to 1.1 X 10(-9) cm2/s at 22 degrees C, and D = 3.5 X 10(-10) cm2/s at 10 degrees C. These values are substantially larger than those measured by photobleaching methods for the LDL-R complexed with dil(3)-LDL on intact cells, but are comparable to those measured on membrane blebs, and are consistent with diffusion coefficients measured for other unliganded integral membrane receptor proteins by postfield-relaxation methods.  相似文献   

8.
13C nuclear magnetic resonance spectroscopy in used to gain information on the flexibility of the backbone in peptide hormones and peptide hormone analogs. 13C spin-lattice relaxation times (T1) were measured on luliberin, the luteinizing-hormone-releasing hormone and des(Gly-NH2)10-luliberin-N-ethylamide in aqueous solution at 25.2 and 67.9 MHz at temperatures of 32 degrees, 40 degrees and 55 degrees C. The 13C spin-lattice relaxation times indicate increased flexibility of the peptide backbone in the immediate environment of glycyl residues in luliberin (less than Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) and the hormone analog des(Gly-NH2)10-luliberin-N-ethylamide (less than Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-NH-CH2CH3) in aqueous solutions. 13 C NMR spectroscopy is shown to be a sensitive technique for monitoring the time-averaged conformational flexibility of peptides in solution. Activation energies (Ea) of about 25 kJ/mol were obtained for rotational reorientation of non-terminal alpha-carbons in the peptide backbone. Rotation of methyl groups was characterized by an Ea of 9.6 kJ/mol whereas reorientation of the N-terminal pyroglutamyl residue showed an Ea value of 14.6 kJ/mol. The Ea values of individual carbons in the side-chains of prolyl, arginyl and leucyl residues in the peptides were similar to those obtained for the alpha-carbon of the same amino acid residue in the peptide backbone of the hormones.  相似文献   

9.
The structure and motion of phospholipids in human plasma lipoproteins have been studied by using 31P NMR. Lateral diffusion coefficients, DT, obtained from the viscosity dependence of the 31P NMR line widths, were obtained for very low density lipoprotein (VLDL), low-density lipoprotein (LDL), high-density lipoproteins (HDL2, HDL3), and egg PC/TO microemulsions at 25 degrees C, for VLDL at 40 degrees C, and for LDL at 45 degrees C. At 25 degrees C, the rate of lateral diffusion in LDL (DT = 1.4 x 10(-9) cm2/s) is an order of magnitude slower than in the HDLs (DT = 2 x 10(-8) cm2/s). At 45 degrees C, DT for LDL increases to 1.1 x 10(-8) cm2/s. In contrast, DT for VLDL increases only slightly going from 25 to 40 degrees C. The large increase in diffusion rate observed in LDL occurs over the same temperature range as the smectic to disordered phase transition of the core cholesteryl esters, and provides evidence for direct interactions between the monolayer and core. In order to prove the orientation and/or order of the phospholipid head-group, estimates of the residual chemical shift anistropy, delta sigma, have been obtained for all the lipoproteins and the microemulsions from the viscosity and field dependence of the 31P NMR line widths. For VLDL and LDL, the anisotropy is 47-50 ppm at 25 degrees C, in agreement with data from phospholipid bilayers. For the HDLs, however, significantly larger values of 69-75 ppm (HDL2) and greater than 120 ppm (HDL3) were obtained.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We have measured the lateral diffusion coefficient (D), of active dansyl-labeled gramicidin C (DGC), using the technique of fluorescence photobleaching recovery, under conditions in which the cylindrical dimer channel of DGC predominates. In pure, hydrated, dimyristoylphosphatidylcholine (DMPC) multibilayers (MBL), D decreases from 6 X 10(-8) cm2/s at 40 degrees C to 3 X 10(-8) cm2/s at 25 degrees C, and drops 100-fold at 23 degrees C, the phase transition temperature (Tm) of DMPC. Above Tm, addition of cholesterol decreases D; a threefold stepwise drop occurs between 10 and 20 mol %. Below Tm, increasing cholesterol increases D; a 10-fold increase occurs between 10 and 20 mol % at 21 degrees C, between 20 and 25 mol % at 15 degrees C, and between 25 and 30 mol % at 5 degrees C. In egg phosphatidylcholine (EPC) MBL, D decreases linearly from 5 X 10(-8) cm2/s at 35 degrees C to 2 X 10(-8) cm2/s at 5 degrees C; addition of equimolar cholesterol reduces D by a factor of 2. Thus this transmembrane polypeptide at low membrane concentrations diffuses quite like a lipid molecule. Its diffusivity in lipid mixtures appears to reflect predicted changes of lateral composition. Increasing gramicidin C (GC) in DMPC/GC MBL broadened the phase transition, and the diffusion coefficient of the lipid probe N-4-nitrobenzo-2-diazole phosphatidylethanolamine (NBD-PE) at 30 degrees C decreases from 8 X 10(-8) cm2/s below 5 mol % GC to 2 X 10(-8) cm2/s at 14 mol % GC; D for DGC similarly decreases from 4 X 10(-8) cm2/s at 2 mol % GC to 1.4 X 10(-8) cm2/s at 14 mol % GC. Hence, above Tm, high concentrations of this polypeptide restrict the lateral mobility of membrane components.  相似文献   

