首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli and Salmonella typhimurium were grown in a supplemented minimal medium (SMM) at a pH of 7.0 or 5.0 or were shifted from pH 7.0 to 5.0. Two-dimensional gel electrophoretic analysis of proteins labeled with H2(35)SO4 for 20 min during the shift showed that in E. coli, 13 polypeptides were elevated 1.5- to 4-fold, whereas in S. typhimurium, 19 polypeptides were increased 2- to 14-fold over the pH 7.0 control. Upon long-term growth at pH 5.0, almost double the number of polypeptides were elevated twofold or more in S. typhimurium compared with E. coli. In E. coli, there was no apparent induction of heat shock proteins upon growth at pH 5.0 in SMM. However, growth of E. coli in a complex broth to pH 5.0, or subsequent growth of fresh E. coli cells in the filtrate from this culture, showed that a subset of five polypeptides is uniquely induced by low pH. Two of these polypeptides, D60.5, the inducible lysyl-tRNA synthetase, and C62.5, are known heat shock proteins. Measurements of the internal pH (pHi) and growth rates of both organisms were made during growth in SMM at pH 7.0, pH 5.0, and upon the pH shift. The data show that the pHi of E. coli decreases more severely than that of S. typhimurium at an external pH of 5.0; the growth rate of E. coli is about one-half that of S. typhimurium at this pH, whereas the two organisms have the same growth rate at pH 7.0. The two-dimensional gel, growth, and pHi experiments collectively suggest that, at least in SMM, S. typhimurium is more adaptive to low-pH stress than is E. coli.  相似文献   

2.
Escherichia coli and Salmonella typhimurium were grown in a supplemented minimal medium (SMM) at a pH of 7.0 or 5.0 or were shifted from pH 7.0 to 5.0. Two-dimensional gel electrophoretic analysis of proteins labeled with H2(35)SO4 for 20 min during the shift showed that in E. coli, 13 polypeptides were elevated 1.5- to 4-fold, whereas in S. typhimurium, 19 polypeptides were increased 2- to 14-fold over the pH 7.0 control. Upon long-term growth at pH 5.0, almost double the number of polypeptides were elevated twofold or more in S. typhimurium compared with E. coli. In E. coli, there was no apparent induction of heat shock proteins upon growth at pH 5.0 in SMM. However, growth of E. coli in a complex broth to pH 5.0, or subsequent growth of fresh E. coli cells in the filtrate from this culture, showed that a subset of five polypeptides is uniquely induced by low pH. Two of these polypeptides, D60.5, the inducible lysyl-tRNA synthetase, and C62.5, are known heat shock proteins. Measurements of the internal pH (pHi) and growth rates of both organisms were made during growth in SMM at pH 7.0, pH 5.0, and upon the pH shift. The data show that the pHi of E. coli decreases more severely than that of S. typhimurium at an external pH of 5.0; the growth rate of E. coli is about one-half that of S. typhimurium at this pH, whereas the two organisms have the same growth rate at pH 7.0. The two-dimensional gel, growth, and pHi experiments collectively suggest that, at least in SMM, S. typhimurium is more adaptive to low-pH stress than is E. coli.  相似文献   

3.
The effect of the preparation of E. coli M-17 low-molecular exometabolites (Actoflor), containing growth autostimulators, on the growth of pure cultures of E. coli M-17 E. coli K-12, Salmonella enteritidis, Serratia marcescens and Bifidobacterium adolescentis MC-42 was studied. This preparation was shown to stimulate the growth of all above-mentioned bacteria. The addition of Actoflor also led to the acceleration of growth in the cultivation of mixed cultures of E. coli M-17 with E. coli K-12 (or S. enteritidis), the producer strain (E. coli M-17) showing the highest degree of acceleration. Moreover, the action of Actoflor led to the elimination of competitor strains and to the increase of the antagonistic activity of E. coli M-17. Actoflor may be supposedly used as a therapeutic or prophylactic remedy.  相似文献   

4.
Adenylic nucleotides pool reaches optimum with biomass. The ATP quantity decreases after exponential growth. AMP increases when ATP decreases. Energetic load is optimum two hours before optimum growth. E. coli prevent the growth of Pseudomonas. AMP is discharged in the medium at the beginning of growth of E. coli and every time by Pseudomonas.  相似文献   

