首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that targeted overexpression of the fibroblast growth factor 2 (FGF2) high molecular weight (HMW) isoforms in osteoblastic lineage cells in mice resulted in phenotypic changes, including dwarfism, rickets, osteomalacia, hypophosphatemia, increased serum parathyroid hormone, and increased levels of the phosphatonin FGF23 in serum and bone. This study examined the effects of genetically knocking out the FGF2HMW isoforms (HMWKO) on bone and phosphate homeostasis. HMWKO mice were not dwarfed and had significantly increased bone mineral density and bone mineral content in femurs and lumbar vertebrae when compared with the wild-type (WT) littermates. Micro-computed tomography analysis of femurs revealed increased trabecular bone volume, thickness, number, and connective tissue density with decreased trabecular spacing compared with WT. In addition, there was significantly decreased cortical porosity and increased cortical thickness and sub-periosteal area in femurs of HMWKO. Histomorphometric analysis demonstrated increased osteoblast activity and diminished osteoclast activity in the HMWKO. In vitro bone marrow stromal cell cultures showed there was a significant increase in alkaline phosphatase-positive colony number at 1 week in HMWKO. At 3 weeks of culture, the mineralized area was also significantly increased. There was increased expression of osteoblast differentiation marker genes and reduced expression of genes associated with impaired mineralization, including a significant reduction in Fgf23 and Sost mRNA. Normal serum phosphate and parathyroid hormone were observed in HMWKO mice. This study demonstrates a significant negative impact of HMWFGF2 on biological functions in bone and phosphate homeostasis in mice.  相似文献   

2.
Previous studies have associated activation of canonical Wnt signaling in osteoblasts with elevated bone formation. Here we report that deletion of the murine Wnt antagonist, secreted frizzled-related protein (sFRP)-1, prolongs and enhances trabecular bone accrual in adult animals. sFRP-1 mRNA was expressed in bones and other tissues of +/+ mice but was not observed in -/- animals. Despite its broad tissue distribution, ablation of sFRP-1 did not affect blood and urine chemistries, most nonskeletal organs, or cortical bone. However, sFRP-1-/- mice exhibited increased trabecular bone mineral density, volume, and mineral apposition rate when compared with +/+ controls. The heightened trabecular bone mass of sFRP-1-/- mice was observed in adult animals between the ages of 13-52 wk, occurred in multiple skeletal sites, and was seen in both sexes. Mechanistically, loss of sFRP-1 reduced osteoblast and osteocyte apoptosis in vivo. In addition, deletion of sFRP-1 inhibited osteoblast lineage cell apoptosis while enhancing the proliferation and differentiation of these cells in vitro. Ablation of sFRP-1 also increased osteoclastogenesis in vitro, although changes in bone resorption were not observed in intact animals in vivo. Our findings demonstrate that deletion of sFRP-1 preferentially activates Wnt signaling in osteoblasts, leading to enhanced trabecular bone formation in adults.  相似文献   

3.
Siah1a has been implicated in numerous signaling pathways because of its ability to induce ubiquitin-mediated degradation of many protein substrates. Siah1a knockout mice are growth-retarded, exhibit early lethality, and display spermatogenic defects. In this study we identified a striking low bone volume phenotype in these mice (trabecular bone volume was halved compared with wild type mice), linking Siah1a to bone metabolism for the first time. Markers of bone formation, including osteoblast numbers and osteoid volume, were decreased by up to 40%, whereas the number of osteoclasts was more than doubled in Siah1a mutant mice. However, ex vivo osteoclast formation occurs normally and hematopoietic osteoclast progenitor cell types were present in normal numbers in Siah1a mutant mice. Moreover, adoptive transfer of Siah1a mutant bone marrow into wild type mice failed to reproduce the osteopenia or increased osteoclast numbers observed in mutant mice. Although ex vivo osteoblast colony formation was normal in Siah1a mutant mice, mineralization from these cells was elevated in cultures from Siah1a mutant mice, which may explain the reduction in osteoid volume seen in vivo. These findings suggest that although Siah1a is clearly essential for normal bone metabolism, the bone defect in Siah1a mutant mice is not due to cell-autonomous requirements for Siah1a in osteoblast or osteoclast formation. We propose that bone metabolism defects in Siah1a mutant mice are secondary to an alteration in an unidentified systemic, paracrine, or metabolic factor in these mice.  相似文献   