11.
R Bülow  P Overath  J Davoust 《Biochemistry》1988,27(7):2384-2388
The membrane form of the variant surface glycoprotein (mfVSG) is anchored in the plasma membrane of Trypanosoma brucei by a dimyristoylphosphatidylinositol residue connected via a glycan to the COOH-terminal amino acid. The glycoprotein molecules are tightly packed, forming a coat that is impenetrable to lytic serum components. Lateral diffusion of mfVSG was measured by the fluorescence recovery after photobleaching technique. mfVSG labeled on the cell surface with rhodamine-conjugated anti-VSG Fab fragments showed a diffusion coefficient of 1 X 10(-10) cm2/s at 37 degrees C and of 0.7 X 10(-10) cm2/s at 27 degrees C. About 80% of the molecules were mobile. Affinity-purified mfVSG molecules implanted into the plasma membrane of baby hamster kidney cells exhibited a similar mobility to that found in the trypanosome coat [D = (0.4-0.7) X 10(-10) cm2/s at 4 degrees C]. Phospholipid mobility in the plasma membrane of trypanosomes was characterized by a diffusion coefficient of 2.2 X 10(-9) cm2/s at 37 degrees C. It is concluded that mfVSG mobility in the surface coat of the parasite is rapid and comparable to that of other membrane-bound glycoproteins but slower than that of phospholipids.  相似文献   

12.
The spin-lattice relaxation time (T1) of water protons in mouse muscle was studied from 10(4) to 10(8) Hz at several temperatures, and the deuteron T1 of muscle water was studied from 2.0 X 10(3) to 1.54 X 10(7) Hz at several temperatures. Proton T1's of muscle and brain water with different D2O contents were measured at 25 degrees C and 35 MHz. From the results of variable frequency and temperature measurements and the data of isotope substitution, it is concluded that the major relaxation mechanism for the protons in muscle water is the intermolecular dipolar interaction between the protons of the macromolecules and the protons of the water molecules in the hydration layer. It is also suggested that the relaxation of deuterons can be accounted for a very small fraction of water molecules directly hydrogen-bonded to the macromolecules.  相似文献   

13.
The permeability of human platelets to glycerol was determined at 37 degrees C, 25 degrees C, and 0 degrees C from the rate of change of cell volume after abrupt addition of 0.5 mol/liter glycerol in phosphate-buffered saline. Intracellular water volume was measured employing both tritiated water and a photometric method. Intracellular glycerol was measured employing tritiated glycerol. The glycerol permeability coefficient derived from the tracer cell volume data was 4.0 +/- 0.7 X 10(-7) cm/s at 37 degrees C, and 1.1 +/- 0.4 X 10(-7) cm/s at 25 degrees C, and the photometric data gave a permeability coefficient of 5.4 +/- 0.4 X 10(-7) cm/s at 37 degrees C. The activation energy between 23 degrees C and 37 degrees C for glycerol permeation was 19.8 kcal/mol. The cells were virtually impermeable to glycerol at 0 degrees C. The minimum intracellular water volume attained after the addition of 0.5 mol/liter glycerol at 37 degrees C determined by the photometric method was 47.8% of normal water volume, whereas the minimum water volume calculated assuming that glycerol exerted its full osmotic effect (i.e., sigma = 1) was 45.6%. The reflexion coefficient was therefore assumed to be unity. Neither method of cell volume determination could be used with 1 or 2 mol/liter glycerol: adequate separation of the cells from the labeled medium could not be achieved in the tracer method; in the photometric method, it was apparent that transmittance (660 nm) was influenced by one or more variables in addition to cell volume.  相似文献   