5.
The influence of nutrients in wastewater from dairy lagoons on the survival of Escherichia coli O157:H7 was monitored. Initially, the survival of E. coli O157:H7 in wastewater from which the competing native organisms had been removed by filter sterilization or autoclaving was compared with that in wastewater from which competing organisms had not been removed. Numbers of E. coli O157:H7 or E. coli ONT (O-nontypeable):H32 cells declined rapidly in filter-sterilized water and exhibited a slower decline in nonsterile water, while the organisms proliferated in autoclaved water. Subsequently, the growth of E. coli O157:H7 strains was monitored in 300 mul of Luria-Bertani (LB) broth supplemented with incremental proportions of filter-sterilized wastewater. E. coli O157:H7 and E. coli ONT:H32 strains failed to grow in filter-sterilized wastewater, and their growth was reduced incrementally with wastewater supplementation of LB broth. Consequently, the influence of organic extracts of wastewater on the growth of E. coli O157:H7 and E. coli ONT:H32 in reduced-strength LB was monitored, followed by scale-up tests in wastewater. Acidic and basic extracts inhibited growth of both strains, while the neutral aqueous extract improved growth. However, a scale-up with a threefold increase in the acidic components supplementing the wastewater did not result in any additional decline in numbers of E. coli O157:H7 cells. When protected inside a 300-kDa dialysis tube and exposed to diffusible components, E. coli O157:H7 survived longer, with a decimal reduction time of 18.1 days, compared to 3.5 days when inoculated directly into wastewater. Although wastewater can potentially provide nutrients to naturally occurring human pathogens, the chemical components, protozoa, and coliphages in wastewater can inhibit the growth of freshly introduced pathogens from manure.  相似文献   

6.
A theoretical and experimental analysis of bacterial growth in the bladder   总被引:9,自引:0,他引:9  
A mathematical model of human micturition dynamics and bacterial growth predicts the population growth rate required for a bladder infection to become established in the absence of adhesin-mediated surface growth. Escherichia coli strains isolated from the urinary tract have significantly higher in vitro growth rates in urine than strains isolated from the intestinal flora. The results suggest that, for E. coli isolated from the urinary tract, adhesin-mediated surface growth may not be required for infections to become established and persist. The growth-rate differences observed between urinary tract and intestinal isolates suggests that the ability to survive and efficiently utilize the resources available in urine is an important adaptation for E. coli inhabiting the urinary tract.  相似文献   

7.
The growth characteristics and acetate production of several Escherichia coli strains were compared by using shake flasks, batch fermentations, and glucose-feedback-controlled fed-batch fermentations to assess the potential of each strain to grow at high cell densities. Of the E. coli strains tested, including JM105, B, W3110, W3100, HB101, DH1, CSH50, MC1060, JRG1046, and JRG1061, strains JM105 and B were found to have the greatest relative biomass accumulation, strain MC1060 accumulated the highest concentrations of acetic acid, and strain B had the highest growth rates under the conditions tested. In glucose-feedback-controlled fed-batch fermentations, strains B and JM105 produced only 2 g of acetate.liter-1 while accumulating up to 30 g of biomass.liter-1. Under identical conditions, strains HB101 and MC1060 accumulated less than 10 g of biomass.liter-1 and strain MC1060 produced 8 g of acetate.liter-1. The addition of various concentrations of sodium acetate to the growth medium resulted in a logarithmic decrease, with respect to acetate concentration, in the growth rates of E. coli JM105, JM105(pOS4201), and JRG1061. These data indicated that the growth of the E. coli strains was likely to be inhibited by the acetate they produced when grown on media containing glucose. A model for the inhibition of growth of E. coli by acetate was derived from these experiments to explain the inhibition of acetate on E. coli strains at neutral pH.  相似文献   

8.
The intraperiplasmic growth rate and cell yield of wild-type Bdellovibrio bacteriovorus 109J, growing on Escherichia coli of normal composition as the substrate, were not markedly inhibited by 10-3 M methotrexate (4-amino-N10-methylpteroylglutamic acid). In contrast, the growth rate and cell yield of the mutant 109Ja, growing axenically in 0.5% yeast extract +0.15% peptone, were strongly inhibited by 10-4 and 10-3 M methotrexate. Thymine, thymidine, and thymidine-5'-monophosphate, in increasing order of effectiveness, partially or completely reversed the inhibition. E. coli depleted of tetrahydrofolate and having an abnormally high protein/deoxyribonucleic acid (DNA) ratio was obtained by growing it in the presence of methotrexate. B. bacteriovourus grew at a normal rate on these depleted E. coli cells but with somewhat reduced cell yield. Mexthotrexate (10-3 M) inhibited intraperiplasmic growth of bdellovibrio on the depleted E. coli somewhat more than it inhibited growth on normal E. coli, but the effects were small compared with inhibition of axenic growth of the mutant. Total bdellovibrio DNA after growth on the depleted E. coli in the presence or absence of methotrexate exceeded the initial quanity of E. coli DNA present. Thymidine-5'-monophosphate (10-3 M) largely reversed the inhibition and increased the amount of net synthesis of DNA. The data are consistent with the prediction that intraperiplasmic growth of B. bacteriovorus should be insensitive to all metabolic inhibitors that act by specifically preventing synthesis of essential monomers. The data also indicate that B. bacteriovorus possesses thymidylate synthetase, thymidine phosphorylase, and thymidine kinase, and has the potential to carry out de novo DNA synthesis from non-DNA precursors during intraperiplasmic growth. The results also suggest that methionyl tRNAfMet is not required for initiation of protein synthesis by B. bacteriovorus.  相似文献   

