首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A procedure for the regeneration of ‘paradise tree’ (Melia azedarach, Meliaceae) plants from immature zygotic embryos via somatic embryogenesis was developed. Somatic embryos were induced from explants cultured on Murashige and Skoog medium supplemented with 0.45, 4.54, or 13.62 μM thidiazuron. Histological examination revealed that somatic embryos were induced directly from the explants. Further development of somatic embryos was accomplished with Murashige and Skoog medium at quarter-strength with 3% sucrose. A large number of plants were regenerated from somatic embryos and successfully established in soil in a greenhouse. These plants are morphologically similar to those of seed-derived plants. This system may be beneficial for mass propagation as well as for genetic manipulation of the ‘paradise tree’.  相似文献   

2.
In vitro protocols for plant regeneration of Arachis correntina through both somatic embryogenesis and organogenesis were developed using immature leaves as explants. Morphologically normal somatic embryos were obtained on culture media composed of 20.70 or 41.41 μM picloram (PIC) with the addition of 0.044 μM 6-benzylaminopurine (BA), resulting in a 33 and 24% of conversion into plants, respectively. The source of explants and the developmental stage of the leaves had a marked effect on somatic embryogenesis. The second folded immature leaves from in vitro growing plants were the most responsive producing up to 30% embryogenesis in MS+41.41 μM PIC. Embryos converted into plants after transfer to MS medium devoid of growth regulators and these plants were successfully acclimatised. Adventitious shoots were obtained on culture media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) or naphthaleneacetic acid (NAA) with or without 0.044 μM BA, achieving plant regeneration in the induction media. The highest percentage of bud formation was obtained on culture medium composed of␣MS+10.74 μM NAA+0.044 μM BA (12.5%). Roots were formed on all culture media tested. Regenerated plants were transferred to pots and grew well under greenhouse conditions.  相似文献   

3.
Summary The embryogenic potential of different Echinacea purpurea tissues, viz. leaf, cotyledon, and root, was investigated. Maximum embryo-induction was achieved from leaf dises cultured on Murashige and Skoog medium supplemented with benzylaminopurine (5.0 μM) and indolebutyric acid (2.5 μM) where 95% of the explants responded, yielding an average of 83 embryos per explant within 4 wk of culture. Incubation of cultures in the dark for an initial period of 14 d significantly increased the frequency of somatic embryogenesis (6–8-fold in leaf explants). Exposure of the abaxial surface of leaves to the medium significantly increased the number of embryos. Transfer of somatic embryos to a medium devoid of growth regulators resulted in 80% germination within 7 d. Over 73% of the somatic embryos developed roots within 28 d of culture on a medium containing naphthaleneacetic acid (10 μM) with a maximum root number of 9.8 per plantlet. Transplanting ex vitro and acclimatization for a period of 7 d were sufficient to promote establishment of plants in the greenhouse, and more than 90% of the regenerated plants survived.  相似文献   

4.
Summary Kalopanax pictus (Thunb.) Nakai is a tall tree, and its wood has been used in making furniture, while its stem bark is used for medicinal purposes. Here, we report on the micropropagation of Kalopanax pictus via somatic embryogenesis. Embryogenic callus was induced from immature zygotic embryos. The frequency embryogenic callus induction is influenced by days of seed harvest. Callus formation was primarily observed along the radicle tips of zygotic embryos incubated on Murashige and Skoog (MS) medium with 4.4 μM 2,4-dichlorophenoxyacctic acid (2,4-D). Somatic embryogenesis was observed following transfer of embryogenic callus to MS medium lacking 2,4-D. Somatic embryos at the cotyledonary stage were obtained after 6 wk following culture. Frequency of conversion of somatic embryos into plantlets was low (35%) on a hormone-free MS basal medium, but it increased to 61% when the medium was supplemented with 0.05% charcoal. Gibberellic acid (GA3) treatment markedly enhanced the germination frequency of embryos up to 83%. All plantlets obtained showed 98% survival on moist peat soil (TKS2) artificial soil matrix. About 30 000 Kalopanax pictus plants were propagated via somatic embryogenesis and grown to 3-yr-old plants. These results indicate that production of woody medicinal Kalopanax pictus plantlets through somatic embryogenesis can be practically applicable for propagation.  相似文献   

