首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have recently developed a gene disruption system for the hyperthermophilic archaeon Thermococcus kodakaraensis by utilizing a pyrF-deficient mutant, KU25, as a host strain and the pyrF gene as a selectable marker. To achieve multiple genetic manipulations for more advanced functional analyses of genes in vivo, it is necessary to establish multiple host-marker systems or to develop a system in which repeated utilization of one marker gene is possible. In this study, we first constructed a new host strain, KU216 (ΔpyrF), by specific and almost complete deletion of endogenous pyrF through homologous recombination. In this refined host, there is no need to consider unknown mutations caused by random mutagenesis, and unlike in the previous host, KU25, there is little, if any, possibility that unintended recombination between the marker gene and the chromosomal allele occurs. Furthermore, a new host-marker combination of a trpE deletant, KW128 (ΔpyrF ΔtrpE::pyrF), and the trpE gene was developed. This system made it possible to isolate transformants through a more simple selection procedure as well as to deduce the transformation efficiency, overcoming practical disadvantages of the first system. The effects of the transformation conditions were also investigated using this system. Finally, we have also established a system in which repeated utilization of the counterselectable pyrF marker is possible through its excision by pop-out recombination. Both endogenous and exogenous sequences could be applied as tandem repeats flanking the marker pyrF for pop-out recombination. A double deletion mutant, KUW1 (ΔpyrF ΔtrpE), constructed with the pop-out strategy, was demonstrated to be a useful host for the dual markers pyrF and trpE. Likewise, a triple deletion mutant, KUWH1 (ΔpyrF ΔtrpE ΔhisD), could also be constructed. The transformation systems developed here now provide the means for extensive genetic studies in this hyperthermophilic archaeon.  相似文献   

4.
Proliferating cell nuclear antigen (PCNA) monomers assemble to form a ring-shaped clamp complex that encircles duplex DNA. PCNA binding to other proteins tethers them to the DNA providing contacts and interactions for many other enzymes essential for DNA metabolic processes. Most eukarya and euryarchaea have only one PCNA homolog but Thermococcus kodakarensis uniquely has two, designated PCNA1 and PCNA2, encoded by TK0535 and TK0582, respectively. Here, we establish that both PCNA1 and PCNA2 form homotrimers that stimulate DNA synthesis by archaeal DNA polymerases B and D and ATP hydrolysis by the replication factor C complex. In exponentially growing cells, PCNA1 is abundant and present at an ~100-fold higher concentration than PCNA2 monomers. Deletion of TK0582 (PCNA2) had no detectable effects on viability or growth whereas repeated attempts to construct a T. kodakarensis strain with TK0535 (PCNA1) deleted were unsuccessful. The implications of these observations for PCNA1 function and the origin of the two PCNA-encoding genes in T. kodakarensis are discussed.  相似文献   

