首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lake Kraenepoel (Belgium) is a shallow lake (22 ha), divided in two basins since 1957 by a shallow dike. The lake was used for fish farming until World War II and was drawn down about every 5 years to harvest fish. Despite its dense historical carp population, it had clear water and a rich Littorelletea vegetation. During the course of the 20th century, the lake became eutrophic and the Littorelletea vegetation degraded. The northern basin, which was still drawn down about every decade after 1957, retained its clear water and had a dense submerged macrophyte vegetation. The southern basin, which was never drawn down after 1957 and which received direct surface water inputs, had become a turbid shallow lake with phytoplankton blooms in summer. In 2000, efforts were taken to restore the lake: the entire lake was drawn down, the fish community was biomanipulated, nutrient-rich surface water inputs were diverted from the southern basin and sediments were removed (only in the northern basin). Fish biomanipulation and sediment removal were successful in the northern basin, as nutrient levels declined and the Littorelletea vegetation recovered. In the southern basin, sediment analyses indicated that drawdown resulted in sediments with a lower water and organic matter content and water column turbidity decreased after the drawdown. But pH in the southern basin declined to <4, probably because sulphides in the sediment were oxidized during drawdown and sediment desiccation. In contrast, desiccated sediments were removed from the northern basin and pH did not decline below 6 after restoration. In spite of the still high dissolved nutrient concentrations, phytoplankton biomass declined significantly in the southern basin, probably due to acidification. However, no Littorelletea species colonised the lake bottom in the southern basin. Thus, lake drawdown may be a useful management technique to promote clear water conditions in shallow lakes. However, acidification due to sulphide oxidation may be an undesirable outcome and should be considered in drawdown and sediment desiccation manipulations.  相似文献   

2.
W. F. DeBusk 《Hydrobiologia》1988,159(2):159-167
A field study was conducted (May 1981 to June 1982) to develop a data-base on seasonal changes of water and sediment chemistry of Lake Monroe (4 000 ha surface and ca. 2 m deep) located in central Florida, USA. This shallow eutrophic lake is a part of the St. Johns River. Quantitative samples of lake water and sediments were collected on a monthly basis from 16 stations and analyzed for various physico-chemical parameters. Relatively high levels of dissolved solids (mean electrical conductivity (EC) = 1832 µS cm1) prevailed in the lake water, and seasonal changes in EC were probably associated with hydrologic flushing from external sources, such as incoming water from upstream as well as precipitation. Average monthly levels of total N and P during the study period were 1.82 and 0.21 mg l–1, respectively. Nutrient concentrations in the water did not show any strong seasonal trends. Organic matter content of lake sediments ranged from 1 to 182 g C kg–1 of dry sediment, reflecting considerable spatial variability. All nutrient elements in the sediments showed highly significant (P < 0.01) correlations with sediment organic C, though little or no significant relationship appeared at any sampling period between water and sediment chemistry of the lake. Temporal trends in water and sediment chemical parameters may have been concealed by periodic hydrologic flushing of the St. Johns River into Lake Monroe.Florida Agricultural Experiment Stations Journal Series No. 7836.  相似文献   

3.
【目的】探究青海湖岸带土壤与沉积物的地化特征与细菌群落对水位扩张的响应。【方法】从岸上至岸下沿垂直青海湖岸带方向,采集距离湖面不同高度土壤(土壤:S1、S2)、岸边不同水深表层沉积物(过渡区:E0、E6、E17)及湖心表层沉积物(沉积物:D1、D2)样品,土壤与沉积物水深(土壤水深表示为负数)从小到大的变化表征岸边土壤被淹水转变为沉积物的过程。采用地球化学分析和16SrRNA基因高通量测序技术,探究岸带土壤与沉积物样品中的地化特征与微生物群落构成。【结果】青海湖水位上升导致的生境转变对岸带土壤与沉积物的理化性质、营养水平、有机碳类型等地化特征产生显著影响。具体表现为,随着水位升高,岸带土壤与沉积物的pH、矿物结合态有机碳含量显著升高,而碳氮比值、可溶性有机碳(dissolved organic carbon,DOC)、颗粒态有机碳含量显著下降。随着水位上升,青海湖岸带被淹没土壤的细菌群落多样性下降,且群落结构发生明显变化。这种变化与环境因子变化密切相关,具体表现为,细菌群落物种丰富度指数和香农多样性指数随着水位上升呈下降趋势;活性金属结合态有机碳含量与细菌群落多样性的变化密切相关;理化...  相似文献   

