首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Studies to more clearly determine the mechanisms associated with arginine vasopressin (AVP)-induced vasodilation were performed in normal subjects and in quadriplegic subjects with impaired efferent sympathetic responses. Studies to compare the effects of AVP with the hemodynamic effects of nitroglycerin, an agent that primarily affects venous capacitance vessels, were also performed in normal subjects. Incremental infusions of AVP following V(1)-receptor blockade resulted in equivalent reductions in systemic vascular resistance (SVRI) in normal and in quadriplegic subjects. However, there were major differences in the effect on mean arterial pressure (MAP), which was reduced in quadriplegic subjects but did not change in normal subjects. This difference in MAP can be attributed to a difference in the magnitude of increase in cardiac output (CI), which was twofold greater in normal than in quadriplegic subjects. These observations are consistent with AVP-induced vasodilation of arterial resistance vessels with reflex sympathetic enhancement of CI and are clearly different from the hemodynamic effects of nitroglycerin, i.e., reductions in MAP, CI, and indexes of cardiac preload, with only minor changes in SVRI.  相似文献   

2.
The reflex effects of left ventricular distension on venous return, vascular capacitance, vascular resistance, and sympathetic efferent nerve activity were examined in dogs anesthetized with sodium pentobarbital. In addition, the interaction of left ventricular distension and the carotid sinus baroreflex was examined. Vascular capacitance was assessed by measuring changes in systemic blood volume, using extracorporeal circulation with constant cardiac output and constant central venous pressure. Left ventricular distension produced by balloon inflation caused a transient biphasic change in venous return; an initial small increase was followed by a late relatively large decrease. Left ventricular distension increased systemic blood volume by 3.8 +/- 0.6 mL/kg and decreased systemic blood pressure by 27 +/- 2 mmHg (1 mmHg = 133.3 Pa) at an isolated carotid sinus pressure of 50 mmHg. These changes were accompanied by a simultaneous decrease in sympathetic efferent nerve activity. When the carotid sinus pressure was increased to 125 and 200 mmHg, these responses were attenuated. It is suggested that left ventricular mechanoreceptors and carotid baroreceptors contribute importantly to the control of venous return and vascular capacitance.  相似文献   

3.
We tested the hypothesis that the changes in venous tone induced by changes in arterial blood oxygen or carbon dioxide require intact cardiovascular reflexes. Mongrel dogs were anesthetized with sodium pentobarbital and paralyzed with veruronium bromide. Cardiac output and central blood volume were measured by indocyanine green dilution. Mean circulatory filling pressure, an index of venous tone at constant blood volume, was estimated from the central venous pressure during transient electrical fibrillation of the heart. With intact reflexes, hypoxia (arterial PaO2 = 38 mmHg), hypercapnia (PaCO2 = 72 mmHg), or hypoxic hypercapnia (PaO2 = 41; PaCO2 = 69 mmHg) (1 mmHg = 133.32 Pa) significantly increased the mean circulatory filling pressure and cardiac output. Hypoxia, but not normoxic hypercapnia, increased the mean systemic arterial pressure and maintained the control level of total peripheral resistance. With reflexes blocked with hexamethonium and atropine, systemic arterial pressure supported with a constant infusion of norepinephrine, and the mean circulatory filling pressure restored toward control with 5 mL/kg blood, each experimental gas mixture caused a decrease in total peripheral resistance and arterial pressure, while the mean circulatory filling pressure and cardiac output were unchanged or increased slightly. We conclude that hypoxia, hypercapnia, and hypoxic hypercapnia have little direct influence on vascular capacitance, but with reflexes intact, there is a significant reflex increase in mean circulatory filling pressure.  相似文献   