4.
Discovery and mapping of ten novel G protein-coupled receptor genes   总被引:10,自引:0,他引:10  
  相似文献   

5.
TSG-6 is an inflammation-induced protein that is produced at pathological sites, including arthritic joints. In animal models of arthritis, TSG-6 protects against joint damage; this has been attributed to its inhibitory effects on neutrophil migration and plasmin activity. Here we investigated whether TSG-6 can directly influence bone erosion. Our data reveal that TSG-6 inhibits RANKL-induced osteoclast differentiation/activation from human and murine precursor cells, where elevated dentine erosion by osteoclasts derived from TSG-6(-/-) mice is consistent with the very severe arthritis seen in these animals. However, the long bones from unchallenged TSG-6(-/-) mice were found to have higher trabecular mass than controls, suggesting that in the absence of inflammation TSG-6 has a role in bone homeostasis; we have detected expression of the TSG-6 protein in the bone marrow of unchallenged wild type mice. Furthermore, we have observed that TSG-6 can inhibit bone morphogenetic protein-2 (BMP-2)-mediated osteoblast differentiation. Interaction analysis revealed that TSG-6 binds directly to RANKL and to BMP-2 (as well as other osteogenic BMPs but not BMP-3) via composite surfaces involving its Link and CUB modules. Consistent with this, the full-length protein is required for maximal inhibition of osteoblast differentiation and osteoclast activation, although the isolated Link module retains significant activity in the latter case. We hypothesize that TSG-6 has dual roles in bone remodeling; one protective, where it inhibits RANKL-induced bone erosion in inflammatory diseases such as arthritis, and the other homeostatic, where its interactions with BMP-2 and RANKL help to balance mineralization by osteoblasts and bone resorption by osteoclasts.  相似文献   

6.
7.
Adult Ibsp-knockout mice (BSP−/−) display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP−/− mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP−/− newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP−/− mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP−/− than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP−/− mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn)/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP−/− mice, while impairing primary mineralization.  相似文献   

8.
Osteoporosis may complicate iron overload diseases such as genetic hemochromatosis. However, molecular mechanisms involved in the iron-related osteoporosis remains poorly understood. Recent in vitro studies support a role of osteoblast impairment in iron-related osteoporosis. Our aim was to analyse the impact of excess iron in Hfe-/- mice on osteoblast activity and on bone microarchitecture. We studied the bone formation rate, a dynamic parameter reflecting osteoblast activity, and the bone phenotype of Hfe−/− male mice, a mouse model of human hemochromatosis, by using histomorphometry. Hfe−/− animals were sacrificed at 6 months and compared to controls. We found that bone contains excess iron associated with increased hepatic iron concentration in Hfe−/− mice. We have shown that animals with iron overload have decreased bone formation rate, suggesting a direct impact of iron excess on active osteoblasts number. For bone mass parameters, we showed that iron deposition was associated with bone loss by producing microarchitectural impairment with a decreased tendency in bone trabecular volume and trabecular number. A disorganization of trabecular network was found with marrow spaces increased, which was confirmed by enhanced trabecular separation and star volume of marrow spaces. These microarchitectural changes led to a loss of connectivity and complexity in the trabecular network, which was confirmed by decreased interconnectivity index and increased Minkowski’s fractal dimension. Our results suggest for the first time in a genetic hemochromatosis mouse model, that iron overload decreases bone formation and leads to alterations in bone mass and microarchitecture. These observations support a negative effect of iron on osteoblast recruitment and/or function, which may contribute to iron-related osteoporosis.  相似文献   