4.
River regulation can advantage non-native aquatic biota at the expense of native species. Nevertheless, flow regulating structures are sometimes used with the aim of achieving positive environmental outcomes in aquatic ecosystems. In the lower River Murray, Australia, drought-induced water level recession and acid sulfate soil exposure prompted the construction of an earthen levee, isolating a section of river channel (the Goolwa weir pool (GWP)) within which water levels were managed to mitigate a risk of water body acidification. The present study aimed to determine the impact of water level management on the fish community by investigating variation in species abundance and recruitment between sites subject to water level management in the GWP and unmanaged sites in Lake Alexandrina. Prior to levee construction, in August 2009, the abundance of the non-native common carp was similar in the GWP and Lake Alexandrina. Following water level management, in December 2009 and April 2010, the abundance of common carp in the GWP was approximately 1000 and 250 times greater than abundance in Lake Alexandrina, as a result of recruitment of young-of-year fish. No native freshwater species were significantly more abundant in the GWP in August 2009, December 2009 or April 2010. The results of this study suggest that the isolation of a river reach and a managed rise in water level facilitated spawning and recruitment of a non-native fish species. As such, the ecological benefits and risks of restoration and mitigation projects that involve the construction of flow regulating structures and water level management should be carefully considered.  相似文献   

5.
Watts  C. J. 《Hydrobiologia》2000,431(1):27-39
Water levels in many reservoirs typically fluctuate seasonally, but the effects of re-inundation of exposed sediments on nutrient dynamics in the water column are poorly known. This study concerns the seasonal differences in the potential of sediments from two Australian reservoirs, after having undergone different degrees of in situ desiccation, to release P under aerobic conditions. Differences were determined between biotic and abiotic P release, and results were also examined in relation to sediment chemistry. The two reservoirs, Carcoar Dam and Lake Rowlands, demonstrated different patterns of P release involving an interactive complex of P release mechanisms. Sediment chemistry at the reservoir margins was important because of the higher concentrations of N, P, Fe and Mn in Lake Rowlands. Physical and chemical processes influenced P uptake and release due to desiccation and oxidation of sediments and were of greater importance in Carcoar Dam. Abiotic P release from sterilised sediments was greater than from unsterilised sediments where both biotic and abiotic processes were apparent. Biotic P uptake and release were especially marked in Lake Rowlands where large macrophyte beds provided a rich source of organic matter. Little seasonal difference in P release was detected. The increased P release from dried sediments has ramifications for internal P loading into reservoirs and for the calculation of P budgets. For managers of reservoirs where large expanses of sediment are exposed during drying, it may be better to maintain high water levels, where possible, during the summer by modifying drawdown practices.  相似文献   

6.
We applied a multi-proxy palaeolimnological approach to provide insights into the natural variability and human-mediated trends of two interconnected temperate large shallow lakes, Peipsi and Võrtsjärv, during the twentieth century. The history of the lakes was assessed on the basis of age-related changes in the sediment main constituents (water, organic matter and carbonate), sub-fossil pigments, diatom assemblages and organic matter dissolved in pore water. The temporal changes in the palaeodata indicate an increase of the in-lake biological production in both lakes from about the 1960s, suggesting enhanced nutrient inputs. In subsequent decades, the gradual increase of autochthonous organic matter becomes more obvious, indicating progressive eutrophication of the lakes. Palaeolimnological indicators from the sediment record of Lake Peipsi indicate a slight recession of the lake’s eutrophication in the 1990s but not for Lake Võrtsjärv. The results of the study also suggest that after the lakes became eutrophied, the climatically induced water-level fluctuations ceased to be the main driver determining the abundance of phytoplankton. Responses of the lakes to human-induced impacts are better recorded in the sediments of Lake Peipsi than in those of Lake Võrtsjärv, which is shallower of the two and where the wave-induced resuspension of deposits markedly smooths or erases the signals of environmental changes. The results of the investigation expand the knowledge on how large shallow lakes respond to human-mediated and natural perturbations, including those in the lake catchment areas and the capability of the lakes to store the chronology and sequence of these changes.  相似文献   