14.
The rotational diffusion behavior of phosphorus metabolites present in calf lens cortical and nuclear homogenates was investigated by the NMR technique of 31P off-resonance rotating frame spin-lattice relaxation as a means of assessing the occurrence and extent of phosphorus metabolite-lens protein interactions. 31P NMR spectra of calf lens homogenates were obtained at 10 and 18 degrees C (below and above the cold cataract phase transition temperature, respectively) at 7.05 T. Effective rotational correlation times (tau 0,eff) for the major phosphorus metabolites present in cortical and nuclear bovine calf lens homogenates were derived from nonlinear least-squares analysis of R vs omega e (spectral intensity ratio vs precessional frequency about the effective field) data with the assumption of isotropic reorientational motion. Intramolecular dipole-dipole (1H-31P, 31P-31P), chemical shift anisotropy (CSA), and solvent (water) translational intermolecular dipole-dipole (1H-31P) relaxation contributions were assumed in the analyses. In those cases where the limiting value of the spectral intensity ratio failed to reach unity at large offset frequency, a modified formalism incorporating chemical exchange mediated saturation transfer between two sites was used. Values of tau 0,eff for phosphorus metabolites present in the cortex varied from a low of ca. 2 ns [L-alpha-glycero-phosphocholine (GPC)] to a high of 12 ns (alpha-ATP) at 10 degrees C, whereas at 18 degrees C the range was from ca. 1 to 9 ns. For the nucleus the tau 0,eff values ranged from ca. 3 ns (GPC) to 41 ns (Pi) at 10 degrees C; at 18 degrees C the corresponding values ranged from 4 to 39 ns. For PME (phosphomonoester; in lens the predominant metabolite is L-alpha-glycerol phosphate) at 18 degrees C evidence was obtained for binding and subsequent exchange with solid like protein domains. The diversity in tau 0,eff values for lenticular phosphorus metabolites is suggestive of differential binding to more slowly tumbling macromolecular species, most likely lens crystallin proteins. Corresponding measurement of tau 0,eff values for the mobile protein fraction present in calf lens cortical and nuclear homogenates at 10 and 18 degrees C, by 13C off-resonance rotating frame spin-lattice relaxation, provided average macromolecular correlation times that were assumed to represent the bound metabolite state. A fast-exchange model (on the T1 time scale), between free and bound forms, was employed in the analysis of the metabolite R vs omega e curves to yield the  相似文献   

15.
As part of a programme of comparative measurements of diffusional water permeability (Pd) the red blood cells (RBC) from Little Penguin (Eudyptula minor) were studied. The cell dimensions were measured with light and electron microscopy, and by a newly described non-invasive technique, NMR q-space analysis. In view of its relative novelty for cell biologists, an overview of this technique is presented. The RBC revealed an ellipsoidal shape that is characteristic of avian RBC, with axis lengths ("diameters") estimated to be: a=16.0 microm; b=9.6 microm; c=5.0 microm. The values of P(d)were: 2.0 x 10(-3)cm s(-1)at 5 degrees C, 3.3 x 10(-3)cm s(-1)at 10 degrees C, 4.6 x 10(-3)cm s(-1)at 15 degrees C and approximately 5.4 x 10(-3)cm s(-1)at 20, 25, 30, 37 and 42 degrees C.There was a lack of inhibition of water permeability by p-chloromercuribenzensulfonate (PCMBS), the well-known inhibitor of RBC aquaporin. It was notable that in the temperature range 5-20 degrees C the NMR parameters, and hence the permeability, varied linearly as is found for other species, but at temperatures higher than 20 degrees C there was no temperature-dependence of Pd. Consequently, there was an obvious break at approximately 20 degrees C in the Arrhenius plot, of the mean residence life time of water inside the cells, 1/Te, versus temperature. For temperatures less than 20 degrees C the activation energy E(a,d) was 45.6 +/- 6.6 kJ/mol. For temperatures higher than 25 degrees C E(a,d) was zero. The lack of inhibition of water permeability by PCMBS and the very high value of E(a,d) for diffusive water exchange suggests that the water permeation occurs primarily via the membrane bilayer per se, i.e., there is no aquaporin in Little Penguin RBC. The discontinuity at approximately 20 degrees C in the Arrhenius plot is an interesting finding, not seen before in other species, and we suggest that it reflects a phase transition in the membrane lipids.  相似文献   

