首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
After incubation of purified SV40 minichromosomes with superhelical DNA molecules either of SV40 or plasmid origin, a catenation of monomeric DNA via dimers and multimers to large networks was observed. The catenation reaction was stimulated by the DNA condensing agent spermidine with ATP as an energy donor and was dependent on the presence of magnesium ions. The reaction could be blocked by inhibitors of topoisomerase II such as novobiocin and nalidixic acid. Relaxed covalently closed circular DNA was catenated to networks in the presence of ATP as the energy donor.  相似文献   

2.
The distributions of DNA cleavage sites induced by topoisomerase II in the presence or absence of specific drugs were mapped in the simian virus 40 genome. The drugs studied were 5-iminodaunorubicin, amsacrine (m-AMSA), teniposide (VM-26) and 2-methyl-9-hydroxyellipticinium; each produced a distinctive pattern of enhanced cleavage. Consistently intense cleavage, both in the presence and in the absence of drugs, occurred in the nuclear matrix-associated region. Since topoisomerase II is a major constituent of the nuclear matrix, and cleavage complexes include a covalent link between topoisomerase II and DNA, the findings suggest that topoisomerase II may function to attach DNA to the nuclear matrix. Cleavage usually occurred on both DNA strands with the expected four base-pair 5' stagger, and strong sites tended to occur within A/T runs such as have been associated with binding to the nuclear scaffold. Intense cleavage was present also in the replication termination region, but was absent from the vicinity of the replication origin. Cleavage intensities were found to change with time in a manner that depended both on the site and on the drug, suggesting that topoisomerase II can move along the DNA from a kinetically preferred site to a thermodynamically preferred site.  相似文献   

3.
The simultaneous development of resistance to the cytotoxic effects of several classes of natural product anticancer drugs, after exposure to only one of these agents, is referred to as multiple drug resistance (MDR). At least two distinct mechanisms for MDR have been postulated: that associated with P-glycoprotein and that thought to be due to an alteration in DNA topoisomerase II activity (at-MDR). We describe studies with two sublines of human leukemic CCRF-CEM cells approximately 50-fold resistant (CEM/VM-1) and approximately 140-fold resistant (CEM/VM-1-5) to VM-26, a drug known to interfere with DNA topoisomerase II activity. Each of these lines is cross-resistant to other drugs known to affect topoisomerase II but not cross-resistant to vinblastine, an inhibitor of mitotic spindle formation. We found little difference in the amount of immunoreactive DNA topoisomerase II in 1.0 M NaCl nuclear extracts of the two resistant and parental cell lines. However, topoisomerase II in nuclear extracts of the resistant sublines is altered in both catalytic activity (unknotting) of and DNA cleavage by this enzyme. Also, the rate at which catenation occurs is 20-30-fold slower with the CEM/VM-1-5 preparations. The effect of VM-26 on both strand passing and DNA cleavage is inversely related to the degree of primary resistance of each cell line. Our data support the hypothesis that at-MDR is due to an alteration in topoisomerase II or in a factor modulating its activity.  相似文献   

4.
5.
Several classes of antitumor drugs are known to stabilize topoisomerase complexes in which the enzyme is covalently bound to a terminus of a DNA strand break. The DNA cleavage sites generally are different for each class of drugs. We have determined the DNA sequence locations of a large number of drug-stimulated cleavage sites of topoisomerase II, and find that the results provide a clue to the possible structure of the complexes and the origin of the drug-specific differences. Cleavage enhancements by VM-26 and amsacrine (m-AMSA), which are representative of different classes of topoisomerase II inhibitors, have strong dependence on bases directly at the sites of cleavage. The preferred bases were C at the 3' terminus for VM-26 and A at the 5' terminus for m-AMSA. Also, a region of dyad symmetry of 12 to 16 base pairs was detected about the enzyme cleavage positions. These results are consistent with those obtained with doxorubicin, although in the case of doxorubicin, cleavage requires the presence of an A at the 3' terminus of at least one the pair of breaks that constitute a double-strand cleavage (Capranico et al., Nucleic Acids Res., 1990, 18: 6611). These findings suggest that topoisomerase II inhibitors may stack with one or the other base pair flanking the enzyme cleavage sites.  相似文献   