5.
Summary A novel protocol has been developed for inducing somatic embryogenesis from leaf cultures of Decalepis hamiltonii. Callus was obtained from leaf sections in Murashige and Skoog (MS) medium supplemented with α-naphthaleneacetic acid (NAA)+N6-benzyladenine (BA) or 2,4-dichlorophenoxyacetic acid (2,4-D)+BA. Nodular embryogenic callus developed from the cut end of explants on media containing 2,4-D and BA, whereas compact callus developed on media containing NAA and BA. Upon subsequent transfer of explants with primary callus onto MS media containing zeatin and/or gibberellic acid (GA3) and BA, treatment with zeatin (13.68μM) and BA (10.65 μM) resulted in the induction of the highest number of somatic embryos directly from nodular tissue. The maturation of embryos took place along with the induction on the same medium. Embryogenic calluses with somatic embryos were subcultured onto MS basal medium supplemented with 4.56μM zeatin+10.65 μM BA. After 4wk, more extensive differentiation of somatic embryos was observed. The mature embryos developed into complete plantlets on growth regulator-free MS medium. A distinct feature of this study is the induction of somatic embryogenesis from leaf explants of Decalepis hamiltonii, which has not been reported previously. By using this protocol, complete plantlets could be regenerated through indirect somatic embryogenesis or organogenesis from leaf explants in 12–16 wk.  相似文献   

6.
Arachis correntina (Burkart) Krapov. & W.C. Gregory is a herbaceous perennial leguminous plant growing in the Northeast of the Province Corrientes, Argentina. It is important as forage. The development of new A. correntina cultivars with improved traits could be facilitated through the application of biotechnological strategies. The purpose of this study was to investigate the plant regeneration potential of mature leaves of A. correntina in tissue culture. Buds were induced from both petiole and laminae on 0.7% agar-solidified medium containing 3% sucrose, salts and vitamins from Murashige and Skoog (MS) supplemented with 0.5–25 M thidiazuron (TDZ). Shoot induction was achieved by transference of calli with buds to MS supplemented with 5 M TDZ. Fifty-four percent of the regenerated shoot rooted on MS + 5 M naphthaleneacetic acid. Histological studies revealed that shoots regenerated via organogenesis.  相似文献   

7.
Summary Axillary and terminal buds from suckers of Ananas comosus cv. Phuket were established on Murashige and Tucker-based (MT) medium with 2.0 mgl−1 (9.8 μM) indolebutyric acid, 2.0 mgl−1 (10.74 μM) naphthaleneacetic acid, and 2.0 mgl−1 (9.29 μM) kinetin, followed by multiplication on Murashige and Skoog-based (MS) medium containing 2.0 mgl−1 (8.87 μM) benzyladenine (BA) to provide a continuous supply of axenic shoots. Leaves, excised from such cultured shoots, produced adventitious shoots from their bases when these explants were cultured on MS medium containing 0.5 mgl−1 (2.26 μM) 2,4-dichlorophenoxyacetic acid (2,4-D) and 2.0 mgl−1 (8.87 μM) BA. Embryogenic callus was produced when leaf explants were cultured on MS medium with 3.0 mgl−1 (12.42 μM) 4-amino-3,5,6-trichloropicolinic acid (picloram). Somatic embryos developed into shoots following transfer of embryogenic tissues to MS medium with 1.0 mgl−1 (4.44 μM) BA. Cell suspensions, initiated by transfer of embryogenic callus to liquid MS medium with 1.0 mgl−1 (4.14 μM) picloram or 1.0 mgl−1 (4.52 μM) 2,4-D, also regenerated shoots by somatic embryogenesis, on transfer of cells to semisolid MS medium with 1.0 mgl−1 (4.44 μM) BA. All regenerated shoots rooted on growth regulator-free MS medium, prior to ex vitro acclimation and transfer to the glasshouse. These studies provide a baseline for propagation, conservation, and genetic manipulation of elite pineapple germplasms.  相似文献   

8.
Summary Regeneration of plants via somatic embryogenesis was achieved from zygotic embryo explants isolated from mature seeds of Schisandra chinensis. Merkle and Sommer's medium, fortified with 2,4-dichlorophenoxyacetic acid (2,4-D; 9.04 μM) and zeatin (0.09 μM), was effective for induction of embryogenic callus. The development of a proembryogenic mass and somatic embryos occurred on Murashige and Skoog medium (MS) free of plant growth regulators. The embryogenic callus induced on Merkle and Sommer's medium supplemented with 2,4-D (9.04 μM) and zeatin (0.09 μM) showed development of the maximum number of somatic embryos when transferred to MS medium free of plant growth regulators. The maximum maturation and germination of cotyledonary somatic embryos (46.3%) occurred on MS medium supplemented with 2,4-D (0.45 μM) and N6-benzyladenine (1.11 μM). The somatic embryo-derived plants were successfully hardned, with a survival rate of approximately 67%, and established in the field.  相似文献   