5.
Inactivation of TK1761, the reporter gene established for Thermococcus kodakarensis, revealed the presence of a second β-glycosidase that we have identified as the product of TK1827. This enzyme (pTK1827) has been purified and shown to hydrolyze glucopyranoside but not mannopyranoside, have optimal activity at 95°C and from pH 8 to 9.5, and have a functional half-life of ∼7 min at 100°C. To generate a strain with both TK1761 and TK1827 deleted, a new selection/counterselection protocol has been developed, and the levels of β-glycosidase activity in T. kodakarensis strains with TK1761 and/or TK1827 deleted and with these genes expressed from heterologous promoters are described. Genetic tools and strains have been developed that extend the use of this selection/counterselection procedure to delete any nonessential gene from the T. kodakarensis chromosome. Using this technology, TK0149 was deleted to obtain an agmatine auxotroph that grows on nutrient-rich medium only when agmatine is added. Transformants can therefore be selected rapidly, and replicating plasmids can be maintained in this strain growing in rich medium by complementation of the TK0149 deletion.Members of the Thermococcales, hyperthermophilic Euryarchaea, grow readily under laboratory conditions and are the focus of many basic and applied research projects (2, 8). Their investigation has, however, been limited by the lack of genetics, and it was a seminal advance therefore when Thermococcus kodakarensis (formerly Thermococcus kodakaraensis [1]) was shown to be naturally competent and to recombine added DNA into its genome (21, 23). T. kodakarensis is attractive as an experimental system as a fermentative heterotroph that grows rapidly on a variety of different substrates (1), optimally at 85°C, including substrates from which it generates substantial levels of hydrogen (11). The T. kodakarensis genome sequence and genome microarray assays are established (7, 12, 18) and, since the discovery of transformation (21), inactivation and manipulation of chromosomal genes has revealed novel biochemical pathways, facilitated in vivo evaluations of the archaeal gene expression machinery, and simplified enzyme purifications (3, 5, 6, 9, 10, 12, 15-20, 22-24, 28). For complementation assays and to facilitate heterologous gene expression in T. kodakarensis, shuttle plasmids have been constructed that replicate and confer selectable phenotypes in both T. kodakarensis and Escherichia coli (19), and TK1761 expression has been established as a reporter system that can be used to identify and quantify regulatory elements in T. kodakarensis (18, 20).During the development of the TK1761 reporter system, a T. kodakarensis strain, designated TS416, was constructed with a nonsense mutation in TK1761 (18). This mutation had no discernible effects on growth, confirming that TK1761 was not an essential gene, but lysates of T. kodakarensis TS416 retained a low level β-glycosidase activity. T. kodakarensis apparently, therefore, had a second β-glycosidase, but since this activity was very low and remained constant with changes in TK1761 expression, its presence did not compromise the use of TK1761 expression as a reporter system in the laboratory media used. The existence of a second β-glycosidase did, nevertheless, raise a potential concern for TK1761 assays in cells grown under different conditions in which expression of the gene encoding this second β-glycosidase might not be constant. To address this, we purified and characterized the second β-glycosidase and, to eliminate the concern for the reporter assay, we constructed a T. kodakarensis strain with both TK1761 and the gene (TK1827) that encodes the second β-glycosidase deleted.To construct the double-deletion strain, we developed a new selection/counterselection protocol and have extended this into a procedure that can be used to delete any nonessential gene from the T. kodakarensis genome. A two-gene cassette has been constructed that can be integrated into the T. kodakarensis chromosome at any desired locus by homologous recombination of flanking genes. Expression of the cassette provides a positive selection for transformants and confers sensitivity to 6-methyl purine (6MPs). Mutants then isolated that are spontaneously resistant to 6-methyl purine (6MPr) have both the cassette and the adjacent target gene(s) precisely deleted.Sato et al. (21, 23) established the T. kodakarensis transformation protocol by selecting transformants of tryptophan (trpE) and uracil (pyrF) auxotrophs that grew on minimal medium without tryptophan or uracil. Overexpression of the hydroxy-methylglutaryl-coenzyme A reductase encoded by PF1848, cloned from Pyrococcus furiosus, was later found to confer to resistance to simvastatin (15) and mevinolin (19), allowing the selection of T. kodakarensis transformants on rich media that contain either antibiotic. Mutants spontaneously resistant to these antibiotics do, however, occur at experimentally significant frequencies, and these are very expensive reagents for routine use and prohibitively expensive for incorporation into large preparative cultures. With this in mind, to develop an alternative selection that might be used in nutrient-rich media, we used the 6MP cassette system to delete TK0149. As predicted (6), the T. kodakarensis ΔTK0149 strain generated was an agmatine auxotroph that only grows in nutrient-rich media when agmatine is added. When transformed with DNA expressing TK0149, transformants of this strain can be selected directly on standard nutrient-rich media, and complementation of the ΔTK0149 mutation can be used to maintain the presence of an expression plasmid in T. kodakarensis cells grown in large-volume, rich-medium cultures for enzyme purification.  相似文献   

6.
7.
In order to design proteins with improved properties i.e. thermostability, catalytic efficiency and to understand the mechanisms underlying, a thermostable variant of Bacillus lipase was generated by site-directed mutagenesis with enhanced thermal (?Tm = + 12 °C) and chemical (?Cm denaturation for Gdmcl = + 1.75 M) stability as compared to WT. Arg153-His variant showed 72-fold increase in thermostability (t 1/2 = 6 h) at 60 °C as compared to WT (t 1/2 = 5 min). Increase in thermostability might be contributed by the formation of additional hydrogen bonds between His153/AO-Arg106/ANH2 as well as His153-Arg106/ANE. The variant demonstrated broad substrate specificity. A maximum conversion of 59 and 62% was obtained for methyl oleate and methyl butyrate, respectively, using immobilized variant lipase, whereas immobilized WT enzyme synthesizes 35% methyl oleate. WT enzyme was unable to synthesize methyl butyrate as it showed negligible activity with pNP-butyrate.  相似文献   

