首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Rhesus macaques chronically infected with highly pathogenic simian immunodeficiency virus (SIV) SIVmac251 were treated with antiretroviral drugs and vaccinated with combinations of DNA vectors expressing SIV antigens. Vaccination during therapy increased cellular immune responses. After the animals were released from therapy, the virus levels of 12 immunized animals were significantly lower (P = 0.001) compared to those of 11 animals treated with only antiretroviral drugs. Vaccinated animals showed a persistent increase in immune responses, thus indicating both a virological and an immunological benefit following DNA therapeutic vaccination. Several animals show a long-lasting decrease in viremia, suggesting that therapeutic vaccination may provide an additional benefit to antiretroviral therapy.  相似文献   

2.
There is an urgent need for active immunization strategies that, if administered shortly after birth, could protect infants in developing countries from acquiring human immunodeficiency virus (HIV) infection through breast-feeding. Better knowledge of the immunogenic properties of vaccine candidates in infants and of the effect of maternal antibodies on vaccine efficacy will aid in the development of such a neonatal HIV vaccine. Simian immunodeficiency virus (SIV) infection of infant macaques is a useful animal model of pediatric HIV infection with which to address these questions. Groups of infant macaques were immunized at birth and 3 weeks of age with either modified vaccinia virus Ankara (MVA) expressing SIV Gag, Pol, and Env (MVA-SIVgpe) or live-attenuated SIVmac1A11. One MVA-SIVgpe-immunized group had maternally derived anti-SIV antibodies prior to immunization. Animals were challenged orally at 4 weeks of age with a genetically heterogeneous stock of virulent SIVmac251. Although all animals became infected, the immunized animals mounted better antiviral antibody responses, controlled virus levels more effectively, and had a longer disease-free survival than the unvaccinated infected monkeys. Maternal antibodies did not significantly reduce the efficacy of the MVA-SIVgpe vaccine. In conclusion, although the tested vaccines delayed the onset of AIDS, further studies are warranted to determine whether a vaccine that elicits stronger early immune responses at the time of virus exposure may be able to prevent viral infection or AIDS in infants.  相似文献   

3.
Cell-mediated immunity and neutralizing antibodies contribute to control of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) infection, but the role of nonneutralizing antibodies is not defined. Previously, we reported that sequential oral/oral or intranasal/oral (I/O) priming with replication-competent adenovirus type 5 host range mutant (Ad5hr)-SIV recombinants, followed by intramuscular envelope protein boosting, elicited systemic and mucosal cellular immunity and exhibited equivalent, significant reductions of chronic viremia after rectal SIVmac251 challenge. However, I/O priming gave significantly better control of acute viremia. Here, systemic and mucosal humoral immunity were investigated for potential correlates with the acute challenge outcome. Strong serum binding but nonneutralizing antibody responses against SIVmac251 were induced in both groups. Antibody responses appeared earlier and overall were higher in the I/O group. Reduced acute viremia was significantly correlated with higher serum binding titer, stronger antibody-dependent cellular cytotoxicity activity, and peak prechallenge and 2-week-postchallenge antibody-dependent cell-mediated viral inhibition (ADCVI). The I/O group consistently displayed greater anti-envelope immunoglobulin A (IgA) antibody responses in bronchoalveolar lavage and a stronger rectal anti-envelope IgA anamnestic response 2 weeks postchallenge. Pre- and postchallenge rectal secretions inhibited SIV transcytosis across epithelial cells. The inhibition was significantly higher in the I/O group, although a significant correlation with reduced acute viremia was not reached. Overall, the replicating Ad5hr-SIV priming/envelope boosting approach elicited strong systemic and mucosal antibodies with multiple functional activities. The pattern of elevated immune responses in the I/O group is consistent with its better control of acute viremia mediated, at least in part, by ADCVI activity and transcytosis inhibition.  相似文献   