9.
Fertile regenerated plants were obtained from protoplasts via somatic embryogenesis in Coker 201 (Gossypium hirsutum L.). Protoplasts were isolated from six different explantsleaves, hypocotyls, young roots, embryogenic callus, immature somatic embryos and suspension cultures and cultured in liquid thin layer KM8P medium. Callus-forming percentage of 20–50% was obtained in protoplast cultures from embryogenic callus, immature embryos and suspension cultures, and visible callus formed within 2 months. Callus-forming percentage of 5–20% in protoplast cultures from young roots, hypocotyls and leaves, and visible callus formed in 3 months. NAA 5.371 μM/kinetin 0.929 μM was effective to stimulate protoplast division and callus formation from six explants. Percentage of callus formation in the medium with 2,4-D 0.452 μM/kinetin 0.465 μM was over 40% from suspension cultures and immature embryos, 25% from embryogenic callus and 10% from hypocotyls. Callus from protoplasts developed into plantlets via somatic embryogenesis. Over 100 plantlets were obtained from protoplasts derived from 6 explants. Ten plants have been transferred to the soil, where they all have set seeds.  相似文献   

10.
Lee KP  Lee DW 《Plant cell reports》2003,22(2):105-109
Regeneration via somatic embryogenesis from callus was studied in Dicentra spectabilis. To obtain somatic embryogenic callus, we cultured D. spectabilis seeds on MS basal media supplemented with various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D). The highest percentage of embryogenic callus formation was observed on media containing 1.0 mg/l 2,4-D under dark conditions. Somatic embryogenesis was studied by transferring the callus onto MS basal medium containing different concentrations (0.0, 0.1, 0.5, 1.0, 2.0 mg/l) of KIN (kinetin) and/or BAP. Somatic embryogenesis on MS basal media with 1.0 mg/l of KIN was excellent under light conditions. Somatic embryos were rooted by transferring them to half-strength MS basal media containing 2 g/l Phytagel. About 64.2% of the somatic embryos converted to rooted plantlets, 4% showed secondary embryogenesis and 31.8% did not develop and died. Rooted plantlets showed a 46% survival rate when acclimatized ex vitro.Abbreviations BAP 6-Benzylaminopurine - 2.4-D 2,4-Dichlorophenoxyacetic acid - KIN Kinetin - SEM Scanning electron microscopyCommunicated by H. Lörz  相似文献   

11.
Plants were regenerated from root explants of Arabidopsis halleri (L.) O’Kane and Al-Shehbaz via a three-step procedure callus induction, induction of somatic embryos and shoot development. Callus was induced from root segments, leaflets and petiole segments after incubation for 2 weeks in Murashige and Skoog medium (MS) supplemented with 0.5 mg/l−1 (2.26 μM) 2,4-D (2,4-dichlorophenoxyacetic acid) and 0.05 mg/l−1 (0.23 μM) kinetin. Only calli developed from root segments continued to grow when transferred to a regeneration medium containing 2.0 mg/l−1 (9.8 μM) 6-γ-γ-(dimethylallylamino)-purine (2ip) and 0.05 mg/l−1 (2.68 μM) α-naphthalenacetic acid (NAA) and eventually 40 of them developed embryogenic structures. On the same medium 38 of these calli regenerated shoots. Rooting was achieved for 50 of the shoots subcultured in MS medium without hormones. The regeneration ability of callus derived from root cuttings, observed in this study, makes this technique useful for genetic transformation experiments and in vitro culture studies.  相似文献   

12.
Embryogenic callus in Catharanthus roseus was initiated from hypocotyl on Murashige and Skoog’s (MS) medium supplemented with 1.0–2.0 mg dm−3 of 2,4-dichlorophenoxyacetic acid (2,4-D) or chlorophenoxyacetic acid (CPA). Calli from other sources were non-embryogenic. Numerous somatic embryos were induced from primary callus on MS medium suplemented with naphthalene acetic acid (NAA) within two weeks of culture. Embryo proliferation was much faster on medium supplemented with 6-benzylaminopurine (BAP). After transfer to medium with gibberellic acid (GA3, 1.0 mg dm− 3) mature green embryos were developed and germinated well into plantlets on MS liquid medium supplemented with 0.5 mg dm−3 BAP. Later, embryos with cotyledonary leaves were subjected to different auxins treatments for the development of roots. Before transfer ex vitro, plantlets were cultivated on half strength MS medium containing 3 % sucrose and 0.5 mg dm−3 BAP for additional 2 weeks. Additionally, the effect of liquid medium has been evaluated at different morphogenetic stages.  相似文献   