8.
9.
Scientists are interested in understanding the molecular origin of protein thermostability and thermoactivity for possible biotechnological applications. The enzymes from extremophilic organisms have been of particular interest in the last two decades. β-glycosidase, Tkβgly is a hyperthermophilic enzyme from Thermococcus kodakarensis KOD1. Tkβgly contains two conserved cysteine residues, C88 and C376. The protein tertiary structure obtained through homology modeling suggests that the C88 residue is located on the surface whereas C376 is inside the protein. To study the role of these cysteine residues, we substituted C88 and C376 with serine residues through site-directed mutagenesis. The wild-type and C376S protein existed in dimeric form and C88S in monomeric form, in an SDS-PAGE gel under non-reducing conditions. Optimal temperature experiments revealed that the wild-type was active at 100 °C whereas the C88S mutant exhibited optimal activity at 70 °C. The half-life of the enzyme at 70 °C was drastically reduced from 266 h to less than 1 h. Although C88 was not present in the active site region, the k cat/K m of C88S was reduced by 2-fold. Based on the structural model and biochemical properties, we propose that C88 is crucial in maintaining the thermostability and thermoactivity of the Tkβgly enzyme.  相似文献   

10.
Two cellulases from Scytalidium thermophilum were purified and characterized, exhibiting tolerance to glucose and cellobiose. Characterization of purified cellulases I and II by mass spectrometry revealed primary structure similarities with an exoglucanase and an endoglucanase, respectively. Molecular masses were 51.2 and 45.6 kDa for cellulases I and II, respectively, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Cellulases I and II exhibited isoelectric points of 6.2 and 6.9 and saccharide contents of 11 and 93 %, respectively. Optima of temperature and pH were 60–65 °C and 4.0 for purified cellulase I and 65 °C and 6.5 for purified cellulase II. Both cellulases maintained total CMCase activity after 60 min at 60 °C. Cysteine, Mn2+, dithiotreitol and ß-mercaptoethanol-stimulated cellulases I and II. The tolerance to cellulose hydrolysis products and the high thermal stabilities of Scytalidium cellulases suggest good potential for industrial applications.  相似文献   

11.
Longer- and/or branched-chain polyamines are unique polycations found in thermophiles. N4-aminopropylspermine is considered a major polyamine in Thermococcus kodakarensis. To determine whether a quaternary branched penta-amine, N4-bis(aminopropyl)spermidine, an isomer of N4-aminopropylspermine, was also present, acid-extracted cytoplasmic polyamines were analyzed by high-pressure liquid chromatography, gas chromatography (HPLC), and gas chromatography-mass spectrometry. N4-bis(aminopropyl)spermidine was an abundant cytoplasmic polyamine in this species. To identify the enzyme that catalyzes N4-bis(aminopropyl)spermidine synthesis, the active fraction was concentrated from the cytoplasm and analyzed by linear ion trap–time of flight mass spectrometry with an electrospray ionization instrument after analysis by the MASCOT database. TK0545, TK0548, TK0967, and TK1691 were identified as candidate enzymes, and the corresponding genes were individually cloned and expressed in Escherichia coli. Recombinant forms were purified, and their N4-bis(aminopropyl)spermidine synthesis activity was measured. Of the four candidates, TK1691 (BpsA) was found to synthesize N4-bis(aminopropyl)spermidine from spermidine via N4-aminopropylspermidine. Compared to the wild type, the bpsA-disrupted strain DBP1 grew at 85°C with a slightly longer lag phase but was unable to grow at 93°C. HPLC analysis showed that both N4-aminopropylspermidine and N4-bis(aminopropyl)spermidine were absent from the DBP1 strain grown at 85°C, demonstrating that the branched-chain polyamine synthesized by BpsA is important for cell growth at 93°C. Sequence comparison to orthologs from various microorganisms indicated that BpsA differed from other known aminopropyltransferases that produce spermidine and spermine. BpsA orthologs were found only in thermophiles, both in archaea and bacteria, but were absent from mesophiles. These findings indicate that BpsA is a novel aminopropyltransferase essential for the synthesis of branched-chain polyamines, enabling thermophiles to grow in high-temperature environments.  相似文献   

