首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural and functional properties of arginine kinase (AK) in alkaline conditions in the absence or presence of salt have been investigated. The conformational changes of AK during alkaline unfolding and salt-induced folding at alkaline pH were monitored using intrinsic fluorescence emission, binding of the fluorescence probe 1-anilino-8-naphthalenesulfonate and circular dichroism. The results for the alkaline unfolded enzyme showed that much lower pH (11.0) was required to cause the complete loss of AK activity than was required to cause an obvious conformational change of the enzyme. Compared with the completely unfolded state in 5 M urea, the high pH denatured enzyme had some residual secondary and tertiary structure even at pH 13.0. Increasing the ionic strength by adding salt at pH 12.75 resulted in the formation of a relatively compact tertiary structure and a little new secondary structure with hydrophobic surface enhancement. These results indicate that the partially folded state formed under alkaline conditions may have similarities to the molten globule state which is compact, but it has a poorly defined tertiary structure and a native-like secondary structure.  相似文献   

2.
Guo SY  Guo Z  Chen BY  Guo Q  Ni SW  Wang XC 《Biochemistry. Biokhimii?a》2003,68(11):1267-1271
Urea titration was used to study the inactivation and unfolding equilibrium of arginine kinase (AK) from the sea cucumber Stichopus japonicus. Both fluorescence spectral and circular dichroism spectral data indicated that an unfolding intermediate of AK existed in the presence of 1.0 to 2.0 M urea. This was further supported by the results of size exclusion chromatography. The spectral data suggested that this unfolding intermediate shared many structural characteristics with the native form of AK including its secondary structure, tertiary structure, as well as its quaternary structure. Furthermore, according to the residual activity curve, this unfolding intermediate form still retained its catalytic function although its activity was lower than that of native AK. Taken together, the results of our study give direct evidence that an intermediate with partial activity exists in unfolding equilibrium states of AK during titration with urea.  相似文献   

3.
Deletion mutants of arginine kinase (AK) were constructed: AKND4, AKND6, AKND8, AKND10 (the first 4, 6, 8 and 10 amino acids of the N-terminal were deleted), to investigate the structural and functional roles of the N-terminal. Results showed that the deletion mutants assume less compact conformations compared to the wild-type, whereas no significant changes of the secondary or the quaternary structures were observed, implying that the deletions cause a perturbation in the tertiary structure or the hydrodynamic properties of the enzyme. The enzymatic and denaturing measurements showed that removal of the N-terminal residues decreased the activity and stability of the enzyme markedly. The instability increased in accord with the increased number of amino acid residues removed from the N-terminal of AK. It can be concluded that the N-terminal of AK plays an important role in maintaining the conformational stability and catalytic function of the enzyme.  相似文献   

4.
The copper- and zinc-containing superoxide dismutase of bovine erythrocytes retains its native molecular weight of 32 000 in 8.0 M urea for at least 72 h at 25 degrees C, as evidenced by sedimentation equilibrium analysis. Subsequent to prolonged exposure to urea, the dimeric enzyme could be dissociated by sodium dodecyl sulfate in the absence of reductants, indicating the absence of unnatural disulfide cross-links. The sulfhydryl group of cysteine-6 was unreactive toward 5,5'-dithiobis(2-nitrobenzoic acid) or bromoacetic acid in both neutral buffer and 8.0 M urea. The histidine residues of the enzyme were resistant to carboxymethylation in neutral buffer and 8.0 M urea. However, when the enzyme was exposed to bromoacetic acid in the presence of 6.0 M guanidinium chloride and 1 mM (ethylenedinitriol)tetraacetic acid (EDTA), both sulfhydryl and histidine alkylation were observed. Guanidinium chloride (6.0 M) increased the reactivity of the sulfhydryl group of cysteine-6 and allowed the oxidative formation of disulfide-bridged dimers. This was prevented by 1 mM EDTA. It follows that 8.0 M urea neither dissociates the native enzyme into subunits nor produces a conformation detectably different than that possessed under native conditions.  相似文献   