4.
The influence of the sympathetic innervation on the tone of resistive vessels and blood flow oscillations was studied using laser Doppler flowmetry and skin thermography in 18 healthy subjects (before and after reflex cold and heat tests and local thermal testing), 42 patients with denervation syndromes caused by median nerve damage, and 10 patients with an acute stage of aseptic inflammation after radius fracture. The blood flow oscillations in the range of neurogenic sympathetic influences (0.02–0.052 Hz) supported by low-frequency sympathetic rhythms are an essential component of neurovascular interrelations. The importance of these oscillations is determined by their contribution to an increase in tissue perfusion owing to a decrease in the peripheral resistance and also by the leveling of drastic changes in blood flow and stabilization of microhemodynamics upon pronounced changes in the stationary tone. The high-and low-frequency (tonic and oscillatory, respectively) sympathetic rhythmic activities are expressed in two ways: (1) a synchronous increase or decrease in their amplitudes and (2) frequency dominance. The reactivity of the vessel smooth muscles is an important factor in maintaining the blood flow oscillations. Denervation decreases the oscillation amplitude in the neurogenic range. Under the conditions of local “inflammatory sympatholysis,” reflex tonic effects, rather than oscillatory ones, of the sympathetic impulses are mainly suppressed. An isolated evaluation of the blood flow oscillations in the neurogenic sympathetic range cannot be a measure of sympathetic activity. In studies on its functional state and evaluation of the neurogenic tone (NT) of resistive vessels, it is necessary to take into account the parameters of both stationary and oscillatory components of the NT.  相似文献   

5.
Ten normal subjects performed a 90-s isometric exercise [20, 30, and 40% of maximal voluntary contraction (MVC) of the flexor muscle of the right index finger or quadriceps muscle of the right leg. Contralateral forearm and calf blood flows (strain gauge plethysmography) and arterial blood pressure (auscultation) were measured simultaneously. Each exercise caused a decrease in forearm vascular resistance and a progressive increase in calf resistance. These changes were greatest with the 40% MVC. With finger exercise at 20 and 40% MVC, the percentage decreases in forearm vascular resistance from control were 12.3 and 22.7%, respectively (P less than 0.01). Similar decreases (9.5 and 24.9%, respectively; P less than 0.01) were noted with exercise of the quadriceps muscle. By contrast, the corresponding increases in calf vascular resistance were greater (P less than 0.01) with quadriceps exercise (13.3 and 55.4%, respectively) than with finger exercise (6.0 and 36.0%). Arrest of the circulation to the exercising muscles just before the exercise ended caused an abrupt increase in forearm vascular resistance and a decrease in calf resistance. These studies provide further evidence of the heterogeneity of responses of forearm and calf resistance vessels to certain cardiovascular stimuli.  相似文献   

6.
Venous compliance in the legs of aging man has been found to be reduced with decreased blood pooling (capacitance response) in dependent regions, and this might lead to misinterpretations of age-related changes in baroreceptor function during orthostasis. The hemodynamic response to hypovolemic circulatory stress was studied with the aid of lower-body negative pressure (LBNP) of 60 cmH(2)O in 33 healthy men [18 young (mean age 22 yr) and 15 old (mean age 65 yr)]. Volumetric technique was used in the study of capacitance responses in the calf and arm as well as transcapillary fluid absorption in the arm. LBNP led to smaller increase in heart rate (P < 0.001) and peripheral resistance (P < 0.01) and reduced transcapillary fluid absorption in the arm (P < 0.05) in old subjects. However, blood pooling in the calf was reduced in old subjects (1.66 +/- 0.10 vs. 2.17 +/- 0.13 ml/100 ml tissue; P < 0. 01). Accordingly, during similar blood pooling in the calf (LBNP 80 cmH(2)O in old subjects), no changes in cardiovascular reflex responses with age were found. The capacitance response in the arm (mobilization of peripheral blood to the central circulation) was still reduced, however (0.67 +/- 0.10 vs. 1.37 +/- 0.11 ml/100 ml tissue; P < 0.01). Thus the reduced cardiovascular reflex response found in the elderly during orthostatic stress seems to be caused by a reduced capacitance response in the legs with age and a concomitant smaller central hypovolemic stimulus rather than a reduced efficiency of the reflex response. With similar hypovolemic circulatory stress, no changes in cardiovascular reflex responses are seen with age. The capacitance response in the arm (mobilization of peripheral blood toward the central circulation) is reduced, however, by approximately 50% in the elderly. This might seriously impede the possibility of survival of an acute blood loss.  相似文献   