9.
Osteoblast development is a complex process involving the expression of specific growth factors and regulatory proteins that control cell proliferation, differentiation, and maturation. In this study, we used the rat mutation, osteopetrosis (op), to examine differences in skeletal gene expression between mutant op and normal littermates. Total RNA isolated from long bone and calvaria was used as a template for mRNA differential display. One of many cDNAs that were selectively expressed in either normal or mutant bone was cloned and sequenced and found to share some homology to the human nmb and Pmel 17 genes. This novel cDNA was named osteoactivin. Osteoactivin has an open reading frame of 1716 bp that encodes a protein of 572 amino acids with a predicted molecular weight of 63.8 kD. Protein sequence analysis revealed the presence of a signal peptide and a cleavage site at position 23. The protein also has thirteen predicted N-linked glycosylation sites and a potential RGD integrin recognition site at position 556. Northern blot analysis confirmed that osteoactivin was 3- to 4-fold overexpressed in op versus normal bone. RT-PCR analysis showed that osteoactivin is most highly expressed in bone compared with any of the other non-osseous tissues examined. In situ hybridization analysis of osteoactivin in normal bone revealed that it is primarily expressed in osteoblasts actively engaged in bone matrix production and mineralization. In primary rat osteoblast cultures, osteoactivin showed a temporal pattern of expression being expressed at highest levels during the later stages of matrix maturation and mineralization and correlated with the expression of alkaline phosphatase and osteocalcin. Our findings show that osteoactivin expression in bone is osteoblast-specific and suggest that it may play an important role in osteoblast differentiation and matrix mineralization. Furthermore, osteoactivin overexpression in op mutant bone may be secondary to the uncoupling of bone resorption and formation resulting in abnormalities in osteoblast gene expression and function.  相似文献   

10.
Bone is a complex dynamic tissue undergoing a continuous remodeling process. Gravity is a physical force playing a role in the remodeling and contributing to the maintenance of bone integrity. This article reports an investigation on the alterations of the bone microarchitecture that occurred in wild type (Wt) and pleiotrophin-transgenic (PTN-Tg) mice exposed to a near-zero gravity on the International Space Station (ISS) during the Mice Drawer System (MDS) mission, to date, the longest mice permanence (91 days) in space. The transgenic mouse strain over-expressing pleiotrophin (PTN) in bone was selected because of the PTN positive effects on bone turnover. Wt and PTN-Tg control animals were maintained on Earth either in a MDS payload or in a standard vivarium cage. This study revealed a bone loss during spaceflight in the weight-bearing bones of both strains. For both Tg and Wt a decrease of the trabecular number as well as an increase of the mean trabecular separation was observed after flight, whereas trabecular thickness did not show any significant change. Non weight-bearing bones were not affected. The PTN-Tg mice exposed to normal gravity presented a poorer trabecular organization than Wt mice, but interestingly, the expression of the PTN transgene during the flight resulted in some protection against microgravity's negative effects. Moreover, osteocytes of the Wt mice, but not of Tg mice, acquired a round shape, thus showing for the first time osteocyte space-related morphological alterations in vivo. The analysis of specific bone formation and resorption marker expression suggested that the microgravity-induced bone loss was due to both an increased bone resorption and a decreased bone deposition. Apparently, the PTN transgene protection was the result of a higher osteoblast activity in the flight mice.  相似文献   

11.
Runx2 has been identified as "a master gene" for the differentiation of osteoblasts and Runx2-deficient mice has demonstrated a complete absence of mature osteoblast and ossification. To further characterize the Runx2 responsive elements within the bone sialoprotein (BSP) promoter and further investigate into the role of Runx2 haploinsufficiency in osteoblast differentiation, mBSP9.0Luc mice and mBSP4.8Luc mice were crossed with Runx2-deficient mice respectively. Luciferase assay, micro CT scan, and histological analysis were performed using tissues isolated from mBSP9.0luc/Runx2+/- mice, mBSP4.8luc/Runx2+/- mice and their corresponding Runx2+/+ littermates. Alkaline phosphatase activity, mineralization assays and RT-PCR analysis using calvarial osteoblasts isolated from these transgenic mice were also performed. Luciferase assay demonstrated an early increase in luciferase expression in mBSP9.0luc/Runx2+/- mice before the expression level of luciferase dramatically decreased and turned lower than that in their control littermates in later stages. In contrast, luciferase expression in mBSP4.8luc/Runx2+/- failed to show such an early increase. Micro CT scan and histological analysis showed that BMD and trabecular bone volume were decreased and bone formation was delayed in Runx2+/- mice. Furthermore, mineralization assay and semi-quantitative RT-PCR assay demonstrated a gene-dose-dependent decrease in bone nodule formation and bone marker genes expression levels in cultured calvarial osteoblasts derived from Runx2 knockout mice. Reconstitution of Runx2-null cells with Runx2 vector partially rescued the osteoblast function defects. In conclusion, the 9.0 kb BSP promoter demonstrated a higher tissue-specific regulation of the BSP gene by Runx2 in vivo and full Runx2 gene dose is essential for osteoblast differentiation and normal bone formation.  相似文献   