5.
Acylpeptide hydrolase, a new class the serine-type peptidase, belongs to the , hydrolase group of proteins. The tetrameric enzyme showed varying degree of stability in the presence of 1–8 M urea. The enzyme displayed about 15% of its original activity when treated with 8 M urea for 1 h at 25°C. Complete recovery of the enzyme activity was observed on dialysis or dilution (50-fold) of the denatured enzyme. However, complete abolition of the enzyme activity was observed in the presence of 1 M GnHCl. Dialysis of the 1 M GnHCl-treated enzyme resulted in 15–20% recovery of the enzyme activity. The fluorescence emission spectra of the native enzyme at 337 nm showed a red shift up to 16 nm in 8 M urea and 18 nm in the presence of 4 M GnHCl. Native enzyme during far-UV circular dichroism spectroscopy exhibited predominantly -sheet structure. The enzyme lost its secondary structure at urea concentrations of 2 M and higher, whereas the tertiary structure was minimally perturbed below 4 M urea. However, in 1 M GnHCl the enzyme lost both its secondary and tertiary structures and the enzyme was found to dissociate into monomers of 70 kDa. Both monomeric and dimeric species were observed after 24-h dialysis of the enzyme denatured with GnHCl indicating the reassociation process. Both monomer and dimers forms recovered after dialysis were active.  相似文献   

6.
UDP-galactose 4-epimerase from Escherichia coli is a homodimer of 39 kDa subunit with non-covalently bound NAD acting as cofactor. The enzyme can be reversibly reactivated after denaturation and dissociation using 8 M urea at pH 7.0. There is a strong affinity between the cofactor and the refolded molecule as no extraneous NAD is required for its reactivation. Results from equilibrium denaturation using parameters like catalytic activity, circular-dichroism, fluorescence emission (both intrinsic and with extraneous fluorophore 1-aniline 8-naphthalene sulphonic acid), 'reductive inhibition' (associated with orientation of NAD on the native enzyme surface), elution profile from size-exclusion HPLC and light scattering have been compiled here. These show that inactivation, integrity of secondary, tertiary and quaternary structures have different transition mid-points suggestive of non-cooperative transition. The unfolding process may be broadly resolved into three parts: an active dimeric holoenzyme with 50% of its original secondary structure at 2.5 M urea; an active monomeric holoenzyme at 3 M urea with only 40% of secondary structure and finally further denaturation by 6 M urea leads to an inactive equilibrium unfolded state with only 20% of residual secondary structure. Thermodynamical parameters associated with some transitions have been quantitated. The results have been discussed with the X-ray crystallographic structure of the enzyme.  相似文献   

7.
The refolding course and intermediate of guanidine hydrochloride (GuHCl)-denatured arginine kinase (AK) were studied in terms of enzymatic activity, intrinsic fluorescence, 1-anilino-8-naphthalenesulfonte (ANS) fluorescence, and far-UV circular dichroism (CD). During AK refolding, the fluorescence intensity increased with a significantly blue shift of the emission maximum. The molar ellipticity of CD increased to close to that of native AK, as compared with the fully unfolded AK. In the AK refolding process, 2 refolding intermediates were observed at the concentration ranges of 0.8-1.0 mol/L and 0.3-0.5 mol GuHCl/L. The peak position of the fluorescence emission and the secondary structure of these conformation states remained roughly unchanged. The tryptophan fluorescence intensity increased a little. However, the ANS fluorescence intensity significantly increased, as compared with both the native and the fully unfolded states. The first refolding intermediate at the range of 0.8-1.0 mol GuHCl/L concentration represented a typical "pre-molten globule state structure" with inactivity. The second one, at the range of 0.3-0.5 mol GuHCl/L concentration, shared many structural characteristics of native AK, including its secondary and tertiary structure, and regained its catalytic function, although its activity was lower than that of native AK. The present results suggest that during the refolding of GuHCl-denatured AK there are at least 2 refolding intermediates; as well, the results provide direct evidence for the hierarchical mechanism of protein folding.  相似文献   

