首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracts of Pseudomonas C grown on methanol as a sole carbon and energy source contain a methanol dehydrogenase activity which can be coupled to phenazine methosulfate. This enzyme catalyzes two reactions namely the conversion of methanol to formaldehyde (phenazine methosulfate coupled) and the oxidation of formaldehyde to formate (2,6-dichloroindophenol-coupled). Activities of glutathione-dependent formaldehyde dehydrogenase (NAD+) and formate dehydrogenase (NAD+) were also detected in the extracts. The addition of D-ribulose 5-phosphate to the reaction mixtures caused a marked increase in the formaldehyde-dependent reduction of NAD+ or NADP+. In addition, the oxidation of [14C]formaldehyde to CO2, by extracts of Pseudomonas C, increased when D-ribulose 5-phosphate was present in the assay mixtures. The amount of radioactivity found in CO2, was 6;8-times higher when extracts of methanol-grown Pseudomonas C were incubated for a short period of time with [1-14C]glucose 6-phosphate than with [U-14C]glucose 6-phosphate. These data, and the presence of high specific activities of hexulose phosphate synthase, phosphoglucoisomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase indicate that in methanol-grown Pseudomonas C, formaldehyde carbon is oxidized to CO2 both via a cyclic pathway which includes the enzymes mentioned and via formate as an oxidation intermediate, with the former predominant.  相似文献   

2.
An ionization chamber method was used in vivo to demonstrate a delayed oxidation of [14C] formaldehyde and [14C] formate to 14CO2 in folic acid-deficient rats as compared to control rats or folic-acid-deficient rats treated by folic acid. Results obtained showed that oxidation of these two molecules required the presence of folic acid.  相似文献   

3.
Formaldehyde can be oxidized primarily by two different enzymes, the low-Km mitochondrial aldehyde dehydrogenase and the cytosolic GSH-dependent formaldehyde dehydrogenase. Experiments were carried out to evaluate the effects of diethyl maleate or phorone, agents that deplete GSH from the liver, on the oxidation of formaldehyde. The addition of diethyl maleate or phorone to intact mitochondria or to disrupted mitochondrial fractions produced inhibition of formaldehyde oxidation. The kinetics of inhibition of the low-Km mitochondrial aldehyde dehydrogenase were mixed. Mitochondria isolated from rats treated in vivo with diethyl maleate or phorone had a decreased capacity to oxidize either formaldehyde or acetaldehyde. The activity of the low-Km, but not the high-Km, mitochondrial aldehyde dehydrogenase was also inhibited. The production of CO2 plus formate from 0.2 mM-[14C]formaldehyde by isolated hepatocytes was only slightly inhibited (15-30%) by incubation with diethyl maleate or addition of cyanamide, suggesting oxidation primarily via formaldehyde dehydrogenase. However, the production of CO2 plus formate was increased 2.5-fold when the concentration of [14C]formaldehyde was raised to 1 mM. This increase in product formation at higher formaldehyde concentrations was much more sensitive to inhibition by diethyl maleate or cyanamide, suggesting an important contribution by mitochondrial aldehyde dehydrogenase. Thus diethyl maleate and phorone, besides depleting GSH, can also serve as effective inhibitors in vivo or in vitro of the low-Km mitochondrial aldehyde dehydrogenase. Inhibition of formaldehyde oxidation by these agents could be due to impairment of both enzyme systems known to be capable of oxidizing formaldehyde. It would appear that a critical amount of GSH, e.g. 90%, must be depleted before the activity of formaldehyde dehydrogenase becomes impaired.  相似文献   

4.
Extracts of Pseudomonas C grown on methanol as sole carbon and energy source contain a methanol dehydrogenase activity which can be coupled to phenazine methosulfate. This enzyme catalyzes two reactions namely the conversion of methanol to formaldehyde (phenazine methosulfate coupled) and the oxidation of formaldehyde to formate (2,6-dichloroindophenol-coupled). Activities of glutathione-dependent formaldehyde dehydrogenase (NAD+) and formate dehydrogenase (NAD+) were also detected in the extracts.The addition of d-ribulose 5-phosphate to the reaction mixtures caused a marked increase in the formaldehyde-dependent reduction of NAD+ or NADP+. In addition, the oxidation of [14C]formaldehyde to CO2, by extracts of Pseudomonas C, increased when d-ribulose 5-phosphate was present in the assay mixtures.The amount of radioactivity found in CO2, was 6.8-times higher when extracts of methanol-grown Pseudomona C were incubated for a short period of time with [1-14C]glucose 6-phosphate than with [U-14C]glucose 6-phosphate.These data, and the presence of high specific activities of hexulose phosphate synthase, phosphoglucoisomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase indicate that in methanol-grown Pseudomonas C, formaldehyde carbon is oxidized to CO2 both via a cyclic pathway which includes the enzymes mentioned and via formate as an oxidation intermediate, with the former predominant.  相似文献   