12.
We have previously described osteoblast/osteocyte factor 45 (OF45), a novel bone-specific extracellular matrix protein, and demonstrated that its expression is tightly linked to mineralization and bone formation. In this report, we have cloned and characterized the mouse OF45 cDNA and genomic region. Mouse OF45 (also called MEPE) was similar to its rat orthologue in that its expression was increased during mineralization in osteoblast cultures and the protein was highly expressed within the osteocytes that are imbedded within bone. To further determine the role of OF45 in bone metabolism, we generated a targeted mouse line deficient in this protein. Ablation of OF45 resulted in increased bone mass. In fact, disruption of only a single allele of OF45 caused significantly increased bone mass. In addition, knockout mice were resistant to aging-associated trabecular bone loss. Cancellous bone histomorphometry revealed that the increased bone mass was the result of increased osteoblast number and osteoblast activity with unaltered osteoclast number and osteoclast surface in knockout animals. Consistent with the bone histomorphometric results, we also determined that OF45 knockout osteoblasts produced significantly more mineralized nodules in ex vivo cell cultures than did wild type osteoblasts. Osteoclastogenesis and bone resorption in ex vivo cultures was unaffected by OF45 mutation. We conclude that OF45 plays an inhibitory role in bone formation in mouse.  相似文献   

13.
To investigate the role of G protein-coupled receptor kinases (GRKs) in regulating bone formation in vivo, we overexpressed the potent G protein-coupled receptor (GPCR) regulator GRK2 in osteoblasts, using the osteocalcin gene-2 promoter to target expression to osteoblastic cells. Using the parathyroid hormone (PTH) receptor as a model system, we found that overexpression of GRK2 in osteoblasts attenuated PTH-induced cAMP generation by mouse calvaria ex vivo. This decrease in GPCR responsiveness was associated with a reduction in bone mineral density (BMD) in transgenic (TG) mice compared with non-TG littermate controls. The decrease in BMD was most prominent in trabecular-rich lumbar spine and was not observed in cortical bone of the femoral shaft. Quantitative computed tomography indicated that the loss of trabecular bone was due to a decrease in trabecular thickness, with little change in trabecular number. Histomorphometric analyses confirmed the decrease in trabecular bone volume and demonstrated reduced bone remodeling, as evidenced by a decrease in osteoblast numbers and osteoblast-mediated bone formation. Osteoclastic activity also appeared to be reduced because urinary excretion of the osteoclastic activity marker deoxypyridinoline was decreased in TG mice compared with control animals. Consistent with reduced coupling of osteoblast-mediated bone formation to osteoclastic bone resorption, mRNA levels of both osteoprotegrin and receptor activator of NF-kappaB ligand were altered in calvaria of TG mice in a pattern that would promote a low rate of bone remodeling. Taken together, these data suggest that enhancing GRK2 activity and consequently reducing GPCR activity in osteoblasts produces a low bone-turnover state that reduces bone mass.  相似文献   

14.
GPR54 is a G-protein-coupled receptor that displays a high percentage of identity in the transmembrane domains with the galanin receptors. The ligand for GPR54 has been identified as a peptide derived from the KiSS-1 gene. KiSS-1 has been shown to have anti-metastatic effects, suggesting that KiSS-1 or its receptor represents a potential therapeutic target. To further our understanding of the physiological function of this receptor, we have generated a mutant mouse line with a targeted disruption of the GPR54 receptor (GPR54 -/-). The analysis of the GPR54 mutant mice revealed developmental abnormalities of both male and female genitalia and histopathological changes in tissues which normally contain sexually dimorphic features. These data suggest a role for GPR54/KiSS-1 in normal sexual development, and indicate that study of the GPR54 mutant mice may provide valuable insights into human reproductive syndromes.  相似文献   