6.
Integration of progeny simian virus 40 DNA into the host cell genome   总被引:11,自引:0,他引:11  
A procedure was developed for the separation of cellular DNA of productively infected monkey kidney cells from free simian virus 40 DNA. The application of this procedure allowed the investigation of progeny viral DNA integration into the host cell DNA by nucleic acid hybridization techniques. The purification consisted of precipitation of the cellular DNA by Hirt's (1967) method, velocity centrifugation in alkaline sucrose gradients, equilibrium centrifugation in ethidium bromide/CsCl solution, and an additional velocity centrifugation in an alkaline sucrose gradient. The efficiency of each step of the procedure was determined by monitoring the amount of contaminating free viral DNA. Purified cellular DNA, isolated from cells late after infection, contained approximately 0/sd006% free viral DNA, but as much as 2% integrated simian virus 40 DNA. This corresponds to more than 20,000 integrated virus genome equivalents per cell, as determined by DNA-DNA reassociation kinetics. Integration of simian virus 40 DNA into the cellular DNA became detectable at 24 hours after infection, and increased with the increase in the rate of viral DNA synthesis.  相似文献   

7.
DNA topoisomerases II are nuclear enzymes that have been identified recently as targets for some of the most active anticancer drugs. Antitumor topoisomerase II inhibitors such as teniposide (VM-26) produce enzyme-induced DNA cleavage and inhibition of enzyme activity. By adding to such reactions distamycin, a compound whose effects on DNA have been extensively characterized, we investigated the effects of drug binding upon topoisomerase II-mediated DNA cleavage induced by VM-26. We have found a correspondence between distamycin binding (determined by footprinting analysis) and topoisomerase II-mediated cleavage of SV40 DNA (determined by sequencing gel analysis). Distamycin binding potentiated the cleavage of specific sites in the near proximity of distamycin-binding sites (within at least 25 base pairs), which indicates that DNA secondary structure is involved in topoisomerase II-DNA interactions. That distamycin potentiated cleavage only at sites that were recognized in the absence of distamycin and suppressed cleavage directly at distamycin-binding sites indicates that topoisomerase II recognizes DNA on the basis of primary sequence. In addition, distamycin stimulated topoisomerase II-mediated DNA relaxation and antagonized the inhibitory effect of VM-26. These results show that the DNA sequence-specific binding of distamycin produces local and propagated effects in the DNA which markedly affect topoisomerase II activity.  相似文献   

8.
Frameshift mutations induced by acridines in bacteriophage T4 have been shown to be due to the ability of these mutagens to cause DNA cleavage by the type II topoisomerase of T4 and the subsequent processing of the 3′ ends at DNA nicks by DNA polymerase or its associated 3′ exonuclease followed by ligation of the processed end to the original 5′ end. An analysis of the ability of nick-processing models is presented here to test the ability of nick processing to account for the DNA sequences of duplications and deletions induced in the aprt gene of CHO cells by teniposide (VM-26) [Han et al. (1993) J. Mol. Biol., 229, 52]. Although teniposide is not an acridine, it induces topoisomerase II-mediated DNA cutting in aprt sequences in vitro and mutagenesis in vivo. Although the previous study noted a correlation between mutation sites and nearby DNA discontinuities induced by the enzyme in vitro, neither the nick-processing model responsible for T4 mutations, nor double-strand break models alone were able to account for most of the mutant sequences. Thus, no single model explained the correlation between teniposide-induced DNA cleavage and mutagenic specificity. This report describes an expanded analysis of the ways that nick-processing models might be related to mutagenesis and demonstrates that a modified nick-processing model provides a biochemical rationale for the mutant speficities. The successful nick-processing model proposes that either 3′ ends at nicks are elongated by DNA polymerase and/or that 5′ ends of nicks are subject to nuclease activity; 3′-nuclease activity is not implicated. The mutagenesis model for nick-processing of teniposide-induced nicks in CHO cells when compared to the mechanism of nick-processing in bacteriophage T4 at acridine-induced nicks provides a framework for considering whether the differences may be due to cell-specific modes of DNA processing and/or due to the precise characteristics of topoisomerase-DNA intermediates created by teniposide or acridine that lead to mutagenesis.  相似文献   

9.
We have assessed the ability of nucleosomes to influence the formation of mammalian topoisomerase II-DNA complexes by mapping the sites of cleavage induced by four unrelated topoisomerase II inhibitors in naked versus nucleosome-reconstituted SV40 DNA. DNA fragments were reconstituted with histone octamers from HeLa cells by the histone exchange method. Nucleosome positions were determined by comparing micrococcal nuclease cleavage patterns of nucleosome-reconstituted and naked DNA. Three types of DNA regions were defined: 1) regions with fixed nucleosome positioning; 2) regions lacking regular nucleosome phasing; and 3) a region around the replication origin (from position 5100 to 600) with no detectable nucleosomes. Topoisomerase II cleavage sites were suppressed in nucleosomes and persisted or were enhanced in linker DNA and in the nucleosome-free region around the replication origin. Incubation of reconstituted chromatin with topoisomerase II protected nucleosome-free regions from micrococcal nuclease cleavage without changing the overall micrococcal nuclease cleavage pattern. Thus, the present results indicate that topoisomerase II binds preferentially to nucleosome-free DNA and that the presence of nucleosomes at preferred DNA sequences influences drug-induced DNA breaks by topoisomerase II inhibitors.  相似文献   

