首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The cytoplasmic helix domain (fourth cytoplasmic loop, helix 8) of numerous GPCRs such as rhodopsin and the beta-adrenergic receptor exhibits unique structural and functional characteristics. Computational models also predict the existence of such a structural motif within the CB1 cannabinoid receptor, another member of the G-protein coupled receptor superfamily. To gain insights into the conformational properties of this GPCR component, a peptide corresponding to helix 8 of the CB1 receptor with a small contiguous segment from transmembrane helix 7 (TM7) was chemically synthesized and its secondary structure determined by circular dichroism (CD) and solution NMR spectroscopy. Our studies in DPC and SDS micelles revealed significant alpha-helical structure while in an aqueous medium, the peptide exhibited a random coil configuration. The relative orientation of helix 8 within the CB1 receptor was obtained from intermolecular 31P-1H and 1H-1H NOE measurements. Our results suggest that in the presence of an amphipathic membrane environment, helix 8 assumes an alpha helical structure with an orientation parallel to the phospholipid membrane surface and perpendicular to TM7. In this model, positively charged side chains interact with the lipid headgroups while the other polar side chains face the aqueous region. The above observations may be relevant to the activation/deactivation of the CB1 receptor.  相似文献   

2.
The cytoplasmic helix domain (fourth cytoplasmic loop, helix 8) of numerous GPCRs such as rhodopsin and the β-adrenergic receptor exhibits unique structural and functional characteristics. Computational models also predict the existence of such a structural motif within the CB1 cannabinoid receptor, another member of the G-protein coupled receptor superfamily. To gain insights into the conformational properties of this GPCR component, a peptide corresponding to helix 8 of the CB1 receptor with a small contiguous segment from transmembrane helix 7 (TM7) was chemically synthesized and its secondary structure determined by circular dichroism (CD) and solution NMR spectroscopy. Our studies in DPC and SDS micelles revealed significant α-helical structure while in an aqueous medium, the peptide exhibited a random coil configuration. The relative orientation of helix 8 within the CB1 receptor was obtained from intermolecular 31P-1H and 1H-1H NOE measurements. Our results suggest that in the presence of an amphipathic membrane environment, helix 8 assumes an alpha helical structure with an orientation parallel to the phospholipid membrane surface and perpendicular to TM7. In this model, positively charged side chains interact with the lipid headgroups while the other polar side chains face the aqueous region. The above observations may be relevant to the activation/deactivation of the CB1 receptor.  相似文献   

3.
The recently reported crystal structure of bovine rhodopsin revealed a cytoplasmic helix (helix 8) in addition to the seven transmembrane helices. This domain is roughly perpendicular to the transmembrane bundle in the presence of an interface and may be a loop-like structure in the absence of an interface. Several studies carried out on this domain suggested that it might act as a conformational switch between the inactive and activated states of this G-protein coupled receptor (GPCR). These results raised the question whether helix 8 may be an important feature of other GPCRs as well. To explore this question, we determined the structure of a peptide representing the putative helix 8 domain in another receptor that belongs to the rhodopsin family of GPCRs, the human beta(2) adrenergic receptor (hbeta(2)AR), using two-dimensional (1)H nuclear magnetic resonance (NMR). The key results from this structural study are that the putative helix 8 domain is helical in detergent and in DMSO while in water this region is disordered; the conformation is therefore dependent upon the environment. Comparison of data from five GPCRs suggests that these observations may be generally important for GPCR structure and function.  相似文献   

4.
Xie XQ  Chen JZ  Billings EM 《Proteins》2003,53(2):307-319
The potential for therapeutic specificity in regulating diseases and for reduced side effects has made cannabinoid (CB) receptors one of the most important G-protein-coupled receptor (GPCR) targets for drug discovery. The cannabinoid (CB) receptor subtype CB2 is of particular interest due to its involvement in signal transduction in the immune system and its increased characterization by mutational and other studies. However, our understanding of their mode of action has been limited by the absence of an experimental receptor structure. In this study, we have developed a 3D model of the CB2 receptor based on the recent crystal structure of a related GPCR, bovine rhodopsin. The model was developed using multiple sequence alignment of homologous receptor sub-types in humans and mammals, and compared with other GPCRs. Alignments were analyzed with mutation scores, pairwise hydrophobicity profiles and Kyte-Doolittle plots. The 3D model of the transmembrane segment was generated by mapping the CB2 sequence onto the homologous residues of the rhodopsin structure. The extra- and intracellular loop regions of the CB2 were generated by searching for homologous C(alpha) backbone sequences in published structures in the Brookhaven Protein Databank (PDB). Residue side chains were positioned through a combination of rotamer library searches, simulated annealing and minimization. Intermediate models of the 7TM helix bundles were analyzed in terms of helix tilt angles, hydrogen-bond networks, conserved residues and motifs, possible disulfide bonds. The amphipathic cytoplasmic helix domain was also correlated with biological and site-directed mutagenesis data. Finally, the model receptor-binding cavity was characterized using solvent-accessible surface approach.  相似文献   

