首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Bacteria utilize quorum-sensing systems to modulate environmental stress responses. The quorum-sensing system of Streptococcus mutans is mediated by the competence-stimulating peptide (CSP), whose precursor is encoded by the comC gene. A comC mutant of strain GS5 exhibited enhanced antimicrobial sensitivity to a wide variety of different agents. Since the addition of exogenous CSP did not complement this phenotype, it was determined that the increased tetracycline, penicillin, and triclosan sensitivities resulted from repression of the putative bacteriocin immunity protein gene, bip, which is located immediately upstream from comC. We further demonstrated that the inactivation of bip or smbG, another bacteriocin immunity protein gene present within the smb operon in S. mutans GS5, affected sensitivity to a variety of antimicrobial agents. Furthermore, both the bip and smbG genes were upregulated in the presence of low concentrations of antibiotics and were induced during biofilm formation relative to in planktonic cells. These results suggest, for the first time, that the antimicrobial sensitivity of a bacterium can be modulated by some of the putative bacteriocin immunity proteins expressed by the organism. The implications of these observations for the evolution of bacteriocin immunity protein genes as well as for potential new chemotherapeutic strategies are discussed.  相似文献   

5.
The induction of genetic competence is a strategy used by bacteria to increase their genetic repertoire under stressful environmental conditions. Recently, Streptococcus pneumoniae has been shown to co-ordinate the uptake of transforming DNA with fratricide via increased expression of the peptide pheromone responsible for competence induction. Here, we document that environmental stress-induced expression of the peptide pheromone competence-stimulating peptide (CSP) in the oral pathogen Streptococcus mutans . We showed that CSP is involved in the stress response and determined the CSP-induced regulon in S. mutans by microarray analysis. Contrary to pneumococcus, S. mutans responds to increased concentrations of CSP by cell lysis in only a fraction of the population. We have focused on the mechanism of cell lysis and have identified a novel bacteriocin as the 'death effector'. Most importantly, we showed that this bacteriocin causes cell death via a novel mechanism of action: intracellular action against self. We have also identified the cognate bacteriocin immunity protein, which resides in a separate unlinked genetic locus to allow its differential regulation. The role of the lytic response in S. mutans competence is also discussed. Together, these findings reveal a novel autolytic pathway in S. mutans which may be involved in the dissemination of fitness-enhancing genes in the oral biofilm.  相似文献   

6.
The gene encoding the circumsporozoite protein (CSP) from the rodent malaria parasite, Plasmodium yoelii, has been cloned and the nucleotide sequence has been determined. The gene encodes a protein of 367 amino acids as deduced from the nucleotide sequence. This gene is structurally similar to other Plasmodium spp. CSP genes in that it contains putative hydrophobic signal and anchor sequences at the NH2 and COOH termini, respectively, two small regions (Regions I and II) that are conserved in all CSP genes analyzed to date, and a central region containing the immunodominant repeating peptide sequence. Unlike other CSP genes, however, the immunodominant repeat region of the gene is composed of two distinctly different types of tandem repeats. One repeating unit is six amino acids (Gln-Gly-Pro-Gly-Ala-Pro) in length while the other is only four (Gln-Gln-Pro-Pro) residues long. A synthetic peptide, Gln-Gly-Pro-Gly-Ala-Pro X 3, strongly inhibits the binding of anti-CSP monoclonal antibody to sporozoite antigens while another peptide, Gln-Gln-Pro-Pro X 4, weakly inhibits the binding of this same antibody to sporozoite antigens. This work should allow the construction of a mouse model system to parallel human vaccine trials.  相似文献   

7.
Enterocin A is a small, heat-stable, antilisterial bacteriocin produced by Enterococcus faecium DPC1146. The sequence of a 10, 879-bp chromosomal region containing at least 12 open reading frames (ORFs), 7 of which are predicted to play a role in enterocin biosynthesis, is presented. The genes entA, entI, and entF encode the enterocin A prepeptide, the putative immunity protein, and the induction factor prepeptide, respectively. The deduced proteins EntK and EntR resemble the histidine kinase and response regulator proteins of two-component signal transducing systems of the AgrC-AgrA type. The predicted proteins EntT and EntD are homologous to ABC (ATP-binding cassette) transporters and accessory factors, respectively, of several other bacteriocin systems and to proteins implicated in the signal-sequence-independent export of Escherichia coli hemolysin A. Immediately downstream of the entT and entD genes are two ORFs, the product of one of which, ORF4, is very similar to the product of the yteI gene of Bacillus subtilis and to E. coli protease IV, a signal peptide peptidase known to be involved in outer membrane lipoprotein export. Another potential bacteriocin is encoded in the opposite direction to the other genes in the enterocin cluster. This putative bacteriocin-like peptide is similar to LafX, one of the components of the lactacin F complex. A deletion which included one of two direct repeats upstream of the entA gene abolished enterocin A activity, immunity, and ability to induce bacteriocin production. Transposon insertion upstream of the entF gene also had the same effect, but this mutant could be complemented by exogenously supplied induction factor. The putative EntI peptide was shown to be involved in the immunity to enterocin A. Cloning of a 10.5-kb amplicon comprising all predicted ORFs and regulatory regions resulted in heterologous production of enterocin A and induction factor in Enterococcus faecalis, while a four-gene construct (entAITD) under the control of a constitutive promoter resulted in heterologous enterocin A production in both E. faecalis and Lactococcus lactis.  相似文献   