4.
Although live attenuated vaccines can provide potent protection against simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus challenges, the specific immune responses that confer this protection have not been determined. To test whether cellular immune responses mediated by CD8+ lymphocytes contribute to this vaccine-induced protection, we depleted rhesus macaques vaccinated with the live attenuated virus SIVmac239Delta3 of CD8+ lymphocytes and then challenged them with SIVmac251 by the intravenous route. While vaccination did not prevent infection with the pathogenic challenge virus, the postchallenge levels of virus in the plasmas of vaccinated control animals were significantly lower than those for unvaccinated animals. The depletion of CD8+ lymphocytes at the time of challenge resulted in virus levels in the plasma that were intermediate between those of the vaccinated and unvaccinated controls, suggesting that CD8+ cell-mediated immune responses contributed to protection. Interestingly, at the time of challenge, animals expressing the Mamu-A*01 major histocompatibility complex class I allele showed significantly higher frequencies of SIV-specific CD8+ T-cell responses and lower neutralizing antibody titers than those in Mamu-A*01- animals. Consistent with these findings, the depletion of CD8+ lymphocytes abrogated vaccine-induced protection, as judged by the peak postchallenge viremia, to a greater extent in Mamu-A*01+ than in Mamu-A*01- animals. The partial control of postchallenge viremia after CD8+ lymphocyte depletion suggests that both humoral and cellular immune responses induced by live attenuated SIV vaccines can contribute to protection against a pathogenic challenge and that the relative contribution of each of these responses to protection may be genetically determined.  相似文献   

5.
The efficacy of two SIV DNA plus recombinant modified vaccinia virus Ankara nasal vaccine regimens, one combined with plasmids expressing IL-2 and IL-15, the other with plasmids expressing GM-CSF, IL-12, and TNF-α, which may better stimulate humoral responses, was evaluated in two female rhesus macaque groups. Vaccination stimulated significant SIV-specific mucosal and systemic cell-mediated immunity in both groups, whereas SIV-specific IgA titers were sporadic and IgG titers negative. All vaccinated animals, except one, became infected after intravaginal SIV(mac251) low-dose challenge. Half of the vaccinated, infected animals (7/13) promptly controlled virus replication to undetectable viremia for the duration of the trial (130 wk) and displayed virological and immunological phenotypes similar to those of exposed, uninfected individuals. When all vaccinated animals were considered, a 3-log viremia reduction was observed, compared with controls. The excellent viral replication containment achieved in vaccinated animals translated into significant preservation of circulating α4β7(high+)/CD4(+) T cells and of circulating and mucosal CD4(+)/C(M) T cells and in reduced immune activation. A more significant long-term survival was also observed in these animals. Median survival was 72 wk for the control group, whereas >50% of the vaccinated animals were still disease free 130 wk postchallenge, when the trial was closed. There was a statistically significant correlation between levels of CD4(+)/IFN-γ(+) and CD8(+)/IFN-γ(+) T cell percentages on the day of challenge and the control of viremia at week 60 postchallenge or survival. Postchallenge immunological correlates of protection were systemic anti-SIV Gag + Env CD4(+)/IL-2(+), CD4(+)/IFN-γ(+), and CD8(+)/TNF-α(+) T cells and vaginal anti-SIV Gag + Env CD8(+) T cell total monofunctional responses.  相似文献   

6.
Localization of virion-associated protein x (Vpx) of SIVmac251 was studied in lymph nodes and liver of six SIVmac-infected monkeys. Vpx was found associated with the network of follicular dendritic cells and macrophages in lymph nodes and/or livers from five out of six animals by immunohistochemistry. Although the humoral response to Vpx occurs in only 50% of the animals, the presence of Vpx in target cell or antibodies to Vpx in all the monkeys studied, suggests that Vpx may be necessary for viral replication in vivo.  相似文献   

7.
Previously, combination DNA/nonreplicating adenovirus (Ad)- or poxvirus-vectored vaccines have strongly protected against SHIV(89.6P), DNAs expressing cytokines have modulated immunity elicited by DNA vaccines, and replication-competent Ad-recombinant priming and protein boosting has strongly protected against simian immunodeficiency virus (SIV) challenge. Here we evaluated a vaccine strategy composed of these promising components. Seven rhesus macaques per group were primed twice with multigenic SIV plasmid DNA with or without interleukin-12 (IL-12) DNA or IL-15 DNA. After a multigenic replicating Ad-SIV immunization, all groups received two booster immunizations with SIV gp140 and SIV Nef protein. Four control macaques received control DNA plasmids, empty Ad vector, and adjuvant. All vaccine components were immunogenic, but the cytokine DNAs had little effect. Macaques that received IL-15-DNA exhibited higher peak anti-Nef titers, a more rapid anti-Nef anamnestic response postchallenge, and expanded CD8(CM) T cells 2 weeks postchallenge compared to the DNA-only group. Other immune responses were indistinguishable between groups. Overall, no protection against intrarectal challenge with SIV(mac251) was observed, although immunized non-Mamu-A*01 macaques as a group exhibited a statistically significant 1-log decline in acute viremia compared to non-Mamu-A*01 controls. Possible factors contributing to the poor outcome include administration of cytokine DNAs to sites different from the Ad recombinants (intramuscular and intratracheal, respectively), too few DNA priming immunizations, a suboptimal DNA delivery method, failure to ensure delivery of SIV and cytokine plasmids to the same cell, and instability and short half-life of the IL-15 component. Future experiments should address these issues to determine if this combination approach is able to control a virulent SIV challenge.  相似文献   