5.
Methanol and formate oxidation supported the assimilation of [14C]acetate by cell suspensions of Methylococcus capsulatus; oxidation of other primary alcohols, except ethanol, did not. The extent of [1-14C]acetate assimilation supported by methanol oxidation was decreased in the presence of primary alcohols, except ethanol. Potassium cyanide (0.33 mM) completely inhibited the oxidation of formate and its stimulation of [1-14C]acetate assimilation. The amount of [1-14C]acetate assimilation supported by methanol oxidation was significantly inhibited by cyanide.  相似文献   

6.
Methanol and formate oxidation supported the assimilation of [14C]acetate by cell suspensions of Methylococcus capsulatus; oxidation of other primary alcohols, except ethanol, did not. The extent of [1-14C]acetate assimilation supported by methanol oxidation was decreased in the presence of primary alcohols, except ethanol. Potassium cyanide (0.33 mM) completely inhibited the oxidation of formate and its stimulation of [1-14C]acetate assimilation. The amount of [1-14C]acetate assimilation supported by methanol oxidation was significantly inhibited by cyanide.  相似文献   

7.
Dichloroacetate (an activator of pyruvate dehydrogenase) stimulates 14CO2 production from [U-14C]glucose, but not from [U-14C]glutamate, [U-14C]aspartate, [U-14C]- and [1-14C]-valine and [U-14C]- and [1-14C]-leucine. It is concluded (1) that pyruvate dehydrogenase is not rate-limiting in the oxidation to CO2 of amino acids that are metabolized to tricarboxylic acid-cycle intermediates, and (2) that carbohydrate (and not amino acids) is the main carbon precursor in alanine formation in muscle.  相似文献   

8.
Previous results have shown that cyanamide or crotonaldehyde are effective inhibitors of the oxidation of formaldehyde by the low-Km mitochondrial aldehyde dehydrogenase, but do not affect the activity of the glutathione-dependent formaldehyde dehydrogenase. These compounds were used to evaluate the enzyme pathways responsible for the oxidation of formaldehyde generated during the metabolism of aminopyrine or methanol by isolated hepatocytes. Both cyanamide and crotonaldehyde inhibited the production of 14CO2 from 14C-labeled aminopyrine by 30-40%. These agents caused an accumulation of formaldehyde which was identical to the loss in CO2 production, indicating that the inhibition of CO2 production reflected an inhibition of formaldehyde oxidation. The oxidation of methanol was stimulated by the addition of glyoxylic acid, which increases the rate of H2O2 generation. Crotonaldehyde inhibited CO2 production from methanol, but caused a corresponding increase in formaldehyde accumulation. The partial sensitivity of CO2 production to inhibition by cyanamide or crotonaldehyde suggests that both the mitochondrial aldehyde dehydrogenase and formaldehyde dehydrogenase contribute towards the metabolism of formaldehyde which is generated from mixed-function oxidase activity or from methanol, just as both enzyme systems contribute towards the metabolism of exogenously added formaldehyde.  相似文献   

9.
R P Mason  J K Sanders 《Biochemistry》1989,28(5):2160-2168
High-resolution deuterium NMR spectroscopy has been used to follow the detoxifying metabolism of [D2]formaldehyde in vivo in several bacterial species. Production of [D2]methanol in Escherichia coli confirms that the oxidation and reduction pathways of metabolism are independent in this organism. Efficient production of equimolar quantities of [D]formate and [D3]methanol in Pseudomonas putida F61a and Staphylococcus aureus implicates a formaldehyde dismutase, or "cannizzarase", activity. These observations imply that the unusual formaldehyde resistance in P. putida F61a is a direct result of efficient dismutation acting as a route for detoxification. Cross-dismutation experiments yield an enzymic kinetic isotope effect of ca. 4 for H vs D transfer and a similar spectrum of substrate specificity to the isolated enzyme. [D]benzyl alcohol produced by cross-dismutation of [D2]formaldehyde and benzaldehyde in P. putida is demonstrated to have the R configuration by a novel deuterium NMR assay. Additionally, S. aureus produces methyl formate as a product of formaldehyde detoxification, apparently by oxidizing the methanol hemiacetal of formaldehyde.  相似文献   