7.
A similarity of the blood flow shifts in response to every single pressor or depressor stimulus in the v. cava anterior in cats and a possibility of dissimilar changes of capacity of the vein's vascular basin under the effect of one and the same stimulus, are revealed. This dissimilarity is mainly due to a skin-muscular component of this vascular basin. An increase in the central venous pressure from 0 to 40 mm of water limits the extent of shifts in the capacity function of the v. cava anterior's basin. The blood flow changes in the v. cava anterior is mainly due to a relationship among regional components of the vessels' total peripheral resistance. A potential possible contribution of the v. cava anterior basin vessels capacitance's shifts constitutes 17.5%, whereas under the effect of neurogenic stimuli in the increase of the blood flow in the v. cava anterior may be completely (up to 100%) maintained by a drop of the capacitance of the vein's vascular basin.  相似文献   

8.
The goal of this study was to analyze and generalize hemodynamic data collected over 20 years from 26 cosmonauts, who had flown from 8 to 438 days aboard orbital stations Salut-7 and Mir. This paper describes the results of ultrasonographic studies of the heart and arterial and venous peripheral vessels in different parts of human body as well as the study of venous capacity by occlusion aeroplethysmography. It was established that, at rest, the key hemodynamic parameters (the pumping function of the heart and blood supply of the brain) and integral parameters (blood pressure and heart rate) were best “protected” and remained stable throughout long exposure in microgravity. In the absence of gravitational stimulation, arterial resistance decreased in almost all vascular regions below the heart level; i.e., the antigravity distribution of the vascular tone was gradually lost as unneeded in microgravity. Venous hemodynamics was found to be most sensitive to microgravity: changes in it were expressed earlier and were more pronounced than in the arterial part of the vasculature. The changes included deceleration of venous return, a decrease in the vascular resistance in the lower body, and an increase in the leg’s venous network capacity. The functional test with the lower body’s negative pressure revealed a deterioration of gravity-dependent responses, which increased with an increase in the duration of the space flight. Cardiovascular deconditioning clearly manifested itself after the return to the Earth’s gravity as a decreased g-tolerance during reentry and orthostatic instability in the post-flight period. The results of this study confirmed the multifactorial genesis of orthostatic instability during space flights including blood redistribution, changes in the regulation of vascular tone of arterial and venous vessels in legs, and hypovolemia.  相似文献   

9.
At rest and after cycle ergometry the elastic properties of the large arteries of limbs of healthy men were examined using an original non-invasive quantitative oscillometric method. It has been shown that in response to muscle work performed with the legs there is a decrease of the effective inner radius, and an increase of the characteristic impedance modulus and bulk modulus and of the elastic resistance of the intact and relaxed wall in the large arteries in the upper limbs. All these changes testify to an increase of vascular tension in the upper limbs. In response to work performed with the hands, there is an increase of the effective inner radius of large arteries of the upper limbs, a large increase of the pulsatile blood volume increment of the intact vessels and a decrease of the characteristic impedance modulus, of the bulk modulus and of the elastic resistance of the intact arterial wall. These changes indicate a decrease of the vascular tension of these arteries. In response to work performed either with the legs or with the hands a decrease of the effective inner radius of large arteries and an increase of the elastic resistance of the relaxed arterial wall were observed in the lower limbs, all these changes indicating relatively small changes in tone of these vessels. It is concluded that the wall tension of large arteries supplying blood to the muscles of non-working limbs is increased. Vascular tension changes in the arteries in working limbs are accounted for by the superimposition of centrally originating vasoconstriction with local vasodilatation, which also affects large arteries.  相似文献   