13.
A protocol for induction of direct somatic embryogenesis, secondary embryogenesis and plant regeneration of Dendrobium cv. Chiengmai Pink was developed. Thidiazuron (TDZ) at 0.3, 1 and 3 mg dm−3 induced 5–25 % of leaf tip segments of in vitro grown plants to directly form embryos after 60 d of culture, and 1 mg dm−3 TDZ was the best treatment. Somatic embryos mostly formed from leaf surfaces near cut ends, and occasionally found on leaf tips. Higher frequency of embryogenesis was obtained in light than in darkness. During subculture, secondary embryos developed from outer cell layers of primary embryos. All combinations of NAA (0, 0.1, 1 mg dm−3) and TDZ (0, 0.3, 1, 3 mg dm−3) increased the multiplication rate of embryos. It takes about 8 months from embryo induction, plantlet formation to eventually acclimatization in greenhouse.  相似文献   

14.
An efficient in vitro plant regeneration protocol through somatic embryogenesis and direct shoot organogenesis has been developed for pearl millet (Pennisetum glaucum). Efficient plant regeneration is a prerequisite for a complete genetic transformation protocol. Shoot tips, immature inflorescences, and seeds of two genotypes (843B and 7042-DMR) of pearl millet formed callus when cultured on Murashige and Skoog (MS) medium supplemented with varying levels of 2,4-dichlorophenoxyacetic acid (2,4-D; 4.5, 9, 13.5, and 18 μM). The level of 2,4-D, the type of explant, and the genotype significantly effected callus induction. Calli from each of the three explant types developed somatic embryos on MS medium containing 2.22 μM 6-benzyladenine (BA) and either 1.13, 2.25, or 4.5 μM of 2,4-D. Somatic embryos developed from all three explants and generated shoots on MS medium containing high levels of BA (4.4, 8.8, or 13.2 μM) combined with 0.56 μM 2,4-D. The calli from the immature inflorescences exhibited the highest percentage of somatic embryogenesis and shoot regeneration. Moreover, these calli yielded the maximum number of differentiated shoots per callus. An efficient and direct shoot organogenesis protocol, without a visible, intervening callus stage, was successfully developed from shoot tip explants of both genotypes of pearl millet. Multiple shoots were induced on MS medium containing either BA or kinetin (4.4, 8.8, 17.6, or 26.4 μM). The number of shoots formed per shoot tip was significantly influenced by the level of cytokinin (BA/kinetin) and genotype. Maximum rooting was induced in 1/2 strength MS with 0.8% activated charcoal. The regenerated plants were transferred to soil in pots, where they exhibited normal growth.  相似文献   

15.
Somatic embryogenesis from mature elm (Ulmus minor Mill.) in vitro-cloned material is possible. Embryogenic callus was obtained from leaves inoculated on two different MS-based media—one supplemented with 2.3 M 2,4-dichlorophenoxyacetic acid (I2) and the other supplemented with 1.1 M kinetin (I6). However, only leaves cultured on medium I6 produced somatic embryos, at the globular stage, when embryogenic callus was maintained in induction media. When embryogenic callus from medium I6 was transferred to basal medium, somatic embryos with green cotyledons were obtained. An average of 35.9% of these embryos converted easily into normal plants in conversion medium with 1% sucrose. Acclimatisation reached 39.7%, and this was not significantly different from a control group consisting of plants propagated by axillary buds. No morphological differences were observed between plants derived from somatic embryos and control plants. Also, no differences in ploidy were detected between the somatic embryo-derived plants and the mother plants.Abbreviations BA: Benzyladenine - C1, C2: Conversion media - 2,4-D: 2,4-Dichlorophenoxyacetic acid - Kn: Kinetin - NAA: -Naphthaleneacetic acid - PI: Propidium iodide - I2, I6: Induction media Communicated by D. Bartels  相似文献   

16.
Plant regeneration in Arachis pintoi was obtained via two developmental pathways: organogenesis and somatic embryogenesis. Organogenic callus cultures were initiated from pieces of leaf on MS medium supplemented with NAA or 2,4-D in combination with BA, KIN or 2iP. The most suitable combination for plant regeneration through organogenesis was an initial medium composed of 10 mg/l NAA+1 mg/l BA followed by transfer of the callus to a shoot induction medium (MS+1 mg/l BA). Rooting of regenerated shoots was readily achieved by culture on MS+0.01 mg/l NAA. Embryogenic callus cultures were initiated from pieces of leaf on MS medium supplemented with PICL in combination with KIN, ZEA, BA or 2iP, and the most suitable combinations were 20 mg/l PICL+1 mg/l BA or 2iP. When pieces of embryogenic callus were subcultured on MS+1 mg/l BA, somatic embryos were differentiated and developed further into well-developed plants in MS+1 g/l AC followed by MS medium devoid of plant growth regulators. Received: 29 April 1999 / Revision received: 24 November 1999 / Accepted: 18 December 1999  相似文献   