7.
Lake Balaton, the largest shallow lake in Central Europe, has no natural outlet, therefore, underwent water level changes during its 15,000–17,000 years of history. The lake is very sensitive to both climate changes and human impacts. Surroundings have been inhabited since the Stone Age; however, heavy human impact can be recognized during the past 6000 years. In this study, we established three different stages for and reconstructed water level changes of Lake Balaton by geochemical data, subfossil Cladocera and diatom remains in the sediments of the Zalavári Pond, a part of the Kis-Balaton wetland. In 9900–8600 cal. year BP, climate was dry, water level was low, and there was a wetland in this area. Although organic matter content was low in the sediment, the ratio of Fe/Mn was high. Between 5600 and 5000 cal. year BP, water level increased, Fe/Mn ratio shows that oxygen conditions of sediments was improved in agreement with the relatively low number of diatom remains and dense chydorid remains. About 5000 cal. year BP, water level of Lake Balaton decreased as indicated by high organic content with low carbonate and high Fe/Mn ratio in the sediments (oxygen depletion). At the bottom of this section, high Fe and S concentrations showed accumulation of pyrite (FeS2) that is common in wetlands with very low redox potential. Low abundance of Cladocera remains together with rich and diverse diatom flora confirm the low water level hypothesis. Our data support that the water level of Lake Balaton was higher between 8600 and 5000 cal. year BP than it is at present.  相似文献   

8.
This article presents a fossil diatom-based, semi-quantitative reconstruction of water level fluctuations for Lake Baringo over the past 200 years as a consequence of climatic variations. A 285 cm long sediment core sample was collected using a Rod-Operated Single-drive Stationary Piston corer. Lake level was inferred using indices based on the proportion of planktonic to benthic diatom taxa (P/B ratio). The sediment archive presented distinct zones dominated by planktonic and benthic diatom flora. An initial transgression in the early 19th century was characterised as a shallow water environment dominated by planktonic Aulacoseira spp. This was a response to extreme drought during the late 18th to early 19th century. Mid-19th century was defined by a high lake stand. The late 19th to early 20th centuries experienced low water level following the widely documented aridity at the time. The mid-20th century was marked by a spectacular rise in water level that coincided with remarkably wet years during the early 1960s and late 1970s. The first decade of the 21st century witnessed widespread changes in water level. The proxy records show that lake ramping and drawdown over the years follow approximately 50-year climatic cycles.  相似文献   

9.
1. Reservoir creation and management can enhance many ecological services provided by freshwater ecosystems, but may alter the natural conditions to which aquatic biota have adapted. Benthic macroinvertebrates often reflect environmental conditions, and this community may be particularly susceptible to water‐level changes that alter sediment exposure, temperature regime, wave‐induced sediment redistribution and basal productivity. 2. Using a before–after control–impact experimental design, we assessed changes in macroinvertebrate community structure corresponding with changes in water‐level management in two lentic systems in the Voyageurs National Park, Minnesota, U.S.A. Littoral zone (depths 1–5 m) benthic macroinvertebrate assemblages were sampled in Rainy Lake (control system) and Namakan Reservoir (impact system) in 1984–85, and again in 2004–05 following a change in water‐level management that began in January 2000. The new regime reduced the magnitude of winter drawdown in Namakan Reservoir from 2.5 to 1.5 m, and allowed the reservoir to fill to capacity in late May, a month earlier than under the prior regime. Rainy Lake water levels were not altered substantially. 3. We found changes in macroinvertebrate community structure in Namakan Reservoir relative to Rainy Lake at 1–2 m depths but not at 3–5 m depths. These shallower depths would have been most directly affected by changes in sediment exposure and ice formation. 4. In 2004–05, Namakan Reservoir benthos showed lower overall abundance, more large‐bodied taxa and an increase in non‐insect invertebrates relative to 1984–85, without corresponding changes in Rainy Lake. 5. Changes in the benthic community in Namakan may reflect cooler water in spring and early summer as well as lower resource availability (both autochthonous production and allochthonous inputs) under the new regime.  相似文献   

10.
Reskóné  Mária N.  Borsodi  Andrea K. 《Hydrobiologia》2003,506(1-3):715-720

Lake Velencei is a shallow lake with a fairly variable water quality due to the effect of the earlier basin reconstruction and external factors, such as the weather and the organic matter loading from the catchment areas. For studying the changes in sediment of Lake Velencei, MPN technique, based bacteriological investigations, as well as measurements of water chemical parameters were performed. Microbial communities of aerobic thiosulphate-oxidising, anaerobic phototrophic, and sulphate-reducing bacteria taking part in the sulphur cycle were monitored between 1993 and 2001. In the western part of the lake the bacteriological results and the chemical parameters verified the presence of sulphuretum. In the first low water period of the studies the quantity of the bacteria contributing to the sulphur cycle was low in the sediment. After the increase of the water level the distribution of these microbes became somewhat homogeneous in the sediment. However, the different sediment regions might be characterised with dissimilar MPN values of the studied bacterial communities.