8.
Pigtail macaques (PTM) are an excellent model for HIV research; however, the dynamics of simian immunodeficiency virus (SIV) SIVmac239 infection in PTM have not been fully evaluated. We studied nine PTM prior to infection, during acute and chronic SIVmac239 infections, until progression to AIDS. We found PTM manifest clinical AIDS more rapidly than rhesus macaques (RM), as AIDS-defining events occurred at an average of 42.17 weeks after infection in PTM compared to 69.56 weeks in RM (P = 0.0018). However, increased SIV progression was not associated with increased viremia, as both peak and set-point plasma viremias were similar between PTM and RM (P = 0.7953 and P = 0.1006, respectively). Moreover, this increased disease progression was not associated with rapid CD4(+) T cell depletion, as CD4(+) T cell decline resembled other SIV/human immunodeficiency virus (HIV) models. Since immune activation is the best predictor of disease progression during HIV infection, we analyzed immune activation by turnover of T cells by BrdU decay and Ki67 expression. We found increased levels of turnover prior to SIV infection of PTM compared to that observed with RM, which may contribute to their increased disease progression rate. These data evaluate the kinetics of SIVmac239-induced disease progression and highlight PTM as a model for HIV infection and the importance of immune activation in SIV disease progression.  相似文献   

9.
D Binninger  J Ennen  D Bonn  S G Norley    R Kurth 《Journal of virology》1991,65(10):5237-5243
We are using site-directed mutagenesis of single viral genes to identify and analyze the genetic determinants of human and simian immunodeficiency virus pathogenicity. In a first approach, we have constructed a series of simian immunodeficiency virus SIVmac nef mutants by partial deletion and insertions in the nef gene, as this gene is a candidate gene for the establishment and maintenance of latency. nef insertion mutants replicated faster than wild-type SIVmac, suggesting that the nef gene product acts as a negative factor for replication. Surface phenotyping revealed that cultures permanently infected with nef mutants exhibit an enhanced expression of viral proteins on the outer cell surface. We have analyzed the properties of the mutant viruses in cell culture and intend to use rapidly replicating mutants (putatively unable to undergo latency) as model vaccine viruses in the rhesus monkey.  相似文献   

10.
The regulatory proteins of human immunodeficiency virus may represent important vaccine targets. Here we assessed the role of Tat-specific cytotoxic T lymphocytes (CTL) in controlling pathogenic simian immunodeficiency virus SIVmac239 replication after using a DNA-prime, vaccinia virus Ankara-boost vaccine regimen. Despite the induction of Tat-specific CTL, there was no significant reduction in either peak or viral set point compared to that of controls.  相似文献   

11.
By superinfection of human immunodeficiency virus type 2 (HIV-2) strain HIV-2ben-infected macaques with simian immunodeficiency virus (SIV) strain SIVmac, we investigated the mutual influences of an apathogenic and a pathogenic virus in vivo. Four rhesus and two cynomolgus monkeys were infected with HIV-2ben in 1988 and 1989, respectively. Virus could be reisolated from five of six animals 6 weeks after infection. The monkeys remained healthy over the next 2 to 3 years. PCR for viral RNA became negative, and virus could no longer be reisolated by coculture. All six macaques were superinfected with the pathogenic SIVmac251/32H. Subsequently, five monkeys became persistently viremic, while one animal was protected against the SIVmac infection. In the peripheral blood mononuclear cells and cocultures of the five viremic animals, DNA from both HIV-2 and SIVmac was present. The plasma contained RNA from both viruses. Thus, superinfection with SIVmac activated HIV-2. A proliferative T-cell response against both HIV-2 and SIVmac was measured in all animals after superinfection. Such a response was regularly seen after infection with the apathogenic HIV-2 but never when the pathogenic SIVmac alone was administered. While naive control monkeys inoculated with SIVmac251/32H regularly develop AIDS-like symptoms soon after infection and have to be killed, none of the preinfected animals has developed AIDS-like symptoms, but two of six animals developed tumors. After the SIVmac challenge, however, apoptotic lymphocytes were detected in the peripheral blood mononuclear cells of all animals. Thus, the presence of an apathogenic viral variant seems to retard the disease occurring after infection with a pathogenic virus rather than to confirm total protection. This partial protection appears to depend on a specific proliferative T-cell response early after infection.  相似文献   

