首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Some new data concerning the role of transport proteins of the ABC family in multidrug resistance (MDR) of human tumor cells, and problems connected with regulation of these proteins are considered. MDR is a complex phenomenon that may be caused simultaneously by several mechanisms functioning in one and the same cell. Among them there may be the alterations of activity of several transport proteins. Activation of these proteins may be associated with alterations of activities of different cell protective systems and of the signal transduction pathways involved in regulation of proliferation, differentiation, and apoptosis. Clinical significance of multifactor MDR is discussed.  相似文献   

2.
3.
4.
Carbon dioxide uptake and water release through stomata, controlling the opening and closure of stomatal pore size in the leaf surface, is critical for optimal plant performance. Stomatal movements are regulated by multiple signalling pathways involving guard cell ion channels. Using reverse genetics, we recently isolated a T-DNA insertion mutant for the Arabidopsis ABC-transporter AtMRP5 (mrp5-1). Guard cells from mrp5-1 mutant plants were found to be insensitive to the sulfonylurea compound glibenclamide, which in the wild type induces stomatal opening in the dark. Here, we report that the knockout in AtMRP5 affects several signalling pathways controlling stomatal movements. Stomatal apertures of mrp5-1 and wild-type Ws-2 were identical in the dark. In contrast, opening of stomata of mrp5-1 plants was reduced in the light. In the light, stomatal closure of mrp5-1 was insensitive to external calcium and abscisic acid, a phytohormone responsible for stomatal closure during drought stress. In contrast to Ws-2, the phytohormone auxin could not stimulate stomatal opening in the mutant in darkness. All stomatal phenotypes were complemented in transgenic mrp5-1 plants transformed with a cauliflower mosaic virus (CaMV) 35S-AtMRP5 construct. Both whole-plant and single-leaf gas exchange measurements demonstrated a reduced transpiration rate of mrp5-1 in the light. Excised leaves of mutant plants exhibited reduced water loss, and water uptake was strongly decreased at the whole-plant level. Finally, if plants were not watered, mrp5-1 plants survived much longer due to reduced water use. Analysis of CO2 uptake and transpiration showed that mrp5-1 plants have increased water use efficiency. Mutant plants overexpressing AtMRP5 under the control of the CaMV 35S promoter again exhibited wild-type characteristics. These results demonstrate that multidrug resistance-associated proteins (MRPs) are important components of guard cell functioning.  相似文献   

5.
The ABC (ATP-binding cassette) protein superfamily is a ubiquitous and functionally versatile family of proteins that is conserved from archaea to humans. In eukaryotes, most of these proteins are implicated in the transport of a variety of molecules across cellular membranes, whereas the remaining ones are involved in biological processes unrelated to transport. The biological functions of several ABC proteins have been described in clinically important parasites and nematode worms and include vesicular trafficking, phospholipid movement, translation and drug resistance. This chapter reviews our current understanding of the role of ABC proteins in drug resistance and treatment failure in apicomplexan, trypanosomatid and amitochondriate parasites of medical relevance as well as in helminths.  相似文献   

6.
7.
Multidrug resistance is a major cause of clinical failure in treating bacterial infections. Increasing evidence suggests that bacteria can resist multiple antibiotics through intrinsic mechanisms that rely on gene products such as efflux pumps that expel antibiotics and special membrane proteins that block the penetration of drug molecules. In this study, Escherichia coli was used as a model system to explore the genetic basis of intrinsic multidrug resistance. A random mutant library was constructed in E. coli EC100 using transposon mutagenesis. The library was screened by growth measurement to identify the mutants with enhanced or reduced resistance to chloramphenicol (Cm). Out of the 4,000 mutants screened, six mutants were found to be more sensitive to Cm and seven were more resistant compared to the wild-type EC100. Mutations in 12 out of the 13 mutants were identified by inverse polymerase chain reaction. Mutants of the genes rob, garP, bipA, insK, and yhhX were more sensitive to Cm compared to the wild-type EC100, while the mutation of rhaB, yejM, dsdX, nagA, yccE, atpF, or htrB led to higher resistance. Overexpression of rob was found to increase the resistance of E. coli biofilms to tobramycin (Tob) by 2.7-fold, while overexpression of nagA, rhaB, and yccE significantly enhanced the susceptibility of biofilms by 2.2-, 2.5-, and 2.1-fold respectively.  相似文献   

