首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three different commercial monocomponent endoglucanases, with and without a cellulose-binding domain (CBD) and differences in their glycosidic hydrolysis mechanisms, were compared with respect to their ability to enhance the accessibility and reactivity of dissolving-grade pulps for viscose production. Hardwood (eucalyptus) and softwood (mixture of Norway spruce and Scots pine) commercial dried and never-dried bleached sulfite dissolving pulps were used for this purpose. The effects of the enzymatic treatments on pulps were studied by reactivity, according to Fock's method, and viscosity measurements, and recording of molecular weight distributions. Among the different assayed enzymes, endoglucanase with a CBD and an inverting hydrolysis mechanism was found to be the most effective in increasing the reactivity of both pulps. Simultaneously, the viscosity decreased, being more marked for softwood dissolving pulp. A narrower molecular weight distribution, with a great reduction in the amount of long-chain cellulose molecules was observed in both pulps, being more pronounced for softwood dissolving pulp. By contrast, endoglucanase without a CBD and a retaining hydrolysis mechanism showed a barley enhancement of the studied properties. The effects of the different endoglucanase treatments were more pronounced when never-dried dissolving pulps were used.  相似文献   

2.
In this work the effects of individual purified cellulases of Trichoderma reesei were studied in the enzyme-aided bleaching of kraft pulps. The cellobiohydrolases I and II, when used alone, had no positive effect on the bleachability of kraft pulps. The endoglucanase I (EG I), however, acted on pulp similarly to xylanases and with an enzyme dosage of 0.1 mg/g a clear increase in pulp brightness could be observed. Due to the unspecificity of this enzyme, the viscosity of the pulp was simultaneously decreased. Of the cellulases, EG II was clearly most detrimental in reducing the pulp viscosity. Hence, the action of purified cellulases of T. reesei on pulp as a substrate differs profoundly, and all cellulases are not detrimental to the pulp properties. Correspondence to: J. Buchert  相似文献   

3.
持续性内切纤维素酶(Processive endoglucanase)是一类新发现的双功能纤维素水解酶,既符合内切酶的作用特征,又具有外切酶的持续催化能力,可高效降解纤维素生成小分子寡糖。这类酶通常具有模块化结构,碳水化合物结合模块(CBM)对酶的持续催化活性及底物结合能力表现出不同的影响。综述了该领域相关研究的最新进展,分析了持续性内切酶潜在的研究方向及工业化应用的前景。  相似文献   

4.
Endoglucanase treatment of pulp for the adjustment of viscosity and the increase in pulp reactivity is a promising step in the concept for the beneficial production of dissolving pulps from paper grade pulps. To promote the commercial applicability of these enzymes, the influence of pulp properties such as carbohydrate composition, pulp type and cellulose morphology on the enzymatic degradability of a pulp was examined. High contents of hemicelluloses and lignin were shown to impair the accessibility of the cellulose to the enzymes. Due to the elevated swelling capacity of cellulose II, conversion of the cellulose morphology from I to II upon alkaline treatments showed a large increasing effect on the cellulose accessibility, and enzymatic degradability. Reactivity measurements of softwood sulfite pulps after enzymatic degradation and acid-catalyzed hydrolysis, respectively, revealed elevated reactivity for the pulp after acid treatment. This is in contrast to effects of enzyme treatments reported for CCE treated kraft pulps.  相似文献   