16.
An ultrarapid filtration method was adapted to the determination of water and solute permeability of membrane vesicles. This method consisted of measuring substance washout from vesicles first loaded with 3H2O or labeled solutes, placed on filters, and rinsed at high rates for short periods. The retention of the vesicles on the filters was analyzed and was found to be a function of the nature and porosity of the filters as well as of the vesicle origin. Washing buffer flow rate and washing duration did not affect vesicle retention. The diffusional water permeability of cholesterol-free liposomes was determined at 16 degrees C. Its value was reduced by a factor of 2.5 when the liposomes were prepared with 20% cholesterol and a threefold increase was noted when the liposomes were preincubated with gramicidin (6 mg/g lipid). Water permeability of liposomes was strongly temperature-dependent: Ea = 15.3 kcal/mol. Diffusional water permeability of pink ghosts was also measured: a value of (4.4 +/- 0.2) X 10(-3) cm/s (n = 3) was obtained at 13 degrees C. This permeability was reduced by 45.2% with 0.4 mM HgCl2. The urea permeability of intestinal and renal brush-border membrane vesicles was (1.15 +/- 0.18) X 10(-6) cm/s (n = 7) and (1.67 +/- 0.08) X 10(-6) cm/s (n = 9), respectively. The renal value was reduced by a factor of 4.4 by 100 mM thiourea. This ultrarapid filtration technique provides an accurate method of transport measurement in sealed membranes such as liposomes and plasma membrane vesicles.  相似文献   

17.
The permeability of 5(6)-carboxyfluorescein (CF) through the phospholipid bilayer membranes was measured by using the system in which the CF-containing phospholipid vesicles (liposomes) were suspended in the gas-liquid flow in an external loop airlift bubble column. The airlift was operated at various superficial gas velocities UG up to 2.4 cm/s at 25 and 40 degrees C. The CF-containing liposomes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) had the nominal diameters of 50, 100, and 200 nm. The 50- and 100-nm liposomes were stable at 40 degrees C for 5 h even at a high UG value of 2.4 cm/s based on the observed turbidity of the liposome suspension in the airlift. On the other hand, the 200-nm liposomes were stable at a low UG value of 1.4 cm/s, although a progressive decrease in size of the liposomes was implied at the high UG value of 2.4 cm/s. The permeability coefficient PCF of CF through the lipid membrane of the 100-nm liposomes was significantly increased with increasing UG at a high temperature of 40 degrees C, while at a low temperature of 25 degrees C the PCF value was little dependent on UG. As a typical result on the above liposomes, the PCF value (9.2 x 10(-11) cm/s) at 40 degrees C and UG = 2.4 cm/s in the airlift was more than 15 times larger than that at 25 degrees C in the static liquid corresponding to UG = 0. In addition, the dependence of the PCF value on UG at 40 degrees C became more significant with increasing the size of liposomes suspended. The results obtained revealed that the permeability of the liposome membranes could be regulated by suspending the liposomes in the gas-liquid flow in the airlift without modulating the membrane composition of liposomes.  相似文献   

18.
Spin-spin relaxation time (T2), spin-lattice relaxation time (T1), and spin-lattice relaxation time in the rotating frame (T1p) of water protons in solutions of bacteriophage T2 were studied by pulsed nuclear magnetic resonance. The frequency dependence of the measurements exhibits a dispersion implying existence of a fraction of water molecules in solution with a correlation time distribution centered at approximately 10(-5) sec which is strongly influenced by the reorientational motions of virus particles. Experiments were carried out with two forms of bacteriophage T2 existing at pH 5.4 and 7.8 respectively. The different structures of the virus at these two pH values are reflected in the NMR relaxation behavior of water protons.  相似文献   

19.
The spin-lattice relaxation time was measured by proton NMR of hydrated tobacco cut-fillers. The relaxation decays of adsorbed water were expressed by a single phase system below 70% relative humidity, while a two-phase system was applicable to water adsorbed at more than 80% relative humidity. From the two-phase model, it was considered that 0.12–0.13 kg water/kg dry tobacco is bound water.  相似文献   

20.
The interaction of long-chain aldehydes with bacterial luciferase has been studied by 13C NMR spectroscopy of natural-abundance and 13C-enriched 1-dodecanal. At high substrate/enzyme ratios, the spin-spin relaxation rates of C(1)-C(3) are faster than for the other carbons and are in the order C(1) greater than C(2) greater than C(3). The aldehyde is strongly bound in the active site along the entire length of the alkyl chain with the strongest interaction at the CHO group. At low substrate/enzyme ratios, interactions are apparent at C(10), which are removed upon denaturation of the enzyme. Spin-spin and spin-lattice relaxation rates were measured for odd-carbon 13C-enriched 1-dodecanal in the presence of luciferase. From the ratios of T1/T2 a single value of (1.8 +/- 0.7) X 10(-8) s was calculated for the rotational correlation time tc for the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号