8.
The production of bacteriocins can be favorable for colonization of the host by eliminating other bacterial species that share the same environment. In Streptococcus pneumoniae, the pnc (blp) locus encoding putative bacteriocins, immunity, and export proteins is controlled by a two-component system similar to the comCDE system required for the induction of genetic competence. A detailed comparison of the pnc clusters of four genetically distinct isolates confirmed the great plasticity of this locus and documented several repeat sequences. Members of the multiple-antibiotic-resistant Spain23F-1 clone, one member of the Spain9V-3 clone, sensitive 23F strain 2306, and the TIGR4 strain produced bactericidal substances active against other gram-positive bacteria and in some cases against S. pneumoniae as well. However, other strains did not show activity against the indicator strains despite the presence of a bacteriocin cluster, indicating that other factors are required for bacteriocin activity. Analysis of strain 2306 and mutant derivatives of this strain confirmed that bacteriocin production was dependent on the two-component regulatory system and genes involved in bacteriocin transport and processing. At least one other bacteriocin gene, pncE, is located elsewhere on the chromosome and might contribute to the bacteriocin activity of this strain.  相似文献   

9.
10.
Streptococcus uberis, a causal agent of bovine mastitis, produces ubericin A, a 5.3-kDa class IIa (pediocin-like) bacteriocin, which was purified and characterized. The uba locus comprises two overlapping genes: ubaA (ubericin A precursor peptide) and ubaI (putative immunity protein). Ubericin A is the first streptococcal class IIa bacteriocin to be characterized.  相似文献   

11.
Molecular analysis of the lactacin F operon.   总被引:11,自引:14,他引:11       下载免费PDF全文
Lactacin F is a nonlantibiotic, heat-stable, peptide bacteriocin produced by Lactobacillus johnsonii VPI11088. Molecular analysis of the lactacin F DNA region characterized a small operon that codes for three open reading frames, designated lafA, lafX, and ORFZ. The peptide encoded by lafA, the lactacin F structural gene, was compared with various peptide bacteriocins from lactic acid bacteria, and similarities were identified in the amino and carboxy termini of the propeptides. Site-directed mutagenesis of the LafA precursor at the two glycine residues in positions -1 and -2 defined an essential motif for processing of mature lactacin F. The involvement of the peptides encoded by lafX and ORFZ in bacteriocin expression was investigated by subcloning various fragments from the lactacin F region into the shuttle vector pGKV210. In addition to lafA, expression of lafX is essential to lactacin F activity. The lactacin F operon resembles the genetic organization of lactococcin M. Although no function has been assigned to ORFZ by genetic analysis, both peptide Z and the lactococcin M immunity protein are predicted to be integral membrane proteins with four putative transmembrane segments. Lactacin F activity, defined by bactericidal action on Lactobacillus delbrueckii, is dependent on the expression of two genes, lafA and lafX.  相似文献   

12.
Heterologous bacteriocin production in Propionibacterium freudenreichii is described. We developed an efficient system for DNA shuttling between Escherichia coli and P. freudenreichii using vector pAMT1. It is based on the P. freudenreichii rolling-circle replicating plasmid pLME108 and carries the cml(A)/cmx(A) chloramphenicol resistance marker. Introduction of the propionicin T1 structural gene (pctA) into pAMT1 under the control of the constitutive promoter (P4) yielded bacteriocin in amounts equal to those of the wild-type producer Propionibacterium thoenii 419. The P. freudenreichii clone showed propionicin T1 activity in coculture, killing 90% of sensitive bacteria within 48 h. The pamA gene from P. thoenii 419 encoding the protease-activated antimicrobial peptide (PAMP) was cloned and expressed in P. freudenreichii, resulting in secretion of the pro-PAMP protein. Like in the wild type, PAMP activation was dependent on externally added protease. Secretion of the antimicrobial peptide was obtained from a clone in which the pamA signal peptide and PAMP were fused in frame. The promoter region of pamA was identified by fusion of putative promoter fragments to the coding sequence of the pctA gene. The P4 and Ppamp promoters directed constitutive gene expression, and activity of both promoters was enhanced by elements upstream of the promoter core region.  相似文献   