  相似文献   

11.
Sediments have a significant influence on the overlying water, and nutrient release from sediments is an important source for lake eutrophication, particularly in shallow lakes. Sediment resuspension is primarily driven by wind-induced currents. In this research, the correlation between release rate of suspended sediment and flow velocity was studied, and an experiment on hydrodynamic forces was conducted in a rectangle flume using water and sediments collected from three sites in Lake Taihu, a eutrophic lake in China. It was shown that the starting velocities of sediment in Lake Taihu at three different incipient standards gained from the experiment were 15, 30, and 40 cm s−1 and the release rate of suspended sediment could reach up to 643.4, 5377.1, and 13980.5 g m−2 d−1, respectively. Based on the experiment, a water quantity and quality numerical model of wind-induced current with sediment pollution for Lake Taihu was developed. The model was calibrated and validated by applying it to the study of the water quality of Lake Taihu. The calculated values were generally in good agreement with field observations, which indicated that the developed model could represent the dynamics of sediment resuspension to a certain extent. This study provides a new approach and a practical tool for planning and management policy and operations to protect the water quality and ecosystems of shallow lakes.  相似文献   

12.
We used paleolimnological methods to investigate spatial and temporal patterns of bulk sediment and nutrient (C, N, P) accumulation in Lakes Hell ‘n’ Blazes (A = 154 ha, zmax = 240 cm), Sawgrass (A = 195 ha, zmax = 157 cm) and Washington (A = 1766 ha, zmax = 322 cm), in the Upper St. Johns River Basin, Florida. The study was designed to evaluate long-term changes in sedimentation and nutrient storage in the basin, and was one component of a larger project addressing flood control, wetland restoration, and water quality improvement. These three study lakes are wide, shallow waterbodies in the upper reaches of the St. Johns River channel. Sediment mapping indicates soft, organic deposits are distributed uniformly throughout Lakes Hell ‘n’ Blazes and Sawgrass. In contrast, much of Lake Washington is characterized by sandy bottom, and organic sediment is largely restricted to the north end of the lake. Lakes Hell ‘n’ Blazes and Sawgrass are effective sediment traps because dense submersed macrophytes and their associated epiphytes reduce flow velocity, intercept suspended particles, and utilize dissolved nutrients. Abundant Hydrilla, combined with short fetch, prevents resuspension and downstream transport of sediments. Larger Lake Washington is probably wind-mixed and resuspended organic sediments are redeposited to downstream sites. 210Pb-dated sediment cores show that organic sediment accumulation began in all three lakes before 1900, but that bulk sediment and nutrient accumulation rates have generally increased since then. The increases are probably attributable, in part, to anthropogenic activities including 1) hydrologic modifications that reduced flow rates in the channel, 2) discharge of nutrient-rich waters from urban, agricultural and ranching areas, and, 3) introduction and periodic herbicide treatment of the exotic macrophytes Eichhornia and Hydrilla.  相似文献   

13.
Kisand  Anu  Nõges  Peeter 《Hydrobiologia》2003,492(1-3):129-138
Increased discharges of organic matter from different sources in Morales Stream, one of the main tributaries of the Matanza-Riachuelo River, caused not only an increase in its primary production but also drastic changes in the composition of its sediments, thus favoring eutrophication processes. An in situ study was carried out in order to assess the effects of an organic point source contamination (from intensive cattle rearing) on the sediments of Morales Stream. Surface water and sediment samples were analysed to determine the chemical characteristics of the water–sediment system. The amounts and forms of sediment phosphorus were determined using the `EDTA method' (Golterman, 1996) at two sites of the stream having different nutrient loads. The increase in the organic load of Morales Stream waters influences the dynamics of sediment P, producing two main effects: (1) an increase in the organic matter amount of the sediment that leads to an increase in the amount of P associated to organic fractions, which may be released by bacterial activity under anoxic conditions; and (2) a decrease in the concentration of P in the fraction bound to iron. Morales Stream sediments may act as a potential source of P, which can release this nutrient to water under the reducing conditions originated by uncontrolled discharges of organic residues to this water body.  相似文献   