8.
9.
We have used a plasmid containing the Neurospora crassa pyr4 gene to transform an Aspergillus nidulans pyrG89 mutant strain in the presence of BamHI, and isolated multidrug-sensitive mutants among the transformants. Using this approach, we hoped to identify genes whose products are important for drug resistance by analyzing gene disruptions that alter the drug sensitivity of the cell. About 1300 transformants isolated following transformation were screened for sensitivity to drugs or various stress agents with different and/or the same mechanism of action. Seventy-seven of these transformants showed sensitivity to at least one drug, while fourteen transformants showed a complex phenotype of sensitivity to different drugs. The pyr4 marker was shown to be tightly linked to the mutant phenotype in only 36% of the pleiotropic mutants analyzed in sexual crosses. Genetic crosses between our multidrug-sensitive transformants and cycloheximide-sensitive and imazalil-resistant mutants of A nidulans were performed to determine whether mutations were present at the same loci. We have shown that the gene imaD that confers resistance to imazalil may also be involved in cycloheximide and hygromycin sensitivity, since this mutation is allelic to scyB (mutant scy290). In addition, the cross between the transformant R223 and the imazalil-resistant mutant ima535 showed that both mutations are in the same complementation group, suggesting that the gene imaG could also be involved in cycloheximide and itraconazole sensitivity. Received: 30 August 1999 / Accepted: 22 February 2000  相似文献   

10.
The nucleotide sequence of the Bacillus licheniformis bacitracin-resistance locus was determined. The presence of three open reading frames, bcrA, bcrB and bcrC, was revealed. The BcrA protein shares a high degree of homology with the hydrophilic ATP-binding components of the ABC family of transport proteins. The bcrB and bcrC genes were found to encode hydro-phobic proteins, which may function as membrane components of the permease. Apart from Bacillus subtilis, these genes also confer resistance upon the Gram-negative Escherichia coli. The presumed function of the Bcr transporter is to remove the bacitracin molecule from its membrane target. In addition to the homology of the nucleotide-binding sites, BcrA protein and mammalian multidrug transporter or P-glycoprotein share collateral detergent sensitivity of resistant cells and possibly the mode of Bcr transport activity within the membrane. The advantage of the resistance phenotype of the Bcr transporter was used to construct deletions within the nucleotide-binding protein to determine the Importance of various regions in transport.  相似文献   

11.
12.
Subcellular localization and activity of multidrug resistance proteins   总被引:10,自引:0,他引:10       下载免费PDF全文
The multidrug resistance (MDR) phenotype is associated with the overexpression of members of the ATP-binding cassette family of proteins. These MDR transporters are expressed at the plasma membrane, where they are thought to reduce the cellular accumulation of toxins over time. Our data demonstrate that members of this family are also expressed in subcellular compartments where they actively sequester drugs away from their cellular targets. The multidrug resistance protein 1 (MRP1), P-glycoprotein, and the breast cancer resistance protein are each present in a perinuclear region positive for lysosomal markers. Fluorescence-activated cell sorting analysis suggests that these three drug transporters do little to reduce the cellular accumulation of the anthracycline doxorubicin. However, whereas doxorubicin enters cells expressing MDR transporters, this drug is sequestered away from the nucleus, its subcellular target, in vesicles expressing each of the three drug resistance proteins. Using a cell-impermeable inhibitor of MRP1 activity, we demonstrate that MRP1 activity on intracellular vesicles is sufficient to confer a drug resistance phenotype, whereas disruption of lysosomal pH is not. Intracellular localization and activity for MRP1 and other members of the MDR transporter family may suggest different strategies for chemotherapeutic regimens in a clinical setting.  相似文献   

13.
14.
15.
The yeast protein Bem1p, which bears two src homology region 3 (SH3) domains, is involved in cell polarization. A Rho-type GTPase, Rho3p, is involved in the maintenance of cell polarity for bud formation, and the rho3 defect is suppressed by a high dose of BEM1. Mutational analysis revealed that the second SH3 domain from the NH2 terminus (SH3-2) of Bem1p is important for the functions of Bem1p in bud formation and in the suppression of the rho3 defect. Boi2p, which bound to SH3-2 Bem1p, was identified using the two-hybrid system. Boi2p has a proline-rich sequence that is critical for displaying the Boi2p-Bem1p two-hybrid interaction, an SH3 domain in its NH2-terminal half, and a pleckstrin homology domain in its COOH-terminal half. A BOI2 homologue, BOI1, was identified as a gene whose overexpression inhibited cell growth. Cells overexpressing either BOI1 or BOI2 were arrested as large, round, and unbudded cells, indicating that the Boi proteins affect cell polarization. Genetic analysis revealed that BOI1 and BOI2 are functionally redundant and important for cell growth. delta boi1 delta boi2 cells became large round cells or lysed with buds, displaying defects in bud formation and in the maintenance of cell polarity. Analysis using several truncated versions of BOI2 revealed that the COOH-terminal half, which contains the pleckstrin homology domain is essential for the function of Boi2p in cell growth, while the NH2- terminal half is not, and the NH2-terminal half might be required for modulating the function of Bem1p. Overproduction of either Rho3p or the Rho3p-related GTPase Rho4p suppressed the boi defect. These results demonstrate that Rho3p GTPases and Boi proteins function in the maintenance of cell polarity for bud formation.  相似文献   