13.
Listeria innocua 743 produces an inhibitory activity demonstrating broad-spectrum inhibition of Listeria monocytogenes isolates. Gel-electrophoretic analysis of culture supernatants indicated that two inhibitors with different molecular weights were produced by this strain. Insertion of Tn917 into a 2.9 Kb plasmid (pHC743) generated mutants with either an impaired ability or a loss in ability to produce one of the inhibitors. Sequence analysis of the transposon insertion regions revealed the presence of two continuous open reading frames, the first encoding a new pediocin-like bacteriocin (lisA) and the second encoding a protein homologous with genes involved in immunity toward other bacteriocins (lisB). Translation of the bacteriocin gene (lisA) initiates from a noncanonical start codon and encodes a 71-amino-acid prebacteriocin which lacked the double glycine leader peptidase processing site common in other type II bacteriocins. Alignment of the sequence with the processed N termini of related bacteriocins suggests that the mature bacteriocin consists of 43 amino acids, with a predicted molecular mass of 4,484 Da. Mutants containing insertions into lisA were sensitive to the inhibitor, indicating that lisAB forms a single operon and that lisB represents the immunity protein. Cloning of an amplicon containing the lisAB operon into Escherichia coli resulted in expression and export of the bacteriocin. This finding confirms that the phenotype is dependent on the structural and immunity gene only and that export of this bacteriocin is sec dependent. This is the first confirmation of bacteriocin production in a Listeria spp., and it is of interest that this bacteriocin is closely related to the pediocin family of bacteriocins produced by lactic acid bacteria.  相似文献   

14.
Streptococcus mutans, a principal causative agent of dental caries, secretes antimicrobial peptides known as mutacins to suppress the growth of competing species to establish a successful colonization. S. mutans UA159, a sequenced strain, produces at least two major mutacins, mutacins IV and V. Mutacin IV is a two-peptide mutacin encoded by nlmAB genes, which are mapped just upstream of a putative immunity-encoding gene SMU.152. Here we explored the function of SMU.152 as an immunity protein. We observed that overexpression of SMU.152 in two sensitive host strains converted the strains to become immune to mutacin IV. To identify the residues that are important for immunity function, we sequentially deleted residues from the C-terminal region of SMU.152. We observed that deletion of as few as seven amino acids, all of which are highly charged (KRRSKNK), drastically reduced the immunity function of the protein. Furthermore, we identified two other putative immunity proteins, SMU.1909 and SMU.925, which lack the last four charged residues (SKNK) that are present in SMU.152 but contain the KRR residues. Synthetic addition of SKNK residues to either SMU.1909 or SMU.925 to reconstitute the KRRSKNK motif and expressing these constructs in sensitive cells rendered the cells resistant to mutacin IV. We also demonstrated that deletion of Man-PTS system from a sensitive strain made the cells partially resistant to mutacin IV, indicating that the Man-PTS system plays a role in mutacin IV recognition.  相似文献   

15.
Enterocin A is a small, heat-stable, antilisterial bacteriocin produced by Enterococcus faecium DPC1146. The sequence of a 10,879-bp chromosomal region containing at least 12 open reading frames (ORFs), 7 of which are predicted to play a role in enterocin biosynthesis, is presented. The genes entA, entI, and entF encode the enterocin A prepeptide, the putative immunity protein, and the induction factor prepeptide, respectively. The deduced proteins EntK and EntR resemble the histidine kinase and response regulator proteins of two-component signal transducing systems of the AgrC-AgrA type. The predicted proteins EntT and EntD are homologous to ABC (ATP-binding cassette) transporters and accessory factors, respectively, of several other bacteriocin systems and to proteins implicated in the signal-sequence-independent export of Escherichia coli hemolysin A. Immediately downstream of the entT and entD genes are two ORFs, the product of one of which, ORF4, is very similar to the product of the yteI gene of Bacillus subtilis and to E. coli protease IV, a signal peptide peptidase known to be involved in outer membrane lipoprotein export. Another potential bacteriocin is encoded in the opposite direction to the other genes in the enterocin cluster. This putative bacteriocin-like peptide is similar to LafX, one of the components of the lactacin F complex. A deletion which included one of two direct repeats upstream of the entA gene abolished enterocin A activity, immunity, and ability to induce bacteriocin production. Transposon insertion upstream of the entF gene also had the same effect, but this mutant could be complemented by exogenously supplied induction factor. The putative EntI peptide was shown to be involved in the immunity to enterocin A. Cloning of a 10.5-kb amplicon comprising all predicted ORFs and regulatory regions resulted in heterologous production of enterocin A and induction factor in Enterococcus faecalis, while a four-gene construct (entAITD) under the control of a constitutive promoter resulted in heterologous enterocin A production in both E. faecalis and Lactococcus lactis.  相似文献   