10.
Simian Virus 40 (SV40) infected cells were pulse labeled with (3H) thymidine and chased either in the absence or in the presence of the cytotoxic drug VM26 (teniposide). We investigated the structure of labeled SV40 DNA and found that VM26 had no significant effect on replicative chain elongation but strongly inhibited the conversion of late replication intermediates to mature DNA daughter molecules. The late replicative SV40 DNA intermediates which accumulate in VM26 treated cells contained essentially full length labeled DNA strands. These newly synthesized strands were not part of two catenated interlocked SV40 monomers suggesting that the block occurred prior to the final ligation reaction. Since VM26 is known to be a specific inhibitor of DNA topoisomerase II we conclude that this enzyme is dispensable for the chain elongation of replicating SV40 DNA, but that it is essential for the termination of SV40 DNA replication cycles.  相似文献   

11.
We demonstrate that the simian virus 40 genome contains a single MAR (matrix association region) that maps within a large T-antigen coding region (nucleotides 4071 to 4377). This region contains topoisomerase II cleavage sites, exhibits sequence similarity with cellular MARs, and recognizes the same evolutionarily conserved, abundant nuclear binding sites seen by cellular MARs.  相似文献   

12.
Human fibroblasts irradiated with ultraviolet light were either tested for survival (colony formation) or infected with simian virus 40 and examined for transformation (foci formation). For normal cell cultures, the fractions of surviving colonies which were also transformed increased with increasing irradiation dose. In contrast, little increase in the transformation of ultraviolet-irradiated repair-deficient (xeroderma pigmentosum and xeroderma pigmentosum variant) cells was observed. Similar experiments with xeroderma pigmentosum variant cells treated with caffeine following irradiation indicated that, under these conditions, the deficient cells produced more transformants among the survivors of ultraviolet irradiation than did unirradiated cells. These results suggest (1) that DNA repair functions, not DNA damage per se, are required for enhanced viral transformation in normal cells; (2) that functions involved in excision repair and functions needed for replication of ultraviolet-damaged DNA appear necessary for this stimulation; and (3) that blocking DNA replication in ultraviolet-irradiated xeroderma pigmentosum variant cells by caffeine enhances viral transformation.  相似文献   

13.
Like many intercalative antitumor drugs, the nonintercalative antitumor drug epipodophyllotoxin VM-26 (teniposide) induces topoisomerase II-linked DNA breaks as revealed by cell lysis with a strong protein denaturant such as sodium dodecyl sulfate or alkali. We show that the majority of topoisomerase II-linked DNA breaks reflect the formation of reversible topoisomerase II-DNA cleavable complexes in drug-treated cells by demonstrating the reversibility of this unusual type of DNA damage at elevated temperatures (e.g. 65 degrees C).  相似文献   

14.
The effect of ICRF-193, a noncleavable-complex-forming topoisomerase II inhibitor, on simian virus 40 (SV40) DNA and SV40 chromosome replication was examined by using an in vitro replication system composed of HeLa cell extracts and SV40 T antigen. Unlike the topoisomerase inhibitors VP-16 and camptothecin, ICRF-193 had little effect on DNA chain elongation during SV40 DNA replication, but high-molecular-weight DNAs instead of segregated monomer DNAs accumulated as major products. Analysis of the high-molecular-weight DNAs by two-dimensional gel electrophoresis revealed that they consisted of catenated dimers and late Cairns-type DNAs. Incubation of the replicated DNA with topoisomerase II resulted in conversion of the catenated dimers to monomer DNAs. These results indicate that ICRF-193 induces accumulation of catenated dimers and late Cairns-type DNAs by blocking the decatenating and relaxing activities of topoisomerase II in the late stage of SV40 DNA replication. In contrast, DNA replication of SV40 chromosomes was severely blocked by ICRF-193 at the late stage, and no catenated dimers were synthesized. These results are consistent with the finding that topoisomerase II is required for unwinding of the final duplex DNA in the late stage of SV40 chromosome replication in vitro.  相似文献   