8.
Adenosine kinase (AK) is a purine salvage enzyme that catalyzes the phosphorylation of adenosine to AMP. In Mycobacterium tuberculosis, AK can also catalyze the phosphorylation of the adenosine analog 2-methyladenosine (methyl-Ado), the first step in the metabolism of this compound to an active form. Purification of AK from M. tuberculosis yielded a 35-kDa protein that existed as a dimer in its native form. Adenosine (Ado) was preferred as a substrate at least 30-fold (Km = 0.8 +/- 0.08 microM) over other natural nucleosides, and substrate inhibition was observed when Ado concentrations exceeded 5 micro M. M. tuberculosis and human AKs exhibited different affinities for methyl-Ado, with Km values of 79 and 960 microM, respectively, indicating that differences exist between the substrate binding sites of these enzymes. ATP was a good phosphate donor (Km = 1100 +/- 140 microM); however, the activity levels observed with dGTP and GTP were 4.7 and 2.5 times the levels observed with ATP, respectively. M. tuberculosis AK activity was dependent on Mg2+, and activity was stimulated by potassium, as reflected by a decrease in the Km and an increase in Vmax for both Ado and methyl-Ado. The N-terminal amino acid sequence of the purified enzyme revealed complete identity with Rv2202c, a protein currently classified as a hypothetical sugar kinase. When an AK-deficient strain of M. tuberculosis (SRICK1) was transformed with this gene, it exhibited a 5,000-fold increase in AK activity compared to extracts from the original mutants. These results verified that the protein that we identified as AK was coded for by Rv2202c. AK is not commonly found in bacteria, and to the best of our knowledge, M. tuberculosis AK is the first bacterial AK to be characterized. The enzyme shows greater sequence homology with ribokinase and fructokinase than it does with other AKs. The multiple differences that exist between M. tuberculosis and human AKs may provide the molecular basis for the development of nucleoside analog compounds with selective activity against M. tuberculosis.  相似文献   

9.
The dimeric native state of creatine kinase (CK) was aggregated at conspicuous levels during cysteine modification at the active site with using 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) under a high enzyme concentration. Measuring the ANS-binding fluorescence revealed that the hydrophobic surface of CK was increased by cysteine modification due to the flexible active site, and this resulted in insoluble aggregation, probably via non-specific hydrophobic interactions. To determine whether the aggregates can be refolded, 3M guanidine hydrochloride (GdnHCl) was used to dissolve the aggregates into the denatured form. Refolding of the solubilized enzyme sample was then conducted, accompanied by deprivation of DTNB from the CK in the presence of DTT. As a result, CK was reactivated by up to 40% with partial recovery of the tertiary (78%) and secondary structures (77%). To further elucidate its kinetic refolding pathway, both time interval measurements and a continuous substrate reaction were performed. The results showed that the refolding behavior was similar to the manner of normal CK folding with respect to the following two-phase kinetic courses. Additionally, the rate constants for the dimerization of the unfolded CK were dependent on the enzyme concentration and this was irrespective to the DTT concentrations, suggesting the rate-limiting steps of CK reassociation. The present study will expand our insight into the flexibility of the enzyme active site, which might act as a risk factor for inducing the unfavorable aggregation and partial refolding pathway of CK, as well as inducing an intermediate-like state recovery from aggregation.  相似文献   

10.
1. The higher relative molecular mass (M(r)) forms of larval honeybee haemolymph alpha-glucosidases are dissociated by dithiothreitol (DTT) into lower M(r) electrophoretic forms, without any important loss of activity. 2. The maximum velocity remains unchanged and the apparent dissociation constant is slightly increased, with Ki approximately equal to 247 mM and I50 approximately equal to 730 mM. 3. By contrast, the major changes affect the Hill coefficient which decreases from 1.0 in controls to 0.7 in presence of 600 mM DTT. 4. In the absence of both DTT and substrate, the major native enzyme form, isolated by gel filtration, spontaneously rearranges to give three additional minor forms, one of lower M(r) and two of higher M(r). 5. These data are consistent with the hypothesis of substrate-directed aggregation of enzyme protomers into functional complexes.  相似文献   