10.
The activity of enzymes involved in methanol oxidation and assimilation as well as the levels of formaldehyde and glutathione were determined during batch cultivation of Candida boidinii KD1 in a medium with methanol. The distribution of [14C]methanol between oxidative and biosynthetic processes in the yeast was analysed. Changes in the concentrations of formaldehyde and glutathione were found to correlate with the activity of formaldehyde dehydrogenase. The results indicate that an increase in the concentration of reduced glutathione (GSH) at the early logarithmic phase of the yeast growth stimulates formaldehyde oxidation via formate to carbon dioxide whereas a subsequent decrease in the concentration of GSH favours formaldehyde assimilation.  相似文献   

11.
The oxidation of one carbon compounds (methane, methanol, formaldehyde, formate) and primary alcohols (ethanol, propanol, butanol) supported the assimilation of [1-14C]acetate by cell suspensions of type I obligate methylotroph; Pseudomonas methanica, Texas strain, and type II obligate methylotroph, Methylosinus trichosporium, strain PG. The amount of oxygen consumed and substrate oxidized correlated with the amount of [1-14C]acetate assimilated during oxidation of C-1 compounds and primary alcohols.Oxidation of methanol, formaldehyde, and primary alcohols in extracts of Pseudomonas methanica, Texas strain, and Methylosinus trichosporium, strain PG, was catalyzed by a phenazine methosulfate linked, ammonium ion dependent methanol dehydrogenase. The oxidation of aldehydes was catalyzed by a phenazine methosulfate linked, ammonium ion independent aldehyde dehydrogenase. Formate was oxidized by a NAD+ linked formate dehydrogenase.Deceased.This work was supported by Grant GB 8173 from the National Science Foundation and by a grant from the Robert A. Welch Foundation.  相似文献   

12.
1. The rate of appearance of (14)CO(2) from [6-(14)C]glucose and [3-(14)C]pyruvate was measured. Pyruvate is oxidized to carbon dioxide twice as fast as glucose, although the oxygen uptake is almost the same with each substrate. 2. The presence of 30mum-2,4-dinitrophenol increases the output of (14)CO(2) from [6-(14)C]glucose sixfold whereas the oxygen uptake is not quite doubled. Similar results are obtained with 0.1m-potassium chloride. The stimulating action of these two agents on the output of (14)CO(2) from [3-(14)C]pyruvate is much less than on that from [6-(14)C]glucose. 3. The effects of oligomycin, ouabain and triethyltin on the respiration of control and stimulated brain-cortex slices were studied. Triethyltin (1.3mum) inhibited the oxidation of [6-(14)C]glucose more than 70%, but did not inhibit the oxidation of[3-(14)C]pyruvate. [3-(14)C]pyruvate. 4. The production of lactic acid by brain-cortex slices incubated with glucose is twice as great as that with pyruvate. Lactic acid increases two and a half times in the presence of either triethyltin or oligomycin when the substrate is glucose, but is no different from the control when the substrate is pyruvate. 5. With kidney slices the production of lactic acid from glucose is very low. It is increased by oligomycin but not by triethyltin. 6. The results are discussed in terms of the oxidation of the extramitochondrial NADH(2) produced during glycolysis.  相似文献   

13.
The catabolism of methanol, formate, or carbon monoxide to acetate or butyrate or both was examined in two acetogenic bacteria. Butyribacterium methylotrophicum simultaneously transformed methanol and formate mainly to butyrate with concomitant H2 and CO2 production and consumption. In contrast, methanol plus CO was primarily converted to acetate, and only slight amounts of CO2 were produced. In vivo 13C nuclear magnetic resonance analysis of [13C]methanol transformation by B. methylotrophicum indicated that methanol was predominantly incorporated into the methyl of acetate. 13CO2 was produced and then consumed, and butyrate was formed from the condensation of two acetate precursors. The analysis of the position of acetate labeled by a given 13C single-carbon substrate when B. methylotrophicum or Acetobacterium woodii was grown in the presence of a second one-carbon substrate indicated two trends: when methanol was consumed, CO, CO2, or formate predominantly labeled the acetate carboxyl; when CO was consumed, CO2 and formate were principally funneled into the acetate methyl group, and CO remained a better carboxyl precursor. These data suggest a model of acetate synthesis via the combined operation of two readily reversible single-carbon pathways which are linked by CO2.  相似文献   