15.
Insulin-like growth factor-binding protein 2 (IGFBP-2) is a member of a family of six highly conserved IGFBPs that are carriers for the insulin-like growth factors (IGFs). IGFBP-2 levels rise during rapid neonatal growth and at the time of peak bone acquisition. In contrast, Igfbp2(-/-) mice have low bone mass accompanied by reduced osteoblast numbers, low bone formation rates, and increased PTEN expression. In the current study, we postulated that IGFBP-2 increased bone mass partly through the activity of its heparin-binding domain (HBD). We synthesized a HBD peptide specific for IGFBP-2 and demonstrated in vitro that it rescued the mineralization phenotype of Igfbp2(-/-) bone marrow stromal cells and calvarial osteoblasts. Consistent with its cellular actions, the HBD peptide ex vivo stimulated metacarpal periosteal expansion. Furthermore, administration of HBD peptide to Igfbp2(-/-) mice increased osteoblast number, suppressed marrow adipogenesis, restored trabecular bone mass, and reduced bone resorption. Skeletal rescue in the Igfbp2(-/-) mice was characterized by reduced PTEN expression followed by enhanced Akt phosphorylation in response to IGF-I and increased β-catenin signaling through two mechanisms: 1) stimulation of its cytosolic accumulation and 2) increased phosphorylation of serine 552. We conclude that the HBD peptide of IGFBP-2 has anabolic activity by activating IGF-I/Akt and β-catenin signaling pathways. These data support a growing body of evidence that IGFBP-2 is not just a transport protein but rather that it functions coordinately with IGF-I to stimulate growth and skeletal acquisition.  相似文献   

16.
Over-expression of human FGF-2 cDNA linked to the phosphoglycerate kinase promoter in transgenic (TgFGF2) mice resulted in a dwarf mouse with premature closure of the growth plate and shortening of bone length. This study was designed to further characterize bone structure and remodeling in these mice. Bones of 1-6 month-old wild (NTg) and TgFGF2 mice were studied. FGF-2 protein levels were higher in bones of TgFGF2 mice. Bone mineral density was significantly decreased as early as 1 month in femurs from TgFGF2 mice compared with NTg mice. Micro-CT of trabecular bone of the distal femurs from 6-month-old TgFGF2 mice revealed significant reduction in trabecular bone volume, trabecular number (Tb.N), and increased trabecular separation (Tb.Sp). Osteoblast surface/bone surface, double-labeled surface, mineral apposition rate, and bone formation rates were all significantly reduced in TgFGF2 mice. There were fewer TRAP positive osteoclasts in calvaria from TgFGF2 mice. Quantitative histomorphometry showed that total bone area was similar in both genotypes, however percent osteoclast surface, and osteoclast number/bone surface were significantly reduced in TgFGF2 mice. Increased replication of TgFGF2 calvarial osteoblasts was observed and primary cultures of bone marrow stromal cells from TgFGF2 expressed markers of mature osteoblasts but formed fewer mineralized nodules. The data presented indicate that non-targeted over-expression of FGF-2 protein resulted in decreased endochondral and intramembranous bone formation. These results are consistent with FGF-2 functioning as a negative regulator of postnatal bone growth and remodeling in this animal model.  相似文献   

17.
Mutations in the human 25-hydroxyvitamin-D(3)-1alpha-hydroxylase (CYP27B1) gene cause pseudo vitamin D deficiency rickets (PDDR). The kidney is the main site of expression of the CYP27B1 gene, but expression has been documented in other cell types, including chondrocytes. We engineered a tissue-specific and a conventional knockout of CYP27B1 in mice. The conventional knockout strain reproduced the PDDR phenotype. Homozygote mutant animals were treated with 1,25(OH)(2)D(3) or fed a high-calcium diet (2% calcium, 1.25% phosphate, 20% lactose) for 5 weeks post-weaning. Blood biochemistry revealed that both rescue treatments corrected the hypocalcemia and secondary hyperparathyroidism. Bone histomorphometry confirmed that rickets were cured. The rescue regimen restored the biomechanical properties of the bone tissue. Mice carrying the loxP-bearing allele were bred to transgenic animals expressing the Cre recombinase in chondrocytes under the control of the collagen type II promoter. Genotyping confirmed excision of exon 8 in chondrocytes. Serum biochemistry revealed that mineral ion homeostasis is normal in mutant animals. Preliminary observation of bone tissue from mutant mice did not reveal major changes to the growth plate. Precise histomorphometric analysis will be required to assess the impact of chondrocyte-specific inactivation of CYP27B1 on the maturation and function of growth plate cells in vivo.  相似文献   