14.
Constraints on Precambrian ocean chemistry are dependent upon sediment geochemistry. However, diagenesis and metamorphism can destroy primary biosignatures, making it difficult to consider biology when interpreting geochemical data. Modern analogues for ancient ecosystems can be useful tools for identifying how sediment geochemistry records an active biosphere. The Middle Island Sinkhole (MIS) in Lake Huron is an analogue for shallow Proterozoic waters due to its low oxygen water chemistry and microbial communities that exhibit diverse metabolic functions at the sediment–water interface. This study uses sediment trace metal contents and microbial abundances in MIS sediments and an oxygenated Lake Huron control site (LH) to infer mechanisms for trace metal burial. The adsorption of trace metals to Mn‐oxyhydroxides is a critical burial pathway for metals in oxic LH sediments, but not for the MIS mat and sediments, consistent with conventional understanding of Mn cycling. Micronutrient trace metals (e.g., Zn) are associated with organic matter regardless of oxygen and sulfide availability. Although U and V are conventionally considered to be organically complexed in suboxic and anoxic conditions, U and organic covary in oxic LH sediments, and Mn‐oxyhydroxide cycling dominates V deposition in the anoxic MIS sediments. Significant correlations between Mo and organic matter across all redox regimes have major implications for our interpretations of Mo isotope systematics in the geologic record. Finally, while microbial groups vary between the sampling locales (e.g., the cyanobacteria in the MIS microbial mat are not present in LH sediments), LH and MIS ultimately have similar relationships between microbial assemblages and metal burial, making it difficult to link trace metal burial to microbial metabolisms. Together, these results indicate that bulk sediment trace metal composition does not capture microbiological processes; more robust trace metal geochemistry such as isotopes and speciation may be critical for understanding the intersections between microbiology and sediment geochemistry.  相似文献   

15.
Sediment resuspension effects on alkaline phosphatase activity   总被引:3,自引:0,他引:3  
Sediment cores, including the associated lake water, were collected from a shallow hypereutrophic lake located in central Florida. Alkaline phosphatase activity (APA) was measured as an indicator of potential organic P mineralization. In both the sediment and water columns, APA was mainly associated with particulate matter; < 10% of APA was within the soluble phase. This suggests that for enzymatic hydrolysis to occur the hydrolyzable organic compounds must be in close proximity to the particle-bound enzyme complex. Both total P (TP) and APA decreased with depth in the sediment, whereas soluble reactive P increased in the 20–40 cm fraction. Resuspension of surficial sediments resulted in an immediate increase in APA, total suspended solids, TP, total Kjeldahl N, and total organic C within the overlying water column. However, these concentrations decreased rapidly following cessation of turbulence and settling of the sediments, emphasizing the close association of these parameters with the sediment.  相似文献   

16.
Protoplast isolation and fusion in Porphyra (Bangiales,Rhodophyta)   总被引:1,自引:0,他引:1  
Fujita  Yuji  Saito  Munehisa 《Hydrobiologia》1990,(1):161-166
Two sediment sampling campaigns were conducted in 1978 and 1988 in Lake Geneva (Switzerland). Organic carbon, total nitrogen, total phosphorus and its various forms were analyzed. Results indicate a stability of organic carbon and nitrogen mass, and a significant increase of phosphorus. The variation of phosphorus mass is related to the increase of nonapatite inorganic phosphorus. This study attempts to quantify the phosphorus exchanges at the water sediment interface. The dissolved oxygen level in the bottom water determines the exchange direction. In aerobic conditions, sediments accumulate the excess of phosphorus, while in anaerobic conditions, they constitute an internal source.  相似文献   