17.
A protocol was developed for the induction, maturation and germination of somatic embryos from leaf tissue of jojoba [Simmondsia chinensis (Link) Schneider]. Explants were placed on their adaxial sides in Petri dishes and maintained in darkness on half-strength Murashige and Skoog basal medium (MS/2). Combinations of 2,4-dichlorophenoxyacetic acid (1.35–4.52 μM) with 6-benzylaminopurine (1.33–4.43μM) and 2 synthetic cytokinins, N-(2-chloro-4pyridyl)-N′-phenylurea (1.21–4.03μM) or (E)-6-[3-(trifluoromethyl)-but-2-enylamino] purine (1.11–3.71μM) resulted in formation of embryogenic cultures and somatic embryos. After two 30-day subcultures, embryogenic cultures were transferred onto MS/2 medium supplemented with different auxins and cytokinins. Somatic embryo maturation, germination and plantlet formation were achieved using 1-naphthaleneacetic acid (3.75μM) or indole-3-butyric acid (3.44μM) in combination with BA (0.44 or 1.33μM) or F3iP (0.37 or 1.11μM). Histology confirmed each stage of development. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
In the present study, the regeneration pathway, especially the different events of somatic embryogenesis (SE) have been studied morphologically and biochemically in Catharanthus roseus. Firstly, the calluses were induced from different explant sources (hypocotyl, epicotyl and root) by using various auxins. Embryogenic and non-embryogenic calluses were identified based on their morphology, colour and dry weight. Embryogenic callus was later cultivated on MS added with 0.45 μM 2,4-D, 6.62 μM BAP and 1.44 μM GA3 for obtaining various developmental stages of embryos. Different stages of embryos have been assayed for the establishment of marker based embryogenesis, particularly on embryo specific proteins whose presence or absence will ensure a rapid and efficient production of embryos that has a special application to clonal biotechnology. Two embryo specific proteins (38 and 33 kD) have been identified for the first time in C. roseus during torpedo stage of embryogenesis. Besides, multiple shoot formation from in vitro raised emblings was also attempted to examine the role of BAP and kinetin for shoot proliferation. The shoots were rooted with 5.37 μM NAA and 5.71 μM IAA before transplantation.  相似文献   

19.
Leaves of Solanum virginianum plants were used for protoplast isolation. To support cell wall formation and cell division, protoplasts were cultured in thin alginate layers floated in liquid medium. When protoplasts were plated at a density of 1.0 × 106/ml in Kao and Michyaluk (KMp8) medium supplemented with 0.5 mg/l zeatin, 1.0 mg/l 2,4-dichlorophenoxyacetic acid, and 1.0 mg/l α-naphthaleneacetic acid, 42.3% of the dividing cells developed microcalli in 3–4 weeks. Shoot formation via organogenesis of protoplast-derived calli was achieved for 28% of calli transferred to solidified KMp8 medium supplemented with 2.0 g/l zeatin and 0.1 mg/l 3-indol acetic acid in about 2 weeks. Further shoot development was observed in Murashige and Skoog (MS) medium without growth regulators and roots were induced after transfer to MS medium containing 1.0 mg/l 3-indol butyric acid. Regenerated plants have normal morphology.  相似文献   

20.
Summary Somatic embryogenesis and plant regeneration have been achieved in Nothapodytes foetida, which is known for its rich source of anti-cancer and anti-AIDS alkaloids. Callus cultures were initiated from immature zygotic embryos cultured on Murashige and Skoog's (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid, 6-benzyladenine (BA), and kinetin. MS medium devoid of plant growth regulators favored the development of globular somatic embryos that differentiated further into plantlets. Plantlet regeneration efficiency was effectively increased on MS medium supplemented with BA. Over 90% of the in vitro plantlets survived when transferred to the soil. Alkaloids were detected in different stages of somatic embryos, regenerated plantlets, and different parts of the 2-yr-old regenerated plants. The somatic embryos contains camptothecin (0.011% dry weight. DW) and 9-methoxycamptothecin (0.0028% DW). Two-yearold field-grown plants obtained from somatic embryos were analyzed and contained higher levels of camptothecin (0.20% DW) and 9-methoxycamptothecin. (0.097% DW) accumulated in roots, followed by stem and leaves. Alkaloids were quantified and identified by TLC and HPLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号