10.
Studies in rat aorta have shown that the Na-K-2Cl cotransporter NKCC1 is activated by vasoconstrictors and inhibited by nitrovasodilators, contributes to smooth muscle tone in vitro, and is upregulated in hypertension. To determine the role of NKCC1 in systemic vascular resistance and hypertension, blood pressure was measured in rats before and after inhibition of NKCC1 with bumetanide. Intravenous infusion of bumetanide sufficient to yield a free plasma concentration above the IC(50) for NKCC1 produced an immediate drop in blood pressure of 5.2% (P < 0.001). The reduction was not prevented when the renal arteries were clamped, indicating that it was not due to a renal effect of bumetanide. Bumetanide did not alter blood pressure in NKCC1-null mice, demonstrating that it was acting specifically through NKCC1. In third-order mesenteric arteries, bumetanide-inhibitable efflux of (86)Rb was acutely stimulated 133% by phenylephrine, and bumetanide reduced the contractile response to phenylephrine, indicating that NKCC1 influences tone in resistance vessels. The hypotensive effect of bumetanide was proportionately greater in rats made hypertensive by a 7-day infusion of norepinephrine (12.7%, P < 0.001 vs. normotensive rats) but much less so when hypertension was produced by a fixed aortic coarctation (8.0%), again consistent with an effect of bumetanide on resistance vessels rather than other determinants of blood pressure. We conclude that NKCC1 influences blood pressure through effects on smooth muscle tone in resistance vessels and that this effect is augmented in hypertension.  相似文献   

11.
Endothelin-1 (ET-1) is a potent vasoconstrictor involved in the regulation of vascular tone and implicated in hypertension. However, the role of small blood vessels endothelial ET-1 in hypertension remains unclear. The present study investigated the effect of chronic over-expression of endothelial ET-1 on arterial blood pressure and vascular reactivity using transgenic mice approach. Transgenic mice (TET-1) with endothelial ET-1 over-expression showed increased in ET-1 level in the endothelial cells of small pulmonary blood vessels. Although TET-1 mice appeared normal, they developed mild hypertension which was normalized by the ET(A) receptor (BQ123) but not by ET(B) receptor (BQ788) antagonist. Tail-cuff measurements showed a significant elevation of systolic and mean blood pressure in conscious TET-1 mice. The mice also exhibited left ventricular hypertrophy and left axis deviation in electrocardiogram, suggesting an increased peripheral resistance. The ionic concentrations in the urine and serum were normal in 8-week old TET-1 mice, indicating that the systemic hypertension was independent of renal function, although, higher serum urea levels suggested the occurrence of kidney dysfunction. The vascular reactivity of the aorta and the mesenteric artery was altered in the TET-1 mice indicating that chronic endothelial ET-1 up-regulation leads to vascular tone imbalance in both conduit and resistance arteries. These findings provide evidence for the role of spatial expression of ET-1 in the endothelium contributing to mild hypertension was mediated by ET(A) receptors. The results also suggest that chronic endothelial ET-1 over-expression affects both cardiac and vascular functions, which, at least in part, causes blood pressure elevation.  相似文献   

12.
Prostaglandin synthesis has been reported to change with aspirin ingestion via cyclooxygenase enzyme inhibition and with marine oil supplementation via an increase in the metabolism of 3-series eicosanoids. This study investigated the effects of pharmacological manipulations of prostaglandin metabolism on forearm hemodynamics and blood pressure. The agents studied were omega-3 fatty acids and aspirin.In the omega-3 fatty acid study, two groups of normal volunteers (N=10/group) supplemented their diets with either marine oil capsules or placebo. Hemodynamic variables (Mercury-in-Silastic forearm plethysmography) were measured initially and weekly for 4 weeks. There were no significant differences between the two groups in blood pressure, forearm blood flow, venous capacitance, or forearm vascular resistance. Parallel changes occurred for forearm blood flow and venous capacitance. Six normal volunteers took daily dosages of aspirin, increasing from 162 to 6200 mg. Hemodynamic measurements, ADP-induced platelet aggregation, and serum salicylate levels were obtained daily. Maximu inhibition of platelet aggregation occurred after 162 mg. (serum salicylate = 17.7+/−6.4 mg/l). Though serum salicylate levels rose to 165.0+/−20.0 mg/l, no significant changes occurred in blood pressure or forearm blood flow. Even at aspirin levels 16- fold greater than those required to impair platelet aggregation, the changes in forearm vascular resistance were not found to be significant. These results suggest that under resting conditions in normotensive males, neither pharmacological inhibition nor stimulation of vascular prostaglandin metabolism alters to forearm vascular resistance or arterial blood pressure.  相似文献   