5.
Enzymatic hydrolysis of carboxymethyl cellulose (CMC) has been studied with purified endoglucanases Hi Cel5A (EG II), Hi Cel7B (EG I), and Hi Cel45A (EG V) from Humicola insolens, and Tr Cel7B (EG I), Tr Cel12A (EG III), and Tr Cel45Acore (EG V) from Trichoderma reesei. The CMC, with a degree of substitution (DS) of 0.7, was hydrolyzed with a single enzyme until no further hydrolysis was observed. The hydrolysates were analyzed for production of substituted and non-substituted oligosaccharides with size exclusion chromatography (SEC) and with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS). Production of reducing ends and of nonsubstituted oligosaccharides was determined as well. The two most effective endoglucanases for CMC hydrolysis were Hi Cel5A and Tr Cel7B. These enzymes degraded CMC to lower molar mass fragments compared with the other endoglucanases. The products had the highest DS determined by MALDI-TOF-MS. Thus, Hi Cel5A and Tr Cel7B were less inhibited by the substituents than the other endoglucanases. The endoglucanase with clearly the lowest activity on CMC was Tr Cel45Acore. It produced less than half of the amount of reducing ends compared to Tr Cel7B; furthermore, the products had significantly lower DS. By MALDI-TOF-MS, oligosaccharides with different degree of polymerization (DP) and with different number of substituents could be separated and identified. The average oligosaccharide DS as function of DP could be measured for each enzyme after hydrolysis. The combination of techniques for analysis of product formation gave information on average length of unsubstituted blocks of CMC.  相似文献   

6.
The use of enzymes has been suggested as an environmentally friendly alternative to complement conventional chemical deinking in the recycling of recovered paper. This study compares the use of cellulases/hemicellulases versus the laccase-mediator system for deinking printed fibers from newspapers and magazines. For this purpose, two commercial enzyme preparations with endoglucanase and endoxylanase activities (Viscozyme Wheat from Aspergillus oryzae and Ultraflo L from Humicola insolens, Novozymes) and a commercial laccase (NS51002 from Trametes villosa, Novozymes), the latter in the presence of synthetic or natural (lignin-related) mediators, were evaluated. The enzymatic treatments were studied at the laboratory scale using a standard chemical deinking sequence consisting of a pulping stage; an alkaline stage using NaOH, sodium silicate and fatty acid soap; and a bleaching stage using hydrogen peroxide. The handsheets were then prepared and their brightness, residual ink concentration, and strength properties were measured. Among the different enzymatic treatments assayed, both carbohydrate hydrolases were found to deink the secondary fibers more efficiently. Brightness increased up to 3–4% ISO on newspaper fibers, being Ultraflo 20% more efficient in the ink removal. Up to 2.5% ISO brightness increase was obtained when magazine fibers were used, being Viscozyme 9% more efficient in the ink removal. Regarding the laccase-mediator system, alone or in combination with carbohydrate hydrolases, it was ineffective in deinking both newspaper and magazine fibers, resulting in pulps with worse brightness and residual ink concentration values. However, pulp deinking by the laccase-mediator system was displayed when secondary fibers from printed cardboard were used, obtaining up to 3% ISO brightness increase and lower residual ink concentrations.  相似文献   

7.
A method for analysis of the component composition of multienzyme complexes secreted by the filamentous fungus Trichoderma reesei was developed. The method is based on chromatofocusing followed by further identification of protein fractions according to their substrate specificity and molecular characteristics of the proteins. The method allows identifying practically all known cellulases and hemicellulases of T. reesei: endoglucanase I (EG I), EG II, EG III, cellobiohydrolase I (CBH I), CBH II, xylanase I (XYL I), XYL II, beta-xylosidase, alpha-L-arabinofuranosidase, acetyl xylan esterase, mannanase, alpha-galactosidase, xyloglucanase, polygalacturonase, and exo-beta-1,3-glucosidase. The component composition of several laboratory and commercial T. reesei preparations was studied and the content of the individual enzymes in these preparations was quantified. The influence of fermentation conditions on the component composition of secreted enzyme complexes was revealed. The characteristic features of enzyme preparations obtained in "cellulase" and "xylanase" fermentation conditions are shown.  相似文献   