12.
Human cell lines were infected with different strains of human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) as well as with a simian immunodeficiency virus SIVmac isolate and used as targets in an antibody-dependent cellular cytotoxicity (ADCC) assay. Sera from HIV-1- or HIV-2-infected subjects provided the antibody, and lymphocytes from normal donors provided the effector cells. About 60% of HIV-1 antibody-positive sera mediated ADCC when tested against any given HIV-1 isolate-infected target cell (human T-cell lymphotropic virus type IIIB, B40, A2587), and about 75% of HIV-2 antibody-positive sera mediated ADCC when tested against target cells infected with HIV-2 isolates (lymphadenopathy-associated virus type 2 and SBL-6669) or simian immunodeficiency virus from macaques. Within each type, individual sera showed different reactivity patterns, and the probability that a serum was ADCC positive was higher when it was tested against several strains. When the ADCC reactivity of sera against different strains was compared, diversity as detected by ADCC appeared to be greater among HIV-1 strains than among HIV-2 strains. For HIV-1, 54 to 67% of the sera gave concordant ADCC reactions, whereas for HIV-2 and SIVmac, 91% of the sera gave concordant results. Almost no strain-specific differences were seen between SBL-6669 and lymphadenopathy-associated virus type 2. As we determined previously, HIV-1 and HIV-2 did not cross-react in ADCC. The results indicated that HIV-1 and HIV-2 antibody-positive sera mediate both strain- and type-specific ADCC. HIV-2 antibody-positive sera seem to mediate ADCC with broader reactivity and to a higher frequency compared with HIV-1 antibody-positive sera.  相似文献   

13.
The role of the simian immunodeficiency virus (SIV) nef gene in viral replication was investigated in several tissue culture systems. SIVmac1A11 is a molecularly cloned virus which replicates in both peripheral blood mononuclear cells (PBMC) and macrophages, although no disease is observed in infected rhesus macaques. In this report, we demonstrate that SIVmac1A11 contains a full open reading frame for nef which specifies a 37-kDa protein. To investigate the effects of nef on viral replication, a 70-bp deletion was introduced into the nef gene of SIVmac1A11. Analysis of infected cell extracts by immunoblotting revealed that both SIVmac1A11 and nef deletion virus SIVmac1A11 delta nef produced the same viral proteins, except that Nef was absent in the mutant virus. The deletion mutation did not affect viral replication in PBMC, in monocyte-derived and alveolar macrophages obtained from rhesus macaques, and in human cell lines HUT-78 and CEMx-174. In addition, SIVmac1A11 and SIVmac1A11 delta nef exhibited similar patterns of cytopathologic changes and ultrastructural appearances in infected cells. SIVmac1A11 and SIVmac1A11 delta nef did not infect human tumor macrophage cell line U937, GCT, THP-1, or HL-60 cells, although virus was produced after these cells were transfected with either wild-type or nef mutant viral DNA. Similar levels of virus were recovered from U937 and THP-1 cells transfected with mutant and parental proviral DNAs. In transient expression assays in a T-cell line and a macrophage line, the nef protein of SIVmac1A11 did not significantly suppress or enhance expression of the chloramphenicol acetyltransferase reporter gene linked to the SIVmac long terminal repeat. Thus, abrogation of nef did not affect several in vitro properties of SIVmac1A11, including patterns of viral infection in rhesus PBMC, rhesus macrophages, or human T-cell lines.  相似文献   

14.
The loss of CD4(+) T cells and the impairment of CD8(+) T cell function in HIV infection suggest that pharmacological treatment with IL-7 and IL-15, cytokines that increase the homeostatic proliferation of T cells and improve effector function, may be beneficial. However, these cytokines could also have a detrimental effect in HIV-1-infected individuals, because both cytokines increase HIV replication in vitro. We assessed the impact of IL-7 and IL-15 treatment on viral replication and the immunogenicity of live poxvirus vaccines in SIV(mac251)-infected macaques (Macaca mulatta). Neither cytokine augmented the frequency of vaccine-expanded CD4(+) or CD8(+) memory T cells, clonal recruitment to the SIV-specific CD8(+) T cell pool, or CD8(+) T cell function. Vaccination alone transiently decreased the viral set point following antiretroviral therapy suspension. IL-15 induced massive proliferation of CD4(+) effector T cells and abrogated the ability of vaccination to decrease set point viremia. In contrast, IL-7 neither augmented nor decreased the vaccine effect and was associated with a decrease in TGF-beta expression. These results underscore the importance of testing immunomodulatory approaches in vivo to assess potential risks and benefits for HIV-1-infected individuals.  相似文献   