11.
Two fused proteins of dimeric arginine kinase (AK) from sea cucumber and dimeric creatine kinase (CK) from rabbit muscle, named AK-CK and CK-AK, were obtained through the expression of fused AK and CK genes. Both AK-CK and CK-AK had about 50% AK activity and about 2-fold K m values for arginine of native AK, as well as about 50% CK activity and about 2-fold K m values for creatine of native CK. This indicated that both AK and CK moieties are fully active in the two fused proteins. The structures of AK, CK, AK-CK, and CK-AK were compared by collecting data of far-UV circular dichroism, intrinsic fluorescence, 1-anilinonaphthalene-8-sulfonate binding fluorescence, and size-exclusion chromatography. The results indicated that dimeric AK and CK differed in the maximum emission wavelength, the exposure extent of hydrophobic surfaces, and molecular size, though they have a close evolutionary relationship. The structure and thermodynamic stability of AK, CK, AK-CK, and CK-AK were compared by guanidine hydrochloride (GdnHCl) titration. Dimeric AK was more dependent on the cooperation of two subunits than CK according to the analysis of residual AK or CK activity with GdnHCl concentration increase. Additionally, AK and CK had different denaturation curves induced by GdnHCl, but almost the same thermodynamic stability. The two fused proteins, AK-CK and CK-AK, had similar secondary structure, tertiary structure, molecular size, structure, and thermodynamic stability, which indicated that the expression order of AK and CK genes might have little effect on the characteristics of the fused proteins and might further verify the close relationship of dimeric AK and CK. Published in Russion in Biokhimiya, 2006, Vol. 71, No. 9, pp. 1208–1214.  相似文献   

12.
Human placental S-adenosylhomocysteine (AdoHcy) hydrolase was subjected to limited papain digestion. The multiple cleavage sites in the enzyme were identified to be Lys94-Ala95, Tyr100-Ala101, Glu243-Ile244, Met367-Ala368, Gln369-Ile370, and Gly382-Val383. Despite multiple cleavage sites in the backbone of the protein, the digested enzyme was able to maintain its quaternary structure and retain its full catalytic activity. The enzyme activity of the partially digested AdoHcy hydrolase was essentially identical to that of the native enzyme at several pH values. The thermal stabilities of the native and partially digested enzymes were only slightly different at all temperatures tested. The stability of both native and partially digested enzymes were examined in guanidine hydrochloride and equilibrium unfolding transitions were monitored by CD spectroscopy and tryptophan fluorescence spectroscopy. The results of these experiments can be summarized as follows: (1) CD spectroscopic analysis showed that the overall secondary and tertiary structures of the partially digested enzyme are essentially identical with those of the native enzyme; and (2) tryptophan fluorescence spectroscopic analysis indicated that there are small differences in the environments of surface-exposed tryptophan residues between the partially digested enzyme and the native enzyme under unfolding conditions. The differences in the free energy of unfolding, delta(delta Gu) [delta Gu(native)-delta Gu(digested)], is approximately 1.3 kcal/mol. When NAD+ was removed from the partially digested enzyme, the secondary and tertiary structures of the apo form of the digested AdoHcy hydrolase were completely lost and the enzymatic activity could not be recovered by incubation with excess NAD+. These results suggest that AdoHcy hydrolase exists as a very compact enzyme with extensive intramolecular bonding, which contributes significantly to the overall global protein stabilization. Identification of the surface-exposed peptide bonds, which are susceptible to papain digestion, has provided some constraints on the spatial orientations of subunits of the enzyme. This information, in turn, has provided supplemental data for X-ray crystallographic studies currently ongoing in our laboratories.  相似文献   

13.
Arginine kinase (AK) is a key metabolic enzyme for keeping energy balance in invertebrates. Therefore, regulation of the enzymatic activity and the folding studies of AK from the various invertebrates have been the focus of investigation. We studied the effects of helical structures by using hexafluoroisopropanol (HFIP) on AK folding. Folding kinetic studies showed that the folding rates of the urea-denatured AKs were significantly decelerated after being induced in various concentrations of HFIP. AK lost its activity completely at concentrations greater than 60%. The results indicated that the HFIP-induced helical structures in the denatured state play a negative role in protein folding, and the helical structures induced in 5% (v/v) HFIP act as the most effective barrier against AK taking its native structure. The computational docking simulations (binding energies for −2.19 kcal/mol for AutoDock4.2 and −20.47 kcal/mol for Dock6.3) suggested that HFIP interacts with the several important residues that are predicted by both programs. The excessively pre-organized helical structures not only hampered the folding process, but also ultimately brought about changes in the three-dimensional conformation and biological function of AK.  相似文献   