9.
Filtered samples of monogalacturonic (GA) and monoglucuronic acids (GL) that were prepared using millipore filter (pore size=0.2 microm) slightly inhibited the growth of Escherichia coli while the autoclaved (at 121 degrees C for 20 min) samples of GA and GL completely inhibited the growth of E. coli. The most effective substance generated upon autoclave treatment was isolated and characterized as trans-4,5-dihydroxy-2-cyclopenten-1-one (DHCP). The optimal conditions for DHCP generation were also established by autoclaving GA (pH 2.3) at 121 degrees C for 3h. DHCP completely inhibited the growth of E. coli. However, the growth of E. coli was restored when superoxide dismutase and catalase were added to the culture broth that contained DHCP. It was thought that DHCP might have induced the release of active oxygen, which resulted in the inhibition of microbial growth. In the case of gram-positive bacteria (Bacillus cereus, Bacillus subtilis and Staphylococcus aureus) and yeast (Saccharomyces cerevisiae and Candida brassicae), DHCP inhibited the cell growth. Based on our results, methods for preparation of food preservatives that contained pectin degraded products (oligo-galacturonic acid and monogalacturonic acid) and DHCP were developed. The preservatives were very effective in inhibiting the growth of E. coli and S. cerevisiae.  相似文献   

10.
The growth characteristics and acetate production of several Escherichia coli strains were compared by using shake flasks, batch fermentations, and glucose-feedback-controlled fed-batch fermentations to assess the potential of each strain to grow at high cell densities. Of the E. coli strains tested, including JM105, B, W3110, W3100, HB101, DH1, CSH50, MC1060, JRG1046, and JRG1061, strains JM105 and B were found to have the greatest relative biomass accumulation, strain MC1060 accumulated the highest concentrations of acetic acid, and strain B had the highest growth rates under the conditions tested. In glucose-feedback-controlled fed-batch fermentations, strains B and JM105 produced only 2 g of acetate.liter-1 while accumulating up to 30 g of biomass.liter-1. Under identical conditions, strains HB101 and MC1060 accumulated less than 10 g of biomass.liter-1 and strain MC1060 produced 8 g of acetate.liter-1. The addition of various concentrations of sodium acetate to the growth medium resulted in a logarithmic decrease, with respect to acetate concentration, in the growth rates of E. coli JM105, JM105(pOS4201), and JRG1061. These data indicated that the growth of the E. coli strains was likely to be inhibited by the acetate they produced when grown on media containing glucose. A model for the inhibition of growth of E. coli by acetate was derived from these experiments to explain the inhibition of acetate on E. coli strains at neutral pH.  相似文献   

11.
An analysis of UV-damages accumulation in the phages as revealed by delay of intracellular growth is represented using temperate lambda phage. The maximum of growth delay of phage lambda at given UV-dose was found with lambda red+, infecting Escherichia coli AB1886 uvrA strain. The growth delay was absent, when a strain RH-1 uvrA-recA- was infected with UV-irradiated phage lambda red3. A moderate growth delay was obtained with the phages lambda red+, infecting E. coli RH-1 uvrA-recA- or phage lambda red3, infecting E. coli AB1886 uvrA-. THe growth delay was also absent when wild type, recA- and uvrA mutants of E. coli were infected with phage lambda after 8-metnoxypsoralen + light (lambda > 310 nm) treatment. It is known that the crosslinks appear to be the DNA defects which give rise to the observed biological inactivation following psoralen + light treatment. However, a considerable growth delay of phage lambda, treated by 8-metnoxypsoralen + light, was only found under condition of crosslinks repair (W-reactivation and prophage-reactivation). The results obtained are best explained by the assumption that the growth delay reflects the time required for the postreplication repair (RecA, LexA, Red) of any lethal UV-lesion.  相似文献   