15.
Although gamma interferon (IFN-gamma) is a key mediator of antiviral defenses, it is also a mediator of inflammation. As inflammation can drive lentiviral replication, we sought to determine the relationship between IFN-gamma-related host immune responses and challenge virus replication in lymphoid tissues of simian-human immunodeficiency virus 89.6 (SHIV89.6)-vaccinated and unvaccinated rhesus macaques 6 months after challenge with simian immunodeficiency virus SIVmac239. Vaccinated-protected monkeys had low tissue viral RNA (vRNA) levels, vaccinated-unprotected animals had moderate tissue vRNA levels, and unvaccinated animals had high tissue vRNA levels. The long-term challenge outcome in vaccinated monkeys was correlated with the relative balance between SIV-specific IFN-gamma T-cell responses and nonspecific IFN-gamma-driven inflammation. Vaccinated-protected monkeys had slightly increased tissue IFN-gamma mRNA levels and a high frequency of IFN-gamma-secreting T cells responding to in vitro SIVgag peptide stimulation; thus, it is likely that they could develop effective anti-SIV cytotoxic T lymphocytes in vivo. In contrast, both high tissue IFN-gamma mRNA levels and strong in vitro SIV-specific IFN-gamma T-cell responses were detected in lymphoid tissues of vaccinated-unprotected monkeys. Unvaccinated monkeys had increased tissue IFN-gamma mRNA levels but weak in vitro anti-SIV IFN-gamma T-cell responses. In addition, in lymphoid tissues of vaccinated-unprotected and unvaccinated monkeys, the increased IFN-gamma mRNA levels were associated with increased Mig/CXCL9, IP-10/CXCL10, and CXCR3 mRNA levels, suggesting that increased Mig/CXCL9 and IP-10/CXCL10 expression resulted in recruitment of CXCR3(+) activated T cells. Thus, IFN-gamma-driven inflammation promotes SIV replication in vaccinated-unprotected and unvaccinated monkeys. Unlike all unvaccinated monkeys, most monkeys vaccinated with SHIV89.6 did not develop IFN-gamma-driven inflammation, but they did develop effective antiviral CD8(+)-T-cell responses.  相似文献   

16.
The prophylactic efficacy of DNA and replication-incompetent adenovirus serotype 5 (Ad5) vaccine vectors expressing simian immunodeficiency virus (SIV) Gag was examined in rhesus macaques using an SIVmac239 challenge. Cohorts of either Mamu-A*01(+) or Mamu-A*01(-) macaques were immunized with a DNA prime-Ad5 boost regimen; for comparison, a third cohort consisting of Mamu-A*01(+) monkeys was immunized using the Ad5 vector alone for both prime and boost. All animals, along with unvaccinated control cohorts of Mamu-A*01(+) and Mamu-A*01(-) macaques, were challenged intrarectally with SIVmac239. Viral loads were measured in both peripheral and lymphoid compartments. Only the DNA prime-Ad5-boosted Mamu-A*01(+) cohort exhibited a notable reduction in peak plasma viral load (sevenfold) as well as in early set-point viral burdens in both plasma and lymphoid tissues (10-fold) relative to those observed in the control monkeys sharing the same Mamu-A*01 allele. The degree of control in each animal correlated with the levels of Gag-specific immunity before virus challenge. However, virus control was short-lived, and indications of viral escape were evident as early as 6 months postinfection. The implications of these results in vaccine design and clinical testing are discussed.  相似文献   