8.
9.
An on-line system based on microdialysis sampling (MD), micro-high performance anion exchange chromatography (micro-HPAEC), integrated pulsed electrochemical detection (IPED), and electrospray ionization mass spectrometry (MS) for the monitoring of on-line desalted enzymatic hydrolysates is presented. Continuous monitoring of the enzymatic degradation of dissolving pulp from Eucalyptus grandis as well as degradation of sugar cane bagasse in a 5-mL reaction vessel was achieved up to 24 h without any additional sample handling steps. Combining MD with micro-HPAEC-IPED/MS and on-line desalting of hydrolysates enabled injection (5 microL) of at least 23 samples in a study of the sequential action of hydrolytic enzymes in an unmodified environment where the enzymes and substrate were not depleted due to the perm-selectivity of the MD membrane (30 kDa cut-off). Xylanase, phenolic acid esterase and a combination of endoglucanase (EG II) with cellobiohydrolase (CBH I) resulted in the production of DP 1 after the addition of esterase, DP 2 and DP 3 after the addition of EG II and CBH I, from the dissolving pulp substrate. Similar sequential enzyme addition to sugar cane bagasse resulted in DP 1 production after the addition of esterase and DP 1, DP 2 and DP 3 production after the addition of the EG II and CBH I mixture. Combining MS on-line with micro-HPAEC-IPED proved to be a versatile and necessary tool for such a study compared to conventional methods. The mass selectivity of MS revealed complementary information, including the co-elution of saccharides as well as the presence of more than one type of DP 2 in the case of dissolving pulp and several types of DP 2 and DP 3 for sugar cane bagasse. This study demonstrates the limitation of the use of retention time alone for confirmation of the identity of saccharides especially when dealing with complex enzymatic hydrolysates. In situ sampling and sample clean-up combined with on-line desalting of the chromatographic effluent, provides a generic approach to achieve real time monitoring of enzymatic hydrolysates when they are detected by a combination of IPED and MS.  相似文献   

10.
Trichoderma reesei produces five known endoglucanases. The most studied are Cel7B (EG I) and Cel5A (EG II) which are the most abundant of the endoglucanases. We have performed a characterisation of the enzymatic properties of the less well-studied endoglucanases Cel12A (EG III), Cel45A (EG V) and the catalytic core of Cel45A. For comparison, Cel5A and Cel7B were included in the study. Adsorption studies on microcrystalline cellulose (Avicel) and phosphoric acid swollen cellulose (PASC) showed that Cel5A, Cel7B, Cel45A and Cel45Acore adsorbed to these substrates. In contrast, Cel12A adsorbed weakly to both Avicel and PASC. The products formed on Avicel, PASC and carboxymethylcellulose (CMC) were analysed. Cel7B produced glucose and cellobiose from all substrates. Cel5A and Cel12A also produced cellotriose, in addition to glucose and cellobiose, on the substrates. Cel45A showed a clearly different product pattern by having cellotetraose as the main product, with practically no glucose and cellobiose formation. The kinetic constants were determined on cellotriose, cellotetraose and cellopentaose for the enzymes. Cel12A did not hydrolyse cellotriose. The k(Cat) values for Cel12A on cellotetraose and cellopentaose were significantly lower compared with Cel5A and Cel7B. Cel7B was the only endoglucanase which rapidly hydrolysed cellotriose. Cel45Acore did not show activity on any of the three studied cello-oligosaccharides. The four endoglucanases' capacity to hydrolyse beta-glucan and glucomannan were studied. Cel12A hydrolysed beta-glucan and glucomannan slightly less compared with Cel5A and Cel7B. Cel45A was able to hydrolyse glucomannan significantly more compared with beta-glucan. The capability of Cel45A to hydrolyse glucomannan was higher than that observed for Cel12A, Cel5A and Cel7B. The results indicate that Cel45A is a glucomannanase rather than a strict endoglucanase.  相似文献   