14.
We have recently demonstrated that Cys-254 of the 73-kDa A subunit of the clathrin-coated vesicle (H+)-ATPase is responsible for sensitivity of the enzyme to sulfhydryl reagents (Feng, Y., and Forgac, M. (1992) J. Biol. Chem. 267, 5817-5822). In the present study we observe that for the purified enzyme, disulfide bond formation causes inactivation of proton transport which is reversed by dithiothreitol (DTT). DTT also restores activity of the oxidized enzyme following treatment with N-ethylmaleimide (NEM). These results indicate that disulfide bond formation between the NEM-reactive cysteine (Cys-254) and a closely proximal cysteine residue leads to inactivation of the (H+)-ATPase. To test whether sulfhydryl-disulfide bond interchange may play a role in regulating vacuolar acidification in vivo, we have determined what fraction of the (H+)-ATPase is disulfide-bonded in native clathrin-coated vesicles. Vesicles were isolated under conditions that prevent any change in the oxidation state of the sulfhydryl groups. NEM treatment of vesicles causes nearly complete loss of activity while subsequent treatment with DTT restores 50% of the activity of the fully reduced vesicles. By contrast, treatment of fully reduced vesicles with NEM leads to inactivation which is not reversed by DTT. These results indicate that a significant fraction of the clathrin-coated vesicle (H+)-ATPase exists in an inactive, disulfide-bonded state and suggest that sulfhydryl-disulfide bond interconversion may play a role in controlling vacuolar (H+)-ATPase (V-ATPase) activity in vivo.  相似文献   

15.
The reaction of pig heart lactate dehydrogenase with methyl methanethiosulphonate resulted in the modification of one thiol group per protomer, and this was located at cysteine-165 in the enzyme sequence. On reduction, both the thiomethylation of cysteine-165 and any changes in kinetic properties of the enzyme were completely reversed. Cysteine-165 has been considered essential for catalytic activity; however, cysteine-165-thiomethylated dehydrogenase possessed full catalytic activity, although the affinity of the enzyme for carbonyl-or hydroxy-containing substrates was markedly decreased. The nicotinamide nucleotide-binding capacity was unaffected, as judged by the formation of fluorescent complexes with NADH. The enzyme-mediated activation of NAD+, as judged by sulphite addition, was unaffected in thiomethylated lactate dehydrogenase. However, the affinity of oxamate for the enzyme--NADH complex was decreased by 100-fold and it was calculated that this constituted a net increase of 10.4 kJ/mol in the activation energy for binding. Thiomethylated lactate dehydrogenase was able to form an abortive adduct between NAD+ and fluoropyruvate. However, the equilibrium constant for adduct formation between pyruvate and NAD+ was too low to demonstrate this complex at reasonable pyruvate concentrations. A conformational change in the protein structure on selective thiomethylation was revealed by the decreased thermostability of the modified enzyme. The alteration of lactate dehydrogenase catalytic properties on modification depended on the bulk of the reagent used, since thioethylation resulted in an increase in Km for pyruvate (13.5 +/- 3.5 mm) and an 85% decrease in maximum catalytic activity. The implications of all these findings for the catalytic mechanism of lactate dehydrogenase are discussed.  相似文献   

16.
UDP-galactose 4-epimerase from yeast (Kluyveromyces fragilis) is a homodimer of total molecular mass 150 kDa having possibly one mole of NAD/dimer acting as a cofactor. The molecule could be dissociated and denatured by 8 M urea at pH 7.0 and could be functionally reconstituted after dilution with buffer having extraneous NAD. The unfolded and refolded equilibrium intermediates of the enzyme between 0-8 M urea have been characterized in terms of catalytic activity, NADH like characteristic coenzyme fluorescence, interaction with extrinsic fluorescence probe 1-anilino 8-naphthelene sulphonic acid (ANS), far UV circular dichroism spectra, fluorescence emission spectra of aromatic residues and subunit dissociation. While denaturation monitored by parameters associated with active site region e.g. inactivation and coenzyme fluorescence, were found to be cooperative having delta G between -8.8 to -4.4 kcals/mole, the overall denaturation process in terms of secondary and tertiary structure was however continuous without having a transition point. At 3 M urea a stable dimeric apoenzyme was formed having 65% of native secondary structure which was dissociated to monomer at 6 M urea with 12% of the said structure. The unfolding and refolding pathways involved identical structures except near the final stage of refolding where catalytic activity reappeared.  相似文献   