13.
The extent to which abnormal endothelium-dependent vasodilator mechanisms contribute to abnormal resting vasoconstriction and blunted reflex vasodilation seen in heart failure is unknown. The purpose of this study was to test the hypothesis that the resting and reflex abnormalities in vascular tone that characterize heart failure are mediated by abnormal endothelium-mediated mechanisms. Thirteen advanced heart-failure patients (New York Heart Association III-IV) and 13 age-matched normal controls were studied. Saline, acetylcholine (20 microg/min), or L-arginine (10 mg/min) was infused into the brachial artery, and forearm blood flow was measured by venous plethysmography at rest and during mental stress. At rest, acetylcholine decreased forearm vascular resistance in normal subjects, but this response was blunted in heart failure. During mental stress with intra-arterial acetylcholine or L-arginine, the decrease in forearm vascular resistance was not greater than during saline control in heart failure [saline control vs. acetylcholine (7 +/- 3 vs. 6 +/- 3, P = NS) or vs. L-arginine (9 +/- 2 units, P = NS)]. The increase in forearm blood flow was not greater than during saline control in heart failure [saline control vs. acetylcholine (1. 2 +/- 0.3 vs. 1.3 +/- 0.3, P = NS), or vs. L-arginine (1.2 +/- 0.2 ml x min(-1) x 100 ml(-1), P = NS)]. Furthermore, during mental stress with nitroprusside, the decrease in forearm vascular resistance was not greater than during saline control [saline control vs. nitroprusside (7 +/- 3 vs. 5 +/- 4 ml x min(-1) x 100 g(-1), P = NS)], and the increase in forearm blood flow was not greater than during saline control [saline control vs. nitroprusside (1.2 +/- 0.3 vs. 1.3 +/- 0.5 ml x min(-1) x 100 g(-1), P = NS)]. Because the endothelial-independent agent nitroprusside was unable to restore resting and reflex vasodilation to normal in heart failure, we conclude that impaired endothelium-mediated vasodilation with acetylholine-nitric oxide cannot be the principal cause of the attenuated resting- or reflex-mediated vasodilation in heart failure.  相似文献   

14.
To examine the role of neural factors in the control of coronary vasoactivity in conscious animals, dogs were supplied with miniature pressure gauges in the aorta and left ventricle (to measure aortic and left ventricular pressures, respectively and with a flow probe on the left circumflex coronary artery (to measure coronary blood flow). The experiments were conducted several weeks after recovery from operation. Stimulation of the carotid chemoreceptor and pulmonary inflation elicited a biphasic reflex response. Initially, coronary vasodilation was observed; coronary blood flow tripled even after changes in metabolic factors were minimized by pretreatment with propranolol. A similar response occurred after a spontaneous deep breath. The coronary vasodilation could be blocked by alpha-adrenergic receptor blockade. The second phase of the response involved an increase in coronary vascular resistance, associated with elevated arterial pressure and an absolute reduction in coronary blood flow and coronary sinus oxygen content. The secondary coronary vasoconstriction was also abolished by alpha-adrenergic blockade. Paradoxically, alpha-adrenergic receptor blockade with phentolamine (at constant heart rate and after beta-adrenergic receptor blockade) did not increase coronary blood flow and reduced coronary vascular resistance only slightly. Selective alpha 1-adrenergic receptor blockade with prazosin and trimazosin on different days induced progressively greater reductions in coronary vascular resistance. Trimazosin was the only alpha-adrenergic receptor blocker to elevate coronary blood flow significantly. It is conceivable, but speculative, that withdrawal of alpha-adrenergic tone may involve activation of an intermediate agent, which is a potent coronary vasodilator. Alternatively, withdrawal of alpha-adrenergic tone may be an important mechanism for immediate control of the coronary circulation, but under more chronic conditions it plays a lesser role as a result of suppression by metabolic factors.  相似文献   