5.
There is considerable interest in determining the activation mechanism of G protein‐coupled receptors (GPCRs), one of the most important types of proteins for intercellular signaling. Recently, it was demonstrated for the cannabinoid CB1 GPCR, that a single mutation T210A could make CB1 completely inactive whereas T210I makes it essentially constitutively active. To obtain an understanding of this dramatic dependence of activity on mutation, we used first‐principles‐based methods to predict the ensemble of low‐energy seven‐helix conformations for the wild‐type (WT) and mutants (T210A and T210I). We find that the transmembrane (TM) helix packings depend markedly on these mutations, leading for T210A to both TM3+TM6 and TM2+TM6 salt‐bridge couplings in the cytoplasmic face that explains the inactivity of this mutant. In contrast T210I has no such couplings across the receptor explaining the ease in activating this mutant. WT has just the TM3+TM6 coupling, known to be broken upon GPCR activation. To test this hypothesis on activity, we predicted double mutants that would convert the inactive mutant to normal activity and then confirmed this experimentally. This CB1 activation mechanism, or one similar to it, is expected to play a role in other constitutively active GPCRs as well.  相似文献   

6.
Zheng H  Zhao J  Sheng W  Xie XQ 《Biopolymers》2006,83(1):46-61
The cannabinoid receptor subtype 2 (CB2) is a member of the G-protein coupled receptor (GPCR) superfamily. As the relationship between structure and function for this receptor remains poorly understood, the present study was undertaken to characterize the structure of a segment including the first and second transmembrane helix (TM1 and TM2) domains of CB2. To accomplish this, a transmembrane double-helix bundle from this region was expressed, purified, and characterized by NMR. Milligrams of this hydrophobic fragment of the receptor were biosynthesized using a fusion protein overexpression strategy and purified by affinity chromatography combined with reverse phase HPLC. Chemical and enzymatic cleavage methods were implemented to remove the fusion tag. The resultant recombinant protein samples were analyzed and confirmed by HPLC, mass spectrometry, and circular dichroism (CD). The CD analyses of HPLC-purified protein in solution and in DPC micelle preparations suggested predominant alpha-helical structures under both conditions. The 13C/15N double-labeled protein CB2(27-101) was further verified and analyzed by NMR spectroscopy. Sequential assignment was accomplished for more than 80% of residues. The 15N HSQC NMR results show a clear chemical shift dispersion of the amide nitrogen-proton correlation indicative of a pure double-labeled polypeptide molecule. The results suggest that this method is capable of generating transmembrane helical bundles from GPCRs in quantity and purity sufficient for NMR and other biophysical studies. Therefore, the biosynthesis of GPCR transmembrane helix bundles represents a satisfactory alternative strategy to obtain and assemble NMR structures from recombinant "building blocks."  相似文献   

7.
G-protein coupled receptors (GPCRs) typically have a functionally important C-terminus which, in the largest subfamily (family A), includes a membrane-parallel eighth helix. Mutations of this region are associated with several diseases. There are few C-terminal studies on the family B GPCRs and no data supporting the existence of a similar eighth helix in this second major subfamily, which has little or no sequence homology to family A GPCRs. Here we show that the C-terminus of a family B GPCR (CLR) has a disparate region from N400 to C436 required for CGRP-mediated internalization, and a proximal region of twelve residues (from G388 to W399), in a similar position to the family A eighth helix, required for receptor localization at the cell surface. A combination of circular and linear dichroism, fluorescence and modified waterLOGSY NMR spectroscopy (SALMON) demonstrated that a peptide mimetic of this domain readily forms a membrane-parallel helix anchored to the liposome by an interfacial tryptophan residue. The study reveals two key functions held within the C-terminus of a family B GPCR and presents support for an eighth helical region with striking topological similarity to the nonhomologous family A receptor. This helix structure appears to be found in most other family B GPCRs.  相似文献   