17.
Analysis of fossil diatom assemblages recovered from a 12.2 m core reveals a series of distinct floristic associations. The associations present are correlated with sediment type and reflect successive stages in the development of the lake. A basal red clay sediment contains a planktonic association characteristic of large, proglacial lakes. At 10.0 m core depth, sediment type changes to fine sand containing a higher abundance of benthic species indicating reduction of water depth at the deposition site. Marl sediments begin at 9.7 m and contain an association characteristic of a small, shallow, oligotrophic lake. At 8.8 m the marl sequence is interrupted by highly organic sediment containing a eutrophic plankton association. From 8.5 to 7.6 m the sediment type grades from marl to organic, apparently reduced sediments and diatom associations present contain successively higher percentages of planktonic species associated with eutrophic habitats. By the 7.6 m level a eutrophic plankton association, similar to the modern flora, is established and remains remarkably constant to the surface of the section.  相似文献   

18.
L. Gao  Q. Wei  F. Fu 《Plant biosystems》2013,147(4):1175-1183
Macroalgal blooms have occurred worldwide frequently in coastal areas in recent decades, which dramatically modify phosphorus (P) cycle in water column and the sediments. Rongcheng Swan Lake Wetland, a coastal wetland in China, is suffering from extensive macroalgal blooms. In order to verify the influence of macroalgal growth on sediment P release, the sediments and filamentous Chaetomorpha spp. were incubated in the laboratory to investigate the changes of water quality parameters, P levels in overlying water, and sediments during the growth period. In addition, algal biomass and tissue P concentration were determined. In general, Chaetomorpha biomasses were much higher in high P treatments than in low P treatments. Compared with algae+low P water treatment, the addition of sediments increased the algal growth rate and P accumulation amount. During the algal growth, water pH increased greatly, which showed significant correlation with algal biomass in treatments with high P (P < 0.05). P fractions in the sediments showed that Fe/Al–P and organic P concentrations declined during the algal growth, and great changes were observed in algae+low P water+sediment treatment for both. As a whole, the sediments can supply P for Chaetomorpha growth when water P level was low, and the probable mechanism was the release of Fe/Al–P at high pH condition induced by intensive Chaetomorpha blooms.  相似文献   

19.
In some lakes, large amounts of the potentially toxic cyanobacterium Microcystis overwinter in the sediment. This overwintering population might inoculate the water column in spring and promote the development of dense surface blooms of Microcystis during summer. In the Dutch Lake Volkerak, we found photochemically active Microcystis colonies in the sediment throughout the year. The most vital colonies originated from shallow sediments within the euphotic zone. We investigated whether recruitment of Microcystis colonies from the sediment to the water column was an active process, through production of gas vesicles or respiration of carbohydrate ballast. We calculated net buoyancy, as an indication of relative density, using the amounts and densities of the major cell constituents (carbohydrates, proteins, and gas vesicles). Carbohydrate content of benthic Microcystis cells was very low throughout the year. Buoyancy changes of benthic Microcystis were mostly a result of changes in gas vesicle volume. Before the summer bloom, net buoyancy and the amount of buoyant colonies in the sediment did not change. Therefore, recruitment of Microcystis from the sediment does not seem to be an active process regulated by internal buoyancy changes. Instead, our observations indicate that attachment of sediment particles to colonies plays an important part in the buoyancy state of benthic colonies. Therefore, we suggest that recruitment of Microcystis is more likely a passive process resulting from resuspension by wind‐induced mixing or bioturbation. Consequently, shallow areas of the lake probably play a more important role in recruitment of benthic Microcystis than deep areas.  相似文献   

20.
Biogeochemistry of manganese- and iron-rich sediments in Toolik Lake,Alaska   总被引:2,自引:2,他引:0  
The sediments within Toolik Lake in arctic Alaska are characterized by extremely low rates of organic matter sedimentation and unusually high concentrations of iron and manganese. Pore water and solid phase measurements of iron, manganese, trace metals, carbon, nitrogen, phosphorus, and sulfur are consistent with the hypothesis that the reduction of organic matter by iron and manganese is the most important biogeochemical reaction within the sediment. Very low rates of dissolved oxygen consumption by the sediments result in an oxidizing environment at the sediment-water interface. This results in high retention of upwardly-diffusing iron and manganese and the formation of metal-enriched sediment. Phosphate in sediment pore waters is strongly adsorbed by the metal-enriched phases. Consequently, fluxes of phosphorus from the sediments to overlying waters are very small and contribute to the oligotrophic nature of the Toolik Lake aquatic system. Toolik Lake contains an unusual type of lacustrine sediment, and in many ways the sediments are similar to those found in oligotrophic oceanic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号