12.
地衣芽胞杆菌对白色念珠菌等的拮抗作用   总被引:1,自引:0,他引:1  
目的了解地衣芽胞杆菌在试管内与阴道正常菌群共生关系的情况。方法将地衣芽胞杆菌菌液分别与葡萄球菌、大肠埃希菌、白色念珠菌、德氏乳杆菌混合培养,定量计数各菌在不同时间内单独培养和混合培养时各菌的活菌数。结果地衣芽胞杆菌生长不受金黄色葡萄球菌、白色念珠菌和大肠埃希菌的影响,金黄色葡萄球菌和白色念珠菌在有地衣芽胞杆菌存在的情况下,其生长受到明显的抑制(P〈0.05);乳杆菌在12-48 h内,有显著的抑制地衣芽胞杆菌生长的作用,而乳杆菌的生长不受地衣芽胞杆菌的存在与否而正常生长。结论地衣芽胞杆菌对金黄色葡萄球菌及白色念珠菌在体外具有明显的拮抗作用,地衣芽胞杆菌对大肠埃希菌、乳杆菌无明显的体外拮抗作用。  相似文献   

13.
Insulin on Escherichia coli was studied using wild type E. coli B/r and K12 strains and a number of phosphoenolpyruvate phosphotransferase mutants. In vivo, the effects of insulin on the differential rate of tryptophanase synthesis, the rate of alpha-methylglucoside uptake and the rate of growth on glucose were determined in E. coli B/r. In vitro, the effect of insulin on the adenylate cyclase and the phosphotransferase activities was determined using toluenized cell preparations of E. coli B/r, E. coli K12 and phosphotransferase mutant strains. The specificity of insulin action on E. coli was determined using glucagon, vasopressin and somatropin as well as insulin antisera. Results show the specific action of insulin on E. coli, inhibiting tryptophanase induction and adenylate cyclase activity, while stimulating growth on glucose and uptake and phosphorylation of alpha-methylglucoside.  相似文献   

14.
Bacteriophage P1 encodes a single-stranded DNA-binding protein (SSB-P1), which shows 66% amino acid sequence identity to the SSB protein of the host bacterium Escherichia coli. A phylogenetic analysis indicated that the P1 ssb gene coexists with its E. coli counterpart as an independent unit and does not represent a recent acquisition of the phage. The P1 and E. coli SSB proteins are fully functionally interchangeable. SSB-P1 is nonessential for phage growth in an exponentially growing E. coli host, and it is sufficient to promote bacterial growth in the absence of the E. coli SSB protein. Expression studies showed that the P1 ssb gene is transcribed only, in an rpoS-independent fashion, during stationary-phase growth in E. coli. Mixed infection experiments demonstrated that a wild-type phage has a selective advantage over an ssb-null mutant when exposed to a bacterial host in the stationary phase. These results reconciled the observed evolutionary conservation with the seemingly redundant presence of ssb genes in many bacteriophages and conjugative plasmids.  相似文献   

15.
G Edlin  L Lin    R Bitner 《Journal of virology》1977,21(2):560-564
P1, P2, and Mu lysogens of Escherichia coli reproduce more rapidly than nonlysogens during aerobic growth in glucose-limited chemostats. Thus, prophage-containing stains of E. coli are reproductively more fit than the corresponding nonlysogens. If mixed populations are grown by serial dilution under conditions in which growth is not limited, both the lysogen and nonlysogen manifest identical growth rates. The increased fitness of the lysogens in glucose-limited chemostats correlates with a higher metabolic activity of the lysogen as compared with the nonlysogen during glucose exhaustion. We propose that P1, P2, Mu, and lambda prophage all confer an evolutionarily significant reproductive growth advantage to E. coli lysogenic strains.  相似文献   

16.
Abstract Escherichia coli F-18, a normal human fecal isolate, and Salmonella typhimurium SL5319, an avirulent strain, are known to colonize the streptomycin-treated CD-1 mouse large intestine by utilizing nutrients present in intestinal mucus for growth. Moreover, previous experiments suggested the possibility that E. coli F-18 and S. typhimurium SL5319 utilized different mucus nutrients. Therefore, mouse cecal mucus was fractionated into high and low molecular weight components, and each fraction was inoculated either simultaneously or separately with E. coli F-18 and S. typhimurium SL5319. A 50 kd fraction was found in which the growth of S. typhimurium SL5319 suppressed growth of E. coli F-18. Evidence is presented that in this fraction S. typhimurium SL5319 utilizes peptides, presumably generated by mucus proteases, as a source of amino acids for growth. Furthermore, it is shown that S. typhimurium SL5319 grows in this 50 kd fraction with a generation time of 27 min in the presence of at most 7 μg of carbohydrate per ml and 2.2 μg of peptide per ml, and that S. typhimurium SL5319 suppresses E. coli F-18 growth in this fraction by sequestering iron. The data are discussed with respect to the role of peptide utilization and iron sequestration in the ability of S. typhimurium SL5319 to colonize the mouse large intestine.  相似文献   