18.
Parathyroid hormone (PTH) is an important regulator of osteoblast function and is the only anabolic therapy currently approved for treatment of osteoporosis. The PTH receptor (PTH1R) is a G protein-coupled receptor that signals via multiple G proteins including Gsα. Mice expressing a constitutively active mutant PTH1R exhibited a dramatic increase in trabecular bone that was dependent upon expression of Gsα in the osteoblast lineage. Postnatal removal of Gsα in the osteoblast lineage (P-GsαOsxKO mice) yielded markedly reduced trabecular and cortical bone mass. Treatment with anabolic PTH(1–34) (80 μg/kg/day) for 4 weeks failed to increase trabecular bone volume or cortical thickness in male and female P-GsαOsxKO mice. Surprisingly, in both male and female mice, PTH administration significantly increased osteoblast numbers and bone formation rate in both control and P-GsαOsxKO mice. In mice that express a mutated PTH1R that activates adenylyl cyclase and protein kinase A (PKA) via Gsα but not phospholipase C via Gq/11 (D/D mice), PTH significantly enhanced bone formation, indicating that phospholipase C activation is not required for increased bone turnover in response to PTH. Therefore, although the anabolic effect of intermittent PTH treatment on trabecular bone volume is blunted by deletion of Gsα in osteoblasts, PTH can stimulate osteoblast differentiation and bone formation. Together these findings suggest that alternative signaling pathways beyond Gsα and Gq/11 act downstream of PTH on osteoblast differentiation.  相似文献   

19.
Runx2 transcribes Runx2-II and Runx2-I isoforms with distinct N-termini. Deletion of both isoforms results in complete arrest of bone development, whereas selective loss of Runx2-II is sufficient to form a grossly intact skeleton with impaired endochondral bone development. To elucidate the role of Runx2-II in osteoblast function in adult mice, we examined heterozygous Runx2-II (Runx2-II(+/-)) and homozygous Runx2-II (Runx2-II(-/-))-deficient mice, which, respectively, lack one or both copies of Runx2-II but intact Runx2-I expression. Compared to wild-type mice, 6-week-old Runx2-II(+/-) had reduced trabecular bone volume (BV/TV%), cortical thickness (Ct.Th), and bone mineral density (BMD), decreased osteoblastic and osteoclastic markers, lower bone formation rates, impaired osteoblast maturation of BMSCs in vitro, and significant reductions in mechanical properties. Homozygous Runx2-II(-/-) mice had a more severe reduction in BMD, BV/TV%, and Ct.Th, and greater suppression of osteoblastic and osteoclastic markers than Runx2-II(+/-) mice. Non-selective Runx2(+/-) mice, which have an equivalent reduction in Runx2 expression due to the lack one copy of Runx2-I and II, however, had an intermediate reduction in BMD. Thus, selective Runx2-II mutation causes diminished osteoblastic function in an adult mouse leading to low-turnover osteopenia and suggest that Runx2-I and II have distinct functions imparted by their different N-termini.  相似文献   

20.
The commonly used preclinical animal model of postmenopausal osteoporosis is the mature ovariectomized rat, whereby cessation of ovarian oestrogen production consequently results in bone volume reduction. The study aim was to precisely define the time course of structural changes resulting from ovariectomy and thereby reduce the time animals have to be treated to judge the effects of osteoporosis treatment. For this purpose, we assessed architectural changes by microcomputed tomography (μCT) during 10 weeks following ovariectomy or sham surgery at two-week intervals. Moreover, the trabecular microarchitecture of the lumbar vertebrae was assessed after necropsy. Besides this, serum biomarkers of bone turnover were determined. These data were in a new approach additionally correlated to femur mRNA expression profiles. We selected the osteoblast marker genes osteocalcin and type I collagen as well as the two osteoclast marker genes cathepsin k and tartrate-resistant acid phosphatase 5. The gene expression analysis suggested an activation of osteoblasts as well as octeoclasts. The significantly induced serum levels of osteocalcin and collagen degradation fragments also revealed this higher rate of bone turnover. Our results indicate that as soon as four weeks after ovariectomy the bone volume fraction exhibited a decline of 30% and 50% of the connectivity density. In addition, significant decreases of trabecular number and thickness as well as of the bone volume fraction were only observed in vertebrae of ovariectomized animals. Interestingly, changes of trabecular morphology were also found in the sham animals as a consequence of senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号