15.
16.
This study demonstrated that agents capable of interacting with the minor groove in nuclear DNA interfere with topoisomerase II mediated effects of antitumor drugs such as VM-26 and m-AMSA. Distamycin, Hoechst 33258, and DAPI were used as agents capable of AT-specific binding in the minor groove of DNA while producing no profound long-range distortion of DNA structure. In intact nuclei from L1210 cells, these minor groove binders inhibited the induction of topoisomerase II mediated DNA damage (DNA-protein cross-links and DNA double-strand breaks) by VM-26 and m-AMSA. The inhibitory effects of distamycin reflected prevention of formation of new lesions but not reversal of preexisting damage. The minor groove binders did not differentiate between lesions induced by an intercalator, m-AMSA, or by a DNA-nonbinding drug, VM-26. All three groove binders inhibited DNA breaks more strongly than DNA-protein cross-links. The inhibitory potency correlated with the size of minor groove binders and the size of their DNA-binding sites: distamycin (5 bp) greater than Hoechst 33258 (4 bp) greater than DAPI (3 bp). The results showed that DNA minor groove binders are a new type of modulators of the action of topoisomerase II targeted drugs.  相似文献   

17.
M T Hsu 《Nucleic acids research》1991,19(25):7193-7199
Electron microscopic technique was used to examine the structures of SV40 DNA recombination intermediates induced by ultraviolet irradiation as an approach for understanding recombination mechanisms in animal cells. Putative recombination intermediate with the characteristic Holliday junction was observed in both SV40 and CV-1 monkey kidney cell DNA. These results suggest that Holliday recombination intermediate is a common intermediate in eukaryotic as well as prokaryotic recombination pathways. In UV irradiated cells, putative SV40 DNA recombination intermediates with multiple recombining partners were observed. In addition, UV irradiation induced two types of novel joint molecules of SV40 DNA. The first type contains replication intermediates as one of the joint molecules with the putative recombination junction located in the newly replicated DNA arms. The second type of novel joint molecules is represented by of the 'dumbbell' structures with two circular SV40 DNA linked by a linear DNA of varying lengths. The structures of these novel recombination intermediates suggest a strand-invasion mechanism for UV-induced DNA recombination.  相似文献   

18.
The effect of poly(ADP-ribosylation) on calf thymus topoisomerase type II reactions has been investigated. Unknotting of phage P4 head DNA, and relaxation and catenation of supercoiled PM2 DNA are inhibited. We conclude that the inhibition results from poly(ADP-ribosylation) on the following grounds. Firstly, the enzyme poly(ADP-ribose) (PADPR) synthetase and NAD are required, secondly, the competitive synthetase inhibitor nicotinamide abolishes topoisomerase inhibition, and thirdly, the polymer alone is not inhibitory. The mechanism of inhibition appears to be disruption of the strand cleavage reaction. A topoisomerase-DNA complex can be formed that upon treatment with protein denaturant at low ionic strength results in strand cleavage. The amount of DNA present in such a cleavable-complex progressively decreased following pretreatment of topoisomerase type II with PADPR synthetase and increasing concentrations of NAD. Treatment of the pre-formed complex with NAD and PADPR synthetase had no effect on its salt-induced dissociation. This suggests that either poly(ADP-ribosylation) has no influence on dissociation of topoisomerase, in contrast to association, or topoisomerase is not accessible to the synthetase when bound to DNA. Similar data were obtained with calf thymus type I topoisomerase.  相似文献   

19.
Bromodeoxyuridine-selected nondividing senescent WI-38 cells were stimulated to synthesize DNA, as evidenced by incorporation of [3H]thymidine into nuclei of senescent cells, after infection with simian virus 40 (SV40). Cellular DNA synthesis was confirmed by DNA-DNA hybridization experiments and the use of temperature-sensitive A gene mutants. The DNA synthesis was, at least in part, semiconservative, as microdensitometry of Feulgen-stained nuclei revealed increased DNA content in a large fraction of the cells in the infected population. Thus, senescent cells retain the capacity to replicate their DNA, despite their intrinsic inability to initiate DNA synthesis.  相似文献   

20.
Site-specific cleavage of supercoiled DNA by ascorbate/Cu(II).   总被引:1,自引:0,他引:1       下载免费PDF全文
We have investigated ascorbate/Cu(II) cleavage of double-stranded DNA in the presence and absence of DNA negative torsion. We found that ascorbate/Cu(II) cleavage shows a site-specificity that is dependent on negative torsion and is influenced by the nature of the salt, ionic strength, and pH. This provides strong evidence for involvement of local DNA conformation in ascorbate/Cu(II) specific cleavage sites, that differs from the previous reports on cleavage of linear double-stranded DNA and secondary structures assumed by single-stranded DNA. The data indicate specific binding of Cu(II) ions to sites in the negatively supercoiled DNA. Fining mapping of the cleavage sites does not reveal any known DNA conformation, nor does it indicate any sequence identity among the sites cleaved. However, identification of a major site of cleavage of supercoiled DNA at physiological ionic strength, pH and temperature, along with fact that ascorbate and Cu(II) are normal cell constituents, suggests the torsion-dependent, site-specific interactions could have biological significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号