16.
The small multidrug resistance (SMR) protein family is a bacterial multidrug transporter family. As suggested by their title, SMR proteins are composed of four transmembrane α-helices of approximately 100-140 amino acids in length. Since their designation as a family, many homologues have been identified and characterized both structurally and functionally. In this review the topology, structure, drug resistance, drug binding, and transport mechanisms of the entire SMR protein family are examined. Additionally, updated bioinformatic analysis of predicted and characterized SMR protein family members was also conducted. Based on SMR sequence alignments and phylogenetic analysis of current members, we propose that this small multidrug resistance transporter family should be expanded into three subclasses: (i) the small multidrug pumps (SMP), (ii) suppressor of groEL mutation proteins (SUG), and a third group (iii) paired small multidrug resistance proteins (PSMR). The roles of these three SMR subclasses are examined, and the well-characterized members, such as Escherichia coli EmrE and SugE, are described in terms of their function and structural organization.  相似文献   

17.
铜绿假单胞菌多重耐药基因的筛选及鉴定   总被引:1,自引:0,他引:1  
[目的]研究铜绿假单胞菌中与耐药性相关的基因.[方法]筛选转座突变体文库中对多种抗菌药物敏感的突变体,通过随机PCR、核苷酸测序及序列比对确定突变体中转座子的插入位点及其破坏的基因.[结果]筛选得到2株对多种抗菌药物敏感的突变体,其中被破坏的基因分别为功能未知的新基因PA2580和PA2800.[结论]PA2580和PA2800可能分别通过参与细胞氧化还原作用和细胞壁合成进而与铜绿假单胞菌耐药性相关.  相似文献   

18.
Because melanomas are intrinsically resistant to conventional radiotherapy and chemotherapy, many alternative treatment approaches have been developed such as biochemotherapy and immunotherapy. The most common cause of multidrug resistance (MDR) in human cancers is the expression and function of one or more A TP‐b inding c assette (ABC) transporters that efflux anticancer drugs from cells. Melanoma cells express a group of ABC transporters (such as ABCA9, ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, and ABCD1) that may be associated with the resistance of melanoma cells to a broad range of anticancer drugs and/or of melanocytes to toxic melanin intermediates and metabolites. In this review, we propose a model (termed the ABC‐M model) in which the intrinsic MDR of melanoma cells is at least in part because of the transporter systems that may also play a critical role in reducing the cytotoxicity of the melanogenic pathway in melanocytes. The ABC‐M model suggests molecular strategies to reverse MDR function in the context of the melanogenic pathway, which could open therapeutic avenues towards the ultimate goal of circumventing clinical MDR in patients with melanoma.  相似文献   

19.
The small multidrug resistance (SMR) protein family is a bacterial multidrug transporter family. As suggested by their title, SMR proteins are composed of four transmembrane alpha-helices of approximately 100-140 amino acids in length. Since their designation as a family, many homologues have been identified and characterized both structurally and functionally. In this review the topology, structure, drug resistance, drug binding, and transport mechanisms of the entire SMR protein family are examined. Additionally, updated bioinformatic analysis of predicted and characterized SMR protein family members was also conducted. Based on SMR sequence alignments and phylogenetic analysis of current members, we propose that this small multidrug resistance transporter family should be expanded into three subclasses: (i) the small multidrug pumps (SMP), (ii) suppressor of groEL mutation proteins (SUG), and a third group (iii) paired small multidrug resistance proteins (PSMR). The roles of these three SMR subclasses are examined, and the well-characterized members, such as Escherichia coli EmrE and SugE, are described in terms of their function and structural organization.  相似文献   

20.
One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC) transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号