16.
The primary structure of a bacteriocin produced by Enterococcus hirae DCH5 was determined by combined amino acid and DNA sequencing. Nucleotide analysis of a 2838-bp DNA fragment of E. hirae DCH5 revealed five putative ORFs. The first orf (hirJM79) encodes a 74-amino-acid peptide containing an N-terminal signal peptide of 30 amino acids, followed by the amino acid sequence of the mature bacteriocin, hiracin JM79 (HirJM79), of 44 amino acids. The second orf (hiriJM79) encodes the putative immunity protein of HirJM79. Contiguous ORFs encode a putative mobilization protein (orfC), a relaxase/mobilization nuclease domain (orfD), and a hypothetical protein (orfE). The production and functional expression of HirJM79 by heterologous hosts suggest that hirJM79 is the minimum requirement for production of biologically active HirJM79, that HirJM79 is most likely externalized by the general secretory pathway or sec-dependent pathway, and that HiriJM79 is the immunity protein for HirJM79.  相似文献   

17.
New mechanisms for beta-lactam resistance independent on the target penicillin-binding proteins were detected in beta-lactam-resistant laboratory mutants of Streptococcus pneumoniae. The link between mutations in the histidine protein kinase CiaH and phenotypic expression of cefotaxime resistance suggests that the cell is able to monitor the integrity of the cell wall and in emergency cases such as during the action of beta-lactams can counteract such danger. At least one ciaH mutation Thr230 > Pro is likely to affect its phosphatase activity resulting in elevated phosphorylation of CiaR, the cognate response regulator, but other CiaH-independent signaling pathways may also result in CiaR phosphorylation. Mutants in CiaH, either alone or in combination with a mutated penicillin-binding protein 2x(PBP2x) fail to develop genetic competence. In all cases complementation of this phenotype was observed upon addition of the competence inducing pheromone peptide CSP, the processed product of the comC gene. This indicates that the cia system is part of a regulatory network that includes another two component system comDE. The DNA binding property of CiaR and ComE were exploited to isolate specifically interacting DNA fragments as a first step to identify genes targeted by individual response regulators.  相似文献   

18.
A region of 12 kb flanking the structural gene of the cyclic antibacterial peptide circularin A of Clostridium beijerinckii ATCC 25752 was sequenced, and the putative proteins involved in the production and secretion of circularin A were identified. The genes are tightly organized in overlapping open reading frames. Heterologous expression of circularin A in Enterococcus faecalis was achieved, and five genes were identified as minimally required for bacteriocin production and secretion. Two of the putative proteins, CirB and CirC, are predicted to contain membrane-spanning domains, while CirD contains a highly conserved ATP-binding domain. Together with CirB and CirC, this ATP-binding protein is involved in the production of circularin A. The fifth gene, cirE, confers immunity towards circularin A when expressed in either Lactococcus lactis or E. faecalis and is needed in order to allow the bacteria to produce bacteriocin. Additional resistance against circularin A is conferred by the activity of the putative transporter consisting of CirB and CirD.  相似文献   

19.
Pneumococcal bacteriocins (pneumocins) are antibacterial toxins that mediate intra-species competition within the human host. However, the triggers of pneumocin expression are poorly understood. Using RNA-sequencing, we mapped the regulon of the pneumocin cluster (blp) of Streptococcus pneumoniae D39. Furthermore, by analogy with pneumococcal competence, we show that several antibiotics activate the blp-genes. Using real-time gene expression measurements we show that while the promoter driving expression of the two-component regulatory system blpR/H is constitutive, the remaining blp-promoters that control pneumocin expression, immunity and the inducer peptide BlpC, are pH-dependent and induced in the late exponential phase. Intriguingly, competence for genetic transformation, mediated by the paralogous ComD/E two-component quorum system, is induced by the same environmental cues. To test for interplay between these regulatory systems, we quantified the regulatory response to the addition of synthetic BlpC and competence-stimulating peptide (CSP). Supporting the idea of such interplay, we found that immediately upon addition of CSP, the blp-promoters were activated in a comD/E-dependent manner. After a delay, blp-expression was highly induced and was strictly dependent on blpRH and blpC. This raised the question of the mechanism of BlpC export, since bioinformatic analysis showed that the genes encoding the putative exporter for BlpC, blpAB, are not intact in strain D39 and most other strains. By contrast, all sequenced pneumococcal strains contain intact comAB genes, encoding the transport system for CSP. Consistent with the idea that comAB mediate BlpC export, we finally show that high-level expression of the blp-genes requires comAB. Together, our results demonstrate that regulation of pneumocin expression is intertwined with competence, explaining why certain antibiotics induce blp-expression. Antibiotic-induced pneumocin expression might therefore have unpredictable consequences on pneumococcal colonization dynamics by activating genes that mediate intra-specific interference competition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号