8.
9.
During the past few years several new interacting partners for G protein-coupled receptors (GPCRs) have been discovered, suggesting that the activity of these receptors is more complex than previously anticipated. Recently, candidate G protein-coupled receptor associated sorting protein (GASP-1) has been identified as a novel interacting partner for the delta opioid receptor and has been proposed to determine the degradative fate of this receptor. We show here that GASP-1 associates in vitro with other opioid receptors and that the interaction domain in these receptors is restricted to a small portion of the carboxyl-terminal tail, corresponding to helix 8 in the three-dimensional structure of rhodopsin. In addition, we show that GASP-1 interacts with COOH-terminus of several other GPCRs from subfamilies A and B and that two conserved residues within the putative helix 8 of these receptors are critical for the interaction with GASP-1. In situ hybridization and northern blot analysis indicate that GASP-1 mRNA is mainly distributed throughout the central nervous system, consistent with a potential interaction with numerous GPCRs in vivo. Finally, we show that GASP-1 is a member of a novel family comprising at least 10 members, whose genes are clustered on chromosome X. Another member of the family, GASP-2, also interacts with the carboxyl-terminal tail of several GPCRs. Therefore, GASP proteins may represent an important protein family regulating GPCR physiology.  相似文献   

10.
G protein‐coupled receptors (GPCRs) constitute the largest family of cell surface receptors that mediate numerous cell signaling pathways, and are targets of more than one‐third of clinical drugs. Thanks to the advancement of novel structural biology technologies, high‐resolution structures of GPCRs in complex with their signaling transducers, including G‐protein and arrestin, have been determined. These 3D complex structures have significantly improved our understanding of the molecular mechanism of GPCR signaling and provided a structural basis for signaling‐biased drug discovery targeting GPCRs. Here we summarize structural studies of GPCR signaling complexes with G protein and arrestin using rhodopsin as a model system, and highlight the key features of GPCR conformational states in biased signaling including the sequence motifs of receptor TM6 that determine selective coupling of G proteins, and the phosphorylation codes of GPCRs for arrestin recruitment. We envision the future of GPCR structural biology not only to solve more high‐resolution complex structures but also to show stepwise GPCR signaling complex assembly and disassembly and dynamic process of GPCR signal transduction.  相似文献   

11.
GPCRs (G-protein-coupled receptors) are seven-transmembrane helix proteins that transduce exogenous and endogenous signals to modulate the activity of downstream effectors inside the cell. Despite the relevance of these proteins in human physiology and pharmaceutical research, we only recently started to understand the structural basis of their activation mechanism. In the period 2008-2011, nine active-like structures of GPCRs were solved. Among them, we have determined the structure of light-activated rhodopsin with all the features of the active metarhodopsin-II, which represents so far the most native-like model of an active GPCR. This structure, together with the structures of other inactive, intermediate and active states of rhodopsin constitutes a unique structural framework on which to understand the conserved aspects of the activation mechanism of GPCRs. This mechanism can be summarized as follows: retinal isomerization triggers a series of local structural changes in the binding site that are amplified into three intramolecular activation pathways through TM (transmembrane helix) 5/TM3, TM6 and TM7/TM2. Sequence analysis strongly suggests that these pathways are conserved in other GPCRs. Differential activation of these pathways by ligands could be translated into the stabilization of different active states of the receptor with specific signalling properties.  相似文献   

12.
Invertebrate rhodopsins activate a G-protein signalling pathway in microvillar photoreceptors. In contrast to the transducin-cyclic GMP phosphodiesterase pathway found in vertebrate rods and cones, visual transduction in cephalopod (squid, octopus, cuttlefish) invertebrates is signalled via Gq and phospholipase C. Squid rhodopsin contains the conserved residues of the G-protein coupled receptor (GPCR) family, but has only 35% identity with mammalian rhodopsins. Unlike vertebrate rhodopsins, cephalopod rhodopsin is arranged in an ordered lattice in the photoreceptor membranes. This organization confers sensitivity to the plane of polarized light and also provides the optimal orientation of the linear retinal chromophores in the cylindrical microvillar membranes for light capture. Two-dimensional crystals of squid rhodopsin show a rectilinear arrangement that is likely to be related to the alignment of rhodopsins in vivo.Here, we present a three-dimensional structure of squid rhodopsin determined by cryo-electron microscopy of two-dimensional crystals. Docking the atomic structure of bovine rhodopsin into the squid density map shows that the helix packing and extracellular plug structure are conserved. In addition, there are two novel structural features revealed by our map. The linear lattice contact appears to be made by the transverse C-terminal helix lying on the cytoplasmic surface of the membrane. Also at the cytoplasmic surface, additional density may correspond to a helix 5-6 loop insertion found in most GPCRs relative to vertebrate rhodopsins. The similarity supports the conservation in structure of rhodopsins (and other G-protein-coupled receptors) from phylogenetically distant organisms. The map provides the first indication of the structural basis for rhodopsin alignment in the microvillar membrane.  相似文献   