11.
12.
Studies on reconstituted mixtures of extensively purified cellobiohydrolases I and II and the five major endoglucanases of the fungus Penicillium pinophilum have provided some new information on the mechanism by which crystalline cellulose in the form of the cotton fibre is rendered soluble. It was observed that there was little or no synergistic activity either between purified cellobiohydrolases I and II, or, contrary to previous findings, between the individual cellobiohydrolases and the endoglucanases. Cotton fibre was degraded to a significant degree only when three enzymes were present in the reconstituted enzyme mixture: these were cellobiohydrolases I and II and some specific endoglucanases. The optimum ratio of the cellobiohydrolases was 1:1. Only a trace of endoglucanase activity was required to make the mixture of cellobiohydrolases I and II effective. The addition of cellobiohydrolases I and II individually to endoglucanases from other cellulolytic fungi resulted in little synergistic activity; however, a mixture of endoglucanases and both cellobiohydrolases was effective. It is suggested that current concepts of the mechanism of cellulase action may be the result of incompletely resolved complexes between cellobiohydrolase and endoglucanase activities. It was found that such complexes in filtrates of P. pinophilium or Trichoderma reesei were easily resolved using affinity chromatography on a column of p-aminobenzyl-1-thio-beta-D-cellobioside.  相似文献   

13.
For paperboard used to produce packaging, treatment of its fiber constituents with commercial enzymes can improve its compressive strength under cycling and high-humidity conditions. Xylanase that selectively removes pulp xylan (ca. 2% of the pulp by mass) yielded most of the observed beneficial effects, which did not appear related to the packing of the fiber network in the sheet or to the uptake of moisture at high humidity. There was also a marginal increase in the drainability of the pulp slurry, which may increase the rate of papermaking. Although endoglucanase activity also enhances certain pulp properties, there was little benefit in adding it to the xylanase treatment.  相似文献   

14.
Enzymatic removal of hemicellulose from dissolving pulps   总被引:3,自引:0,他引:3  
Hemicellulases and an endoglucanase from seven different fungi were assessed for their potential to solubilze mannan and xylan from softwood sulfite dissolving pulps. A xylanase from Thermomyces lanuginosus and a mannanase from Sclerotium rolfsii acted synergistically on the pulp solubilizing 50% more mannan and 11% more xylan than did the individual enzymes. The addition of an endoglucanase further increased both the amount of xylan and mannan that was solubilized from the pulp. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

15.
Three endoglucanase cDNAs, eg65a, eg65b, and eg65c, were cloned from the mollusk Ampullaria crossean in previous work. To characterize the full-length enzymes as well as their individual functional modules via heterologous expression analysis, the three full-length putative endoglucanases (rEG65a, rEG65b, and rEG65c) and the corresponding catalytic modules (EG65a-CM, EG65b-CM, and EG65c-CM) were expressed in Pichia pastoris GS115, and the three corresponding carbohydrate-binding modules (EG65a-CBM, EG65b-CBM, and EG65c-CBM) were expressed in Escherichia coli BL21 (DE3). The properties of recombinant rEG65b, EG65a-CM, EG65b-CM, and EG65c-CM were characterized. Binding assays of CBMs with insoluble polysaccharides indicated that both EG65b-CBM and EG65c-CBM bound to phosphoric-acid swollen cellulose (PASC), Avicel, and oat-spelt xylan, while EG65a-CBM did not. The relative equilibrium constants (K(r)) of EG65b-CBM and EG65c-CBM were determined by absorption isotherm measurements. In this study, the CBMs of animal cellulases were expressed and characterized for the first time.  相似文献   