14.
A biological process for remediation of groundwater contaminated with tetrachloroethylene (PCE) and trichloroethylene (TCE) can only be applied if the transformation products are environmentally acceptable. Studies with enrichment cultures of PCE- and TCE-degrading microorganisms provide evidence that, under methanogenic conditions, mixed cultures are able to completely dechlorinate PCE and TCE to ethylene, a product which is environmentally acceptable. Radiotracer studies with [14C]PCE indicated that [14C]ethylene was the terminal product; significant conversion to 14CO2 or 14CH4 was not observed. The rate-limiting step in the pathway appeared to be conversion of vinyl chloride to ethylene. To sustain reductive dechlorination of PCE and TCE, it was necessary to supply an electron donor; methanol was the most effective, although hydrogen, formate, acetate, and glucose also served. Studies with the inhibitor 2-bromoethanesulfonate suggested that methanogens played a key role in the observed biotransformations of PCE and TCE.  相似文献   

15.
1. The conditions under which peroxisomal preparations from leaves of spinach beet and spinach catalyse the release of (14)CO(2) from [1-(14)C]glycollate and [1-(14)C]glyoxylate were investigated. 2. At pH8, (14)CO(2) production from [1-(14)C]glyoxylate was accompanied by equivalent quantities of formate. The accumulation of oxalate and the effects of various reagents, especially catalase inhibitors, show that glyoxylate is non-enzymically oxidized by H(2)O(2), which is generated by the oxidation of glyoxylate to oxalate by the action of glycollate oxidase. 3. (14)CO(2) is shown to be generated from [1-(14)C]glycollate at pH8 by a similar reaction, but the H(2)O(2) is generated mainly by the oxidation of glycollate to glyoxylate. 4. The physiological significance of these reactions is discussed, with special reference to their role in photorespiration.  相似文献   

16.
NEUT2 mice are deficient in cytosolic 10-formyltetrahydrofolate dehydrogenase (FDH; EC 1.5.1.6) which catalyzes the oxidation of excess folate-linked one-carbon units in the form of 10-formyltetrahydrofolate to CO(2) and tetrahydrofolate (Champion et al., Proc. Natl. Acad. Sci. USA 91, 11338-11342, 1994). The absence of FDH should impair the oxidation of formate via the folate-dependent pathway and as a consequence render homozygous NEUT2 mice more susceptible to methanol toxicity. Normal (CB6-F1) and NEUT2 heterozygous and homozygous mice had essentially identical LD(50) values for methanol, 6.08, 6.00, and 6.03 g/kg, respectively. Normal mice oxidized low doses of [(14)C]sodium formate (ip 5 mg/kg) to (14)CO(2) at approximately twice the rate of homozygous NEUT2 mice, indicating the presence of another formate-oxidizing system in addition to FDH. Treatment of mice with the catalase inhibitor, 3-aminotriazole (1 g/kg ip) had no effect on the rate of formate oxidation, indicating that at low concentrations formate was not oxidized peroxidatively by catalase. High doses of [(14)C]sodium formate (ip 100 mg/kg) were oxidized to (14)CO(2) at identical rates in normal and NEUT2 homozygous mice. Pretreatment with 3-aminotriazole (1 g/kg ip) in this instance resulted in a 40 and 50% decrease in formate oxidation to CO(2) in both normal and homozygous NEUT2 mice, respectively. These results indicate that mice are able to oxidize formate to CO(2) by at least three different routes: (1) folate-dependent via FDH at low levels of formate; (2) peroxidation by catalase at high levels of formate; and (3) by an unknown route(s) which appears to function at both low and high levels of formate. The implications of these observations are discussed in terms of the current hypotheses concerning methanol and formate toxicity in rodents and primates.  相似文献   

17.
Male mice of the inbred strain GRS/A are highly susceptible to lung tumour but refractory to liver tumour formation, whereas the opposite relation holds for C3Hf/A male mice. Liver and lung cells of these 2 mouse strains were studied autoradiographically after intraperitoneal injection of [3H]dimethylnitrosamine (DMN) and of [3H]thymidine at days 1--14 after administration of unlabelled DMN. Corresponding cell types in the lungs or livers of these 2 mouse strains bound similar amount of [3H]DMN. Among the various types of lung cells only the alveolar Type II cells, from which the lung adenomas derive, showed a strain-specific difference in [3H]thymidine labelling indices, much more cells becoming labelled in the case of the GRS/A than of the C3Hf/A strain at days 3--7 after carcinogen administration. Opposite thymidine labelling indices were exhibited by the parenchymal liver cells of the 2 strains, with C3Hf/A now showing a greater response than did GRS/A males. Thus thymidine-labelling and tumourigenic responses of target lung and liver cells to carcinogen in the 2 strains coincided. Sulphur dioxide and carbon tetrachloride mimicked the effects of DMN on the thymidine labelling indices of, respectively, the lung alveolar Type II and the thymidine labelling indices of, respectively, the lung alveolar Type II and the liver parenchymal cells of the 2 strains. The nature of the differential effect of carcinogen on the [3H]thymidine labelling of the cells and the correlation of these patterns with susceptibility to tumour formation, are briefly discussed.  相似文献   