13.
The class B family of G-protein-coupled receptors (GPCRs) regulates essential physiological functions such as exocrine and endocrine secretions, feeding behaviour, metabolism, growth, and neuro- and immuno-modulations. These receptors are activated by endogenous peptide hormones including secretin, glucagon, vasoactive intestinal peptide, corticotropin-releasing factor and parathyroid hormone. We have identified a common structural motif that is encoded in all class B GPCR-ligand N-terminal sequences. We propose that this local structure, a helix N-capping motif, is formed upon receptor binding and constitutes a key element underlying class B GPCR activation. The folded backbone conformation imposed by the capping structure could serve as a template for a rational design of drugs targeting class B GPCRs in several diseases.  相似文献   

14.
Systematic analysis of structural changes induced by activating mutations has been frequently utilized to study activation mechanisms of G-protein-coupled receptors (GPCRs). In the thyrotropin receptor and the lutropin receptor (LHR), a large number of naturally occurring mutations leading to constitutive receptor activation were identified. Saturating mutagenesis studies of a highly conserved Asp in the junction of the third intracellular loop and transmembrane domain 6 suggested a participation of this anionic residue in a salt bridge stabilizing the inactive receptor conformation. However, substitution of all conserved cationic residues at the cytoplasmic receptor surface did not support this hypothesis. Asp/Glu residues are a common motif at the N-terminal ends of alpha-helices terminating and stabilizing the helical structure (helix capping). Since Asp/Glu residues in the third intracellular loop/transmembrane domain 6 junction are not only preserved in glycoprotein hormone receptors but also in other GPCRs we speculated that this residue probably participates in an N-terminal helix-capping structure. Poly-Ala stretches are known to form and stabilize alpha-helices. Herein, we show that the function of the highly conserved Asp can be mimicked by poly-Ala substitutions in the LHR and thyrotropin receptor. CD and NMR studies of peptides derived from the juxtamembrane portion of the LHR confirmed the helix extension by the poly-Ala substitution and provided further evidence for an involvement of Asp in a helix-capping structure. Our data implicate that in addition to well established interhelical interactions the inactive conformation of GPCRs is also stabilized by specific intrahelical structures.  相似文献   

15.
G-protein coupled receptor structure   总被引:1,自引:0,他引:1  
Because of their central role in regulation of cellular function, structure/function relationships for G-protein coupled receptors (GPCR) are of vital importance, yet only recently have sufficient data been obtained to begin mapping those relationships. GPCRs regulate a wide range of cellular processes, including the senses of taste, smell, and vision, and control a myriad of intracellular signaling systems in response to external stimuli. Many diseases are linked to GPCRs. A critical need exists for structural information to inform studies on mechanism of receptor action and regulation. X-ray crystal structures of only one GPCR, in an inactive state, have been obtained to date. However considerable structural information for a variety of GPCRs has been obtained using non-crystallographic approaches. This review begins with a review of the very earliest GPCR structural information, mostly derived from rhodopsin. Because of the difficulty in crystallizing GPCRs for X-ray crystallography, the extensive published work utilizing alternative approaches to GPCR structure is reviewed, including determination of three-dimensional structure from sparse constraints. The available X-ray crystallographic analyses on bovine rhodopsin are reviewed as the only available high-resolution structures for any GPCR. Structural information available on ligand binding to several receptors is included. The limited information on excited states of receptors is also reviewed. It is concluded that while considerable basic structural information has been obtained, more data are needed to describe the molecular mechanism of activation of a GPCR.  相似文献   

16.
Class A G protein-coupled receptors (GPCRs) are able to form homodimers and/or oligomeric arrays. We recently proposed, based on bioluminescence resonance energy transfer studies with the M3 muscarinic receptor (M3R), a prototypic class A GPCR, that the M3R is able to form multiple, structurally distinct dimers that are probably transient in nature (McMillin, S. M., Heusel, M., Liu, T., Costanzi, S., and Wess, J. (2011) J. Biol. Chem. 286, 28584–28598). To provide more direct experimental support for this concept, we employed a disulfide cross-linking strategy to trap various M3R dimeric species present in a native lipid environment (transfected COS-7 cells). Disulfide cross-linking studies were carried out with many mutant M3Rs containing single cysteine (Cys) substitutions within two distinct cytoplasmic M3R regions, the C-terminal portion of the second intracellular loop (i2) and helix H8 (H8). The pattern of cross-links that we obtained, in combination with molecular modeling studies, was consistent with the existence of two structurally distinct M3R dimer interfaces, one involving i2/i2 contacts (TM4-TM5-i2 interface) and the other one characterized by H8-H8 interactions (TM1-TM2-H8 interface). Specific H8-H8 disulfide cross-links led to significant impairments in M3R-mediated G protein activation, suggesting that changes in the structural orientation or mobility of H8 are critical for efficient receptor-G protein coupling. Our findings provide novel structural and functional insights into the mechanisms involved in M3R dimerization (oligomerization). Because the M3R shows a high degree of sequence similarity with many other class A GPCRs, our findings should be of considerable general interest.  相似文献   