17.
The adk gene from Mycobacterium tuberculosis codes for an enzyme of 181 amino acids. A sequence comparison with 52 different forms of adenylate kinases (AK) suggests that the enzyme from M. tuberculosis belongs to a new subfamily of "short" bacterial AKs. The recombinant protein, overexpressed in Escherichia coli, exhibits a low catalytic activity and an unexpectedly high thermal stability (Tm = 64.8 degrees C). Based on various spectroscopic data, on the known three-dimensional structure of the AK from E. coli and on secondary structure predictions for various sequenced AKs, we propose a structural model for AK from M. tuberculosis (AKmt). Proteins 1999;36:238-248.  相似文献   

18.
Several previous reports on muscle adenylate kinase (AK) have suggested that histidine-36 (His-36) is located in the binding site of adenosine 5'-triphosphate (ATP) and is involved in catalysis. We have tested the role of His-36 using site-specific mutagenesis on chicken muscle AK expressed in Escherichia coli. Three mutant proteins (H36Q, H36N, and H36G) were obtained by substituting His-36 with glutamine, asparagine, and glycine, respectively. Steady-state kinetic studies showed that the mutants have similar kinetic properties to those of the wild-type (WT) AK, which suggested that His-36 is not directly involved in catalysis. However, His-36 is likely to interact with or protect cysteine-25 (Cys-25) on the basis of the following evidence: The crystal structure of porcine muscle AK revealed a close proximity between His-36 and Cys-25; the mutants were unstable during purification (the order of stability was WT greater than H36Q greater than H36N greater than H36G); the H36G mutant readily dimerized; the sulfhydryl groups of mutants became more reactive (WT less than H36Q less than H36N) toward 5,5'-dithiobis(2-nitrobenzoic acid). Furthermore, His-36 was found to stabilize the tertiary structure of AK on the basis of guanidine hydrochloride induced denaturation studies, which showed that the conformational stability decreases in the order WT greater than H36Q greater than H36N.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Carboxy-terminal amino acids of NADP-dependent malate dehydrogenase (EC 1.1.1.82) from pea chloroplasts were removed by treatment with carboxypeptidase Y. This results in the activation of the inactive oxidized enzyme, while activation by light in vivo is thought to occur via reduction of an intrasubunit disulfide bridge. After proteolytic activation the oxidized enzyme had a specific activity of 100 U/mg protein, which is 50% of the maximal activity of the control enzyme in the reduced state. When the truncated enzyme was reduced with dithiothreitol (DTT), the specific activity was further increased to 1200 U/mg. While the native enzyme is composed of four identical subunits of 38,900 Da, the truncated malate dehydrogenase forms dimers composed of two subunits of 38,000 Da. No further change of molecular mass or activity was noticed subsequent to prolonged incubation of native NADP-malate dehydrogenase with carboxypeptidase Y for several days. When the enzyme is denatured by 2 M guanidine-HCl, the proteolytic activation proceeds more rapidly, but only transiently. The truncated enzyme is less accessible to activation by reduced thioredoxin, but the stimulation of activity by DTT alone is more rapid than that of the native enzyme. These results indicate that only a small carboxy-terminal peptide of native NADP-malate dehydrogenase from pea chloroplasts is accessible to proteolytic degradation and that this peptide is involved in the regulation of activity, tetramer formation, and thioredoxin binding. While the pH optimum for catalytic activity of the intact reduced enzyme is at pH 8.0-8.5, it is shifted to more acidic values upon proteolysis of NADP-malate dehydrogenase. At pH values below 8 the reduced truncated enzyme exhibits substrate inhibition by oxaloacetate.  相似文献   

20.
According to the hypothesis explored in this paper, native aggregation is genetically controlled (programmed) reversible aggregation that occurs when interacting proteins form new temporary structures through highly specific interactions. It is assumed that Anfinsen's dogma may be extended to protein aggregation: composition and amino acid sequence determine not only the secondary and tertiary structure of single protein, but also the structure of protein aggregates (associates). Cell function is considered as a transition between two states (two states model), the resting state and state of activity (this applies to the cell as a whole and to its individual structures). In the resting state, the key proteins are found in the following inactive forms: natively unfolded and globular. When the cell is activated, secondary structures appear in natively unfolded proteins (including unfolded regions in other proteins), and globular proteins begin to melt and their secondary structures become available for interaction with the secondary structures of other proteins. These temporary secondary structures provide a means for highly specific interactions between proteins. As a result, native aggregation creates temporary structures necessary for cell activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号