15.
Heart output, arterial pressures, and heart rate were measured directly in conscious unrestrained eels (Anguilla australis) and responses to intra-arterial injection of adrenaline monitored. Adrenaline increased systemic vascular resistance, heart output, and cardiac stroke volume in all animals. In some cases small transient decreases in stroke volume and hence heart output were seen at the peak of the pressor response: These probably reflect a passive decrease in systolic emptying due to increased afterload on the heart. In most cases, adrenaline produced tachycardia; but two animals showed consistent and profound reflex bradycardia, which was accompanied by a concomitant increase in stroke volume such that heart output was maintained or increased slightly. The interaction of changes in heart output and systemic vascular resistance produced complex and variable changes in arterial pressure. There was no consistent pattern of changes in branchial vascular resistance. Atropine treatment in vivo revealed vagal cardio-inhibitory tone in some animals and always blocked the reflex bradycardia seen during adrenaline induced hypertension. In some animals, adrenaline injection after atropine pretreatment led to the establishment of cyclic changes in arterial pressure with a period of about 1 min (Mayer waves).  相似文献   

16.
It has been proposed that the reduction of nitrite by red cells producing NO plays a role in the regulation of vascular tone. This hypothesis was investigated in rats by measuring the effect of nitrite infusion on mean arterial blood pressure (MAP), cerebral blood flow (CBF) and cerebrovascular resistance (CVR) in conjunction with the accumulation of red cell NO. The relative magnitude of the effects on MAP and CBF as well as the time dependent changes during nitrite infusion are used to distinguish between the effects on the peripheral circulation and the effects on the cerebral circulation undergoing cerebral autoregulation. The nitrite infusion was found to reverse the 96% increase in MAP and the 13% decrease in CBF produced by L-NAME inhibition of e-NOS. At the same time there was a 20-fold increase in oxygen stable red cell NO. Correlations of the red cell NO for individual rats support a role for red cell nitrite reduction in regulating vascular tone in both the peripheral and the cerebral circulation. Furthermore, data obtained prior to treatment is consistent with a contribution of red cell reduced nitrite in regulating vascular tone even under normal conditions.  相似文献   

17.
The tone of vascular smooth muscle cells is a primary determinant of the total peripheral vascular resistance and hence the arterial blood pressure. Most forms of hypertension ultimately result from an increased vascular tone that leads to an elevated total peripheral resistance. Regulation of vascular resistance under normotensive and hypertensive conditions involves multiple mediators, many of which act through G protein-coupled receptors on vascular smooth muscle cells. Receptors that mediate vasoconstriction couple with the G-proteins G(q)-G11 and G12-G13 to stimulate phosphorylation of myosin light chain (MLC) via the Ca2+/MLC kinase- and Rho/Rho kinase-mediated signaling pathways, respectively. Using genetically altered mouse models that allow for the acute abrogation of both signaling pathways by inducible Cre/loxP-mediated mutagenesis in smooth muscle cells, we show that G(q)-G11-mediated signaling in smooth muscle cells is required for maintenance of basal blood pressure and for the development of salt-induced hypertension. In contrast, lack of G12-G13, as well as of their major effector, the leukemia-associated Rho guanine nucleotide exchange factor (LARG), did not alter normal blood pressure regulation but did block the development of salt-induced hypertension. This identifies the G12-G13-LARG-mediated signaling pathway as a new target for antihypertensive therapies that would be expected to leave normal blood pressure regulation unaffected.  相似文献   