18.
An investigation of the effect of change of total CO(2) concentration from 7 to 43 mM at pH 7.35 in the medium perfusing isolated rat lungs on [U-(14)C]glucose incorporation into lung phospholipids has been carried out. The incorporation of [U-(14)C]glucose into phosphatidylcholine and phosphatidylglycerol of the surfactant fraction and of the remaining lung tissue (residual fraction) was observed. Increased CO(2) concentration increased [U-(14)C]glucose incorporation into phosphatidylcholine of the surfactant fraction and residual fraction by 43 and 50%, respectively, during a 2 hr perfusion. Likewise, incorporation of [U-(14)C]glucose into phosphatidylglycerol was increased 22 and 34% into the surfactant and residual fractions, respectively. The percentage of [U-(14)C]glucose incorporated into the fatty acid moieties of phosphatidylcholine of both fractions increased as a result of increased CO(2) concentration. The increase in the incorporation of [U-(14)C]glucose into the fatty acid moieties of phosphatidylcholine was confirmed by an average increase of 56 and 77% in the specific activity of palmitic acid isolated from phosphatidylcholine of the surfactant and residual fraction, respectively, as a result of increased CO(2) concentration. The results suggest that alteration in extracellular CO(2) concentration affects the de novo synthesis from glucose of phosphatidylcholine and phosphatidylglycerol of the surfactant-lipoprotein fraction of lung.  相似文献   

19.
The reaction of demethylation mediated by cytochrome P450 (CYP) leads to the equimolar production of demethylated metabolite and formaldehyde. From a 13C-substrate labeled on a carbon of the methyl moiety, [13C]formaldehyde (H13CHO) is liberated. A highly sensitive and specific assay involving the oxidation of H13CHO to 13CO(2) by a double-enzymatic-step reaction is reported. The 13CO(2) was quantified by the method of reverse isotopic dilution based on gas chromatography-isotope ratio mass spectrometry analysis. The method first involves the limiting step of the CYP-dependent reaction, which is stopped with a mixture of zinc sulfate 5 mM and trichloroacetic acid 100 mM. Then, the transformation of H13CHO to 13CO(2) is performed with the formaldehyde (0.2 unit) and the formate (0.2 unit) dehydrogenase NAD-dependent enzymes. The recovery of 13CO(2) from the incubation mixture was equal to 91.4 +/- 3.0%. The accuracy and the precision of the present method were within 12 and 10%, respectively. The limit of quantification was set to 25 pmol. The performance of the assay was validated on human liver microsomes with five probes: [13C]erythromycin, [1-13C]caffeine, [3-13C]caffeine, [7-13C]caffeine, and [13C(2)]aminopyrine. This method is useful for the rapid determination of N-demethylase activity of human liver microsomes from methyl-13C-substrates.  相似文献   

20.
Changes in several parameters involved in the control of metabolism were correlated with changes in glucose utilization in rat brain slices incubated under conditions which reduced glucose oxidation by 40 to 70%. The parameters included: the concentrations of ATP, ADP, AMP, and the adenylate energy charge; the cytoplasmic oxidation-reduction state ([NAD+]/[NADH]), determined from the [pyruvate]/[lactate] equilibrium; the mitochondrial oxidation-reduction state, determined from the [NH4+] ]2-oxoglutarate]/[glutamate] Equilibrium; the cytoplasmic and mitochondrial oxidation-reduction potentials (in volts), calculated from the respective [NAD+]/ [NADH] ratios using the Nernst equation; and the difference between the cytoplasmic and mitochondrial [NAD+]/[NADH] potentials. The conversion of [3, 4-14C] glucose to 14CO2 and of [U-14C] glucose to acetylcholine and to lipids, proteins, and nucleic acids by the brain slices were also determined. The values obtained by subtracting the mitochondrial from the cytoplasmic [NAD+1/[NADH] potentials correlated more closely with glucose utilization than did other parameters, under the conditions studied. For the synthesis of acetylcholine, the correlation coefficient was 0.96, and for the production of 14CO2 from [3, 4-14C] glucose it was 0.82.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号