16.
Two endoglucanases with processive cellulase activities, produced from Fomitopsis palustris grown on 2% microcrystalline cellulose (Avicel), were purified to homogeneity by anion-exchange and gel filtration column chromatography systems. SDS-PAGE analysis indicated that the molecular masses of the purified enzymes were 47 kDa and 35 kDa, respectively. The amino acid sequence analysis of the 47-kDa protein (EG47) showed a sequence similarity with fungal glycoside hydrolase family 5 endoglucanase from the white-rot fungus Phanerochaete chrysosporium. N-terminal and internal amino acid sequences of the 35-kDa protein (EG35), however, had no homology with any other glycosylhydrolases, although the enzyme had high specific activity against carboxymethyl cellulose, which is a typical substrate for endoglucanases. The initial rate of Avicel hydrolysis by EG35 was relatively fast for 48 h, and the amount of soluble reducing sugar released after 96 h was 100 microg/ml. Although EG47 also hydrolyzed Avicel, the hydrolysis rate was lower than that of EG35. Thin layer chromatography analysis of the hydrolysis products released from Avicel indicated that the main product was cellobiose, suggesting that the brown-rot fungus possesses processive EGs capable of degrading crystalline cellulose.  相似文献   

17.
Xylanases in bleaching: From an idea to the industry   总被引:17,自引:0,他引:17  
Abstract: The utilization of hemicellulases in bleaching of kraft (sulphate) pulp is considered as one of the most important new large-scale industrial applications of enzymes. This is partly due to the great potential of an environmentally safe method. This method has in a short period also proven to be economically realistic. The main enzymes needed in the enzyme-aided bleaching have been shown to belong to the group of endo-/gb-xylanases. Xylanases act mainly on the relocated, reprecipitated xylan on the surface of the pulp fibres. Enzymatic hydrolysis of this specific type of xylan renders the structure of the fibres more permeable. The hydrolysis of xylan or mannan in the inner fibre layers may also enhance the bleachability. In practical process conditions, properties of the enzymes such as substrate specificity and the pH and temperature optima are of utmost importance. The benefits obtained by enzymes are dependent on the chemical bleaching sequence used as well as on the residual lignin content of pulp. The main goals in the enzyme-aided bleaching of kraft pulps have been the reduction of consumption of chlorine chemicals in the bleaching process and consequently lowering the AOX of the effluents. Enzymes have been applied as a pretreatment both in conventional (C/D)EDED and in ECF (elementary chlorine-free) bleaching sequences. In the production of TCF (totally chlorine-free) pulps, enzymes have also been successfully used for increasing the brightness of pulp.  相似文献   

18.
为了提高里氏木霉中天然纤维素酶的最佳活性pH,本实验从特异腐质霉,灰腐质霉的变种,枯草芽孢杆菌LH中分别筛选并克隆了其含有的中性纤维素酶基因,将其置于里氏木霉cbh1启动子的启动下,在里氏木霉中进行异源表达。改造株在pH 6.0下酶活提升16%,pH 7.0下活性保留75%以上,而此时原始菌酶活残留20%。本实验所得的产中性纤维素酶里氏木霉基因改造株,由于其良好的中酸性活性表现,在食品,纺织,纸浆和造纸行业应也有良好的使用潜力。  相似文献   

19.
The potential use of water hyacinth as a pulp material for producing greaseproof paper was investigated. The proximate chemical analyses of the raw materials, the morphology of the water hyacinth stalk and fibre, pulp characteristics, and data on the physical properties of the paper hand-sheets formed from water hyacinth and bamboo pulps and their blends are presented. A comparative study of the pulp freeness (°SR) and drainage properties of water hyacinth and bamboo pulps showed that with a high freeness value of the pulps the drainage time increased. Blending of water hyacinth and bamboo pulps increased the physical strength. Paper hand-sheets made with a blend of water hyacinth pulp (75°SR) and bamboo pulp (80°SR), at 75:25 proportion, gave a tear index of 4·90 mN m2 g−1, tensile index of 51·10 N mg−1 and burst index of 7·25 kPa m2 g−1. These were higher than the values obtained from sheets made with pulp blends (water hyacinth:bamboo) of 80:20 or 90:10. The pulp sheets at a blend proportion of 75:25 also gave satisfactory greaseproof properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号