18.
The purpose of this study was to determine the pattern of vascular pressure drop in newborn lungs and to define the contribution of active vasomotor tone to this longitudinal pressure profile. We isolated and perfused with blood the lungs from 22 rabbit pups, 5-19 days old. We inflated the lungs to a constant airway pressure of 7 cmH2O, and at constant blood flow, we maintained outflow pressure in the circulation greater than airway pressure at the level of micropuncture (zone 3). By the use of glass micropipettes and a servo-nulling device, we measured pressures in small (20-60 micron diam) subpleural arterioles and venules in the lungs of 13 newborn rabbits. We found that 60% of the pressure drop was in arteries, 31% in microvessels of less than 20-60 micron diam, and 9% in veins. In the lungs of an additional nine rabbit pups we measured microvascular pressures before and after the addition to the perfusate of the vasodilator, papaverine hydrochloride. We found that removal of vasomotor tone resulted in a 33% reduction in total lung vascular resistance, which resulted from a decrease in pressure in arterial vessels, with no change in microvascular pressure. These findings indicate that arteries of greater than 60 micron diam constitute the major source of vascular resistance in isolated perfused newborn rabbit lungs.  相似文献   

19.
The vascular response to the muscarinic receptor agonist acetylcholine (ACh) in the presence of selected antagonists was examined in the isolated blood-perfused canine left lower lung lobe under conditions of normal (resting) and elevated vascular tone. At normal vascular tone, ACh (1-5 mumol) produced a dose-dependent increase in pulmonary arterial pressure (Ppa), total pulmonary vascular resistance (PVR), and downstream resistance (Rds) without altering upstream resistance (Rus). Pirenzepine (50 and 100 nM), the prototype M1-selective antagonist, and gallamine, an M2-selective antagonist, as well as atropine (50 nM) and secoverine (100 nM), nonselective antagonists, attenuated (P less than 0.05) the ACh-induced increase in Ppa and Rds. With elevated vascular tone induced by serotonin infusion, ACh produced a dose-dependent increase in Ppa in 19 of 25 lobes, although Rus decreased while Rds increased in all lobes. At high vascular tone, pirenzepine or gallamine attenuated the ACh-induced increase in Rds, whereas Rus was not affected. Secoverine and atropine antagonized ACh-induced increases in both Rds and Rus. The pA2 values (i.e., the negative log antagonist concentration requiring a doubling of ACh dose for an equivalent increase in Rds) for gallamine, pirenzepine, secoverine, and atropine were 6.1 +/- 0.1, 7.4 +/- 0.1, 8.3 +/- 0.2, and 10.2 +/- 0.3, respectively. These results suggest that 1) ACh increases PVR in the dog by constricting the venous segments (downstream) of the pulmonary circulation via activation of pulmonary vascular muscarinic receptors under conditions of both normal and elevated vascular tone, 2) both M1- and non-M1-muscarinic receptor subtypes appear to participate in mediating the ACh-induced increase in Rds, and 3) ACh moderately relaxes the upstream (arterial) vessels, especially under conditions of elevated tone.  相似文献   

20.
Simultaneous measurements were made of changes in vascular resistance in the forearm and calf in response to moving from supine to sitting or to head-down tilt. The subjects were healthy male volunteers, 21-63 yr. Blood flows were measured by venous occlusion plethysmography using mercury-in-Silastic strain-gauges. The gauges were maintained at the same level relative to the heart during the postural changes. Arterial blood pressure was measured by auscultation; heart rate was counted from the plethysmograms. Changing from supine to sitting caused a decrease in forearm blood flow from 4.13 +/- 0.14 to 2.16 +/- 0.19 ml.100 ml-1.min-1. Corresponding calf flows were 4.21 +/- 0.32 and 4.40 +/- 0.59 ml.100 ml-1.min-1. There was no change in mean arterial blood pressure, and heart rate increased by 8.0 +/- 1.5 beats/min. Arrest of the circulation of both legs with occlusion cuffs on the thighs before sitting, to prevent pooling of blood in them, reduced the degree of forearm vasoconstriction. Neck suction (40 Torr) during sitting, to oppose the decrease in transmural pressure at the carotid sinuses, inhibited the vasoconstriction. During a 30 degrees head-down tilt, there was a dilatation of forearm but not of calf resistance vessels. A Valsalva maneuver caused a similar constriction of both vascular beds. Thus, when changes in vascular resistance in forearm and calf are compared, the major reflex adjustments to changes in posture take place in the forearm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号