17.
The goal of an AIDS vaccine regimen designed to induce cellular immune responses should be to reduce the viral set point and preserve memory CD4 lymphocytes. Here we investigated whether vaccine-induced cellular immunity in the absence of any Env-specific antibodies can control viral replication following multiple low-dose challenges with the highly pathogenic SIVmac239 isolate. Eight Mamu-A*01-positive Indian rhesus macaques were vaccinated with simian immunodeficiency virus (SIV) gag, tat, rev, and nef using a DNA prime-adenovirus boost strategy. Peak viremia (P = 0.007) and the chronic phase set point (P = 0.0192) were significantly decreased in the vaccinated cohort, out to 1 year postinfection. Loss of CD4(+) memory populations was also ameliorated in vaccinated animals. Interestingly, only one of the eight vaccinees developed Env-specific neutralizing antibodies after infection. The control observed was significantly improved over that observed in animals vaccinated with SIV gag only. Vaccine-induced cellular immune responses can, therefore, exert a measure of control over replication of the AIDS virus in the complete absence of neutralizing antibody and give us hope that a vaccine designed to induce cellular immune responses might control viral replication.  相似文献   

18.
Further advances are required in understanding protection from AIDS by T-cell immunity. We analyzed a set of multigenic simian/human immunodeficiency virus (SHIV) DNA and fowlpox virus priming and boosting vaccines for immunogenicity and protective efficacy in outbred pigtail macaques. The number of vaccinations required, the effect of DNA vaccination alone, and the effect of cytokine (gamma interferon) coexpression by the fowlpox virus boost was also studied. A coordinated induction of high levels of broadly reactive CD4 and CD8 T-cell immune responses was induced by sequential DNA and fowlpox virus vaccination. The immunogenicity of regimens utilizing fowlpox virus coexpressing gamma interferon, a single DNA priming vaccination, or DNA vaccines alone was inferior. Significant control of a virulent SHIV challenge was observed despite a loss of SHIV-specific proliferating T cells. The outcome of challenge with virulent SHIV(mn229) correlated with vaccine immunogenicity except that DNA vaccination alone primed for protection almost as effectively as the DNA/fowlpox virus regimen despite negligible immunogenicity by standard assays. These studies suggest that priming of immunity with DNA and fowlpox virus vaccines could delay AIDS in humans.  相似文献   

19.
The ability of two vaccine preparations (UV-psoralen inactivated SIV administered intramuscularly and live-attenuated SIV inoculated intravaginally) to prevent genital transmission of virulent SIV in rhesus macaques was tested. Two of six whole-inactivated SIV vaccinated macaques, three of five live-attenuated SIV vaccinated macaques, and four of six controls became persistently infected after two separate intravaginal inoculations with a 50% animal infectious dose of virulent SIV. No association was observed between levels of SIV-specific antibodies in serum or vaginal secretions prior to challenge and subsequent infection with virulent SIV.  相似文献   

20.
Simian immunodeficiency virus (SIV), a lymphocytopathic lentivirus, induces an AIDS-like disease in rhesus macaques (Macaca mulatta). A pathogenic molecular clone of rhesus macaque SIV (SIVmac), SIVmac-239, replicates and induces cytopathology in T lymphocytes but is restricted for replication in macrophages. In contrast, a nonpathogenic molecular clone of SIVmac, SIVmac-1A11, replicates and induces syncytia (multinucleated giant cells) in cultures of both T lymphocytes and macrophages. SIVmac-1A11 does not cause disease in macaques. To map the viral determinants of macrophage tropism, reciprocal recombinant genomes were constructed between molecular clones of SIVmac-239 and SIVmac-1A11. Infectious recombinant viruses were rescued by transfection of cloned viral genomes into permissive lymphoid cells. Analysis of one pair of reciprocal recombinants revealed that an internal 6.2-kb DNA fragment of SIVmac-1A11 was necessary and sufficient for both syncytium formation and efficient replication in macrophages. This region includes the coding sequences for a portion of the gag gene, all of the pol, vif, vpr, and vpx genes, the first coding exons of tat and rev, and the external env glycoprotein gp130. Thus, the transmembrane glycoprotein of env, the nef gene, the second coding exons of tat and rev, and the long terminal repeats are not essential for in vitro macrophage tropism. Analysis of additional recombinants revealed that syncytium formation, but not virus production, was controlled by a 1.4-kb viral DNA fragment in SIVmac-1A11 encoding only the external env glycoprotein gp130. Thus, gp130 env of SIVmac-1A11 is necessary for entry of virus into macrophages but is not sufficient for a complete viral replication cycle in this cell type. We therefore conclude that gp130 env and one or more genetic elements (exclusive of the long terminal repeats, transmembrane glycoprotein of env, and second coding exons of tat and rev, and nef) are essential for a complete replication cycle of SIVmac in rhesus macaque macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号