17.
Previously, we produced two groups of gnotobiotic mice, GB-3 and GB-4, which showed different responses to Escherichia coli O157:H7 challenge. E. coli O157:H7 was eliminated from GB-3, whereas GB-4 mice became carriers. It has been reported that the lag time of E. coli O157:H7 growth in 50% GB-3 caecal suspension was extended when compared to GB-4 caecal suspension. In this study, competition for nutrients between intestinal microbiota of GB-3 and GB-4 mice and E. coli O157:H7 was examined. Amino acid concentrations in the caecal contents of GB-3 and GB-4 differed, especially the concentration of proline. The supplementation of proline into GB-3 caecal suspension decreased the lag time of E. coli O157:H7 growth in vitro. When E. coli O157:H7 was cultured with each of the strains used to produce GB-3 mice in vitro, 2 strains of E. coli (proline consumers) out of 5 enterobacteriaceae strains strongly suppressed E. coli O157:H7 growth and the suppression was attenuated by the addition of proline into the medium. These results indicate that competition for proline with indigenous E. coli affected the growth of E. coli O157:H7 in vivo and may contribute to E. coli O157:H7 elimination from the intestine.  相似文献   

18.
The effect of atmospheric composition and storage temperature on growth and survival of uninjured and sublethally heat-injured Escherichia coli O157:H7, inoculated onto brain heart infusion agar containing 0.3% beef extract (BEM), was determined. BEM plates were packaged in barrier bags in air, 100% CO2, 100% N2, 20% CO2: 80% N2, and vacuum and were stored at 4, 10, and 37 degrees C for up to 20 days. Package atmosphere and inoculum status (i.e., uninjured or heat-injured) influenced (P < 0.01) growth and survival of E. coli O157:H7 stored at all test temperatures. Growth of heat-injured E. coli O157:H7 was slower (P < 0.01) than uninjured E. coli O157:H7 stored at 37 degrees C. At 37 degrees C, uninjured E. coli O157:H7 reached stationary phase growth earlier than heat-injured populations. Uninjured E. coli O157:H7 grew during 10 days of storage at 10 degrees C, while heat-injured populations declined during 20 days of storage at 10 degrees C. Uninjured E. coli O157:H7 stored at 10 degrees C reached stationary phase growth within approximately 10 days in all packaging atmospheres except CO2. Populations of uninjured and heat-injured E. coli O157:H7 declined throughout storage for 20 days at 4 degrees C. Survival of uninjured populations stored at 4 degrees C, as well as heat-injured populations stored at 4 and 10 degrees C, was enhanced in CO2 atmosphere. Survival of heat-injured E. coli O157:H7 at 4 and 10 degrees C was not different (P > 0.05). Uninjured and heat-injured E. coli O157:H7 are able to survive at low temperatures in the modified atmospheres used in this study.  相似文献   

19.
Expression of the histidine operon in Escherichia coli cells in contrast to the one in Salmonella typhimurium is changed proportionally to cells growth rate on the different carbon sources. The specific activity of histidinol-dehydrogenase is repressed by addition of 19 amino acids both in Escherichia coli and Salmonella typhimurium independent of the growth medium used. Using of Escherichia coli and Salmonella typhimurium strains containing the heterologous histidine operons made possible to demonstrate the dependence of the histidine operon metabolic regulation to be determined by the operon itself but not by the specificity of the recipient cells. ppGpp was shown to be a positive regulator of the histidine operon expression in Escherichia coli.  相似文献   

20.
Modeling of batch kinetics in minimal synthetic medium was used to characterize Escherichia coli O157:H7 growth, which appeared to be different from the exponential growth expected in minimal synthetic medium and observed for E. coli K-12. The turbidimetric kinetics of 14 of the 15 O157:H7 strains tested (93%) were nonexponential, whereas 25 of the 36 other E. coli strains tested (70%) exhibited exponential kinetics. Moreover, the anomaly was almost corrected when the minimal medium was supplemented with methionine. These observations were confirmed with two reference strains by using plate count monitoring. In mixed cultures, E. coli K-12 had a positive effect on E. coli O157:H7 and corrected its growth anomaly. This demonstrated that commensalism occurred, as the growth curve for E. coli K-12 was not affected. The interaction could be explained by an exchange of methionine, as the effect of E. coli K-12 on E. coli O157:H7 appeared to be similar to the effect of methionine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号