17.
The recent elucidation of the X-ray structure of several class A GPCRs clearly indicates that the amphipathic helix 8 (H8) is a conserved structural domain in most crystallized GPCRs. Very little is known about the presence and the possible role of an analogous H8 domain in the distantly related class C GPCRs. In this study, we investigated the structural properties for the H8 domain of the mGluR2 receptor, a class C GPCR, by applying extended molecular dynamics simulations. Our study indicates that the amphipathic H8 adopts membrane-sensitive conformational states, which depend on the membrane composition. Cholesterol-rich membranes stabilize the helical structure of H8 whereas cholesterol-depleted membranes induce a disruption of H8. The observed link between membrane cholesterol levels and H8 conformational states suggests that H8 behaves as a sensor of cholesterol concentration.  相似文献   

18.
A major, unresolved question in signal transduction by G protein coupled receptors (GPCRs) is to understand how, at atomic resolution, a GPCR activates a G protein. A step toward answering this question was made with the determination of the high-resolution structure of rhodopsin; we now know the intramolecular interactions that characterize the resting conformation of a GPCR. To what degree does this structure represent a structural paradigm for other GPCRs, especially at the cytoplasmic surface where GPCR-G protein interaction occurs and where the sequence homology is low among GPCRs? To address this question, we performed NMR studies on approximately 35-residue-long peptides including the critical second intracellular loop (i2) of the alpha 2A adrenergic receptor (AR) and of rhodopsin. To stabilize the secondary structure of the peptide termini, 4-12 residues from the adjacent transmembrane helices were included and structures determined in dodecylphosphocholine micelles. We also characterized the effects on an alpha 2A AR peptide of a D130I mutation in the conserved DRY motif. Our results show that in contrast to the L-shaped loop in the i2 of rhodopsin, the i2 of the alpha 2A AR is predominantly helical, supporting the hypothesis that there is structural diversity within GPCR intracellular loops. The D130I mutation subtly modulates the helical structure. The spacing of nonpolar residues in i2 with helical periodicity is a predictor of helical versus loop structure. These data should lead to more accurate models of the intracellular surface of GPCRs and of receptor-mediated G protein activation.  相似文献   

19.
In this study we wanted to gain insights into selectivity mechanisms between G-protein-coupled receptors (GPCR) and different subtypes of G-proteins. The thyrotropin receptor (TSHR) binds G-proteins promiscuously and activates both Gs (cAMP) and Gq (IP). Our goal was to dissect selectivity patterns for both pathways in the intracellular region of this receptor. We were particularly interested in the participation of poorly investigated receptor parts.We systematically investigated the amino acids of intracellular loop (ICL) 1 and helix 8 using site-directed mutagenesis alongside characterization of cAMP and IP accumulation. This approach was guided by a homology model of activated TSHR in complex with heterotrimeric Gq, using the X-ray structure of opsin with a bound G-protein peptide as a structural template.We provide evidence that ICL1 is significantly involved in G-protein activation and our model suggests potential interactions with subunits Gα as well as Gβγ. Several amino acid substitutions impaired both IP and cAMP accumulation. Moreover, we found a few residues in ICL1 (L440, T441, H443) and helix 8 (R687) that are sensitive for Gq but not for Gs activation. Conversely, not even one residue was found that selectively affects cAMP accumulation only.Together with our previous mutagenesis data on ICL2 and ICL3 we provide here the first systematically completed map of potential interfaces between TSHR and heterotrimeric G-protein. The TSHR/Gq-heterotrimer complex is characterized by more selective interactions than the TSHR/Gs complex. In fact the receptor interface for binding Gs is a subset of that for Gq and we postulate that this may be true for other GPCRs coupling these G-proteins. Our findings support that G-protein coupling and preference is dominated by specific structural features at the intracellular region of the activated GPCR but is completed by additional complementary recognition patterns between receptor and G-protein subtypes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号