12.
13.
Fumarase is a key enzyme that catalyzes the reversible hydration of fumarate to l-malate in the tricarboxylic acid cycle. This reaction has been extensively utilized for industrial applications in producing l-malate. In this study, a fumarase C gene from Streptomyces lividans TK54 (slFumC) was cloned and expressed as a fused protein (SlFumC) in Escherichia coli. The molecular mass of SlFumC was about 49 kDa determined by SDS-PAGE. Kinetic studies showed that the K m value of SlFumC for l-malate increased by approximately 8.5-fold at pH 6.5 (6.7 ± 0.81 mM) to 8.0 (57.0 ± 1.12 mM), which was higher than some known fumarases. The catalytic efficiency (k cat) and the specific activity increased by about 9.5-fold at pH 6.5 (65 s?1) to 8.0 (620 s?1) and from 79 U/mg at pH 6.5 to 752 U/mg at pH 8.0, respectively. Therefore, SlFumC may acquire strong catalytic ability by increasing pH to partially compensate for the loss of substrate affinity. The enzyme also showed substrate inhibition phenomenon, which is pH-dependent. Specific activity of SlFumC was gradually enhanced with increasing phosphate concentrations. However, no inhibition was observed at high concentration of phosphate ion, which was distinctly different in case of other Class II fumarases. In industrial process, the reaction temperatures for l-malate production are usually set between 40 and 60 °C. The recombinant SlFumC displayed maximal activity at 45 °C and remained over 85 % of original activity after 48 h incubation at 40 °C, which was more thermostable than other fumarases from Streptomyces and make it an efficient enzyme for use in the industrial production of l-malate.  相似文献   

14.
15.
Porphyra spp. (currently Porphyra and Pyropia) are major sources of seafood globally. In this study, we investigated the effects of ammonium concentration, water temperature, and thallus stocking density on N-ammonium uptake rate (NUR), tissue nutrients content, N–NH4 + filtration efficiency (NUE: nitrogen uptake efficiency %) of Pyropia yezoensis at a laboratory scale and in a mesoscale to evaluate the potential of this species as a biofilter. Additionally, photosynthetic activity was examined using Diving-PAM fluorometer to evaluate the health status. At a laboratory scale, the NUR and tissue nitrogen (N) content of P. yezoensis increased with increasing NH4 + concentrations in the medium. The NUR at thallus stocking densities of 5 and 10 g fresh weight (FW) L–1 were significantly higher than that at 20 g FW L–1. Effective quantum yield (? F/F m ) and tissue N content was significantly higher at all stocking densities than that at the beginning of experiment. The NUE was over 90 % at 10 and 17 °C, while all thalli cultured at 25 °C died after 5 days. In a mesoscale, the NUE at a thallus stocking density of 10.0 g FW L–1 was significantly higher than that at a stocking density of 5.0 g FW L–1. No differences in the NUE occurred between 10 °C and 17 °C. Photosynthetic activity (?F/Fm and rETRmax) of P. yezoensis at optimal culture condition (10–12 °C and 10 g FW L–1) increased over time through the experiment. This indicates that thallus was healthy during culture and chlorophyll a fluorescence can be as a monitoring tool for evaluating the physiological status of seaweeds in an integrated multi-trophic aquaculture.  相似文献   

16.
A novel aerobic, Gram-negative, non-motile, pleomorphic, and rod-shaped bacterium designated KU5D5T was isolated from seawater that was obtained from the coastal region of the Goto Islands, Japan, on the basis of its ability to utilize cyclohexylacetate as the sole source of carbon and energy. Strain KU5D5T grew at pH 6.0–8.0 and 10–35 °C in the presence of 1.0–5.0 % (w/v) NaCl. Analysis of the 16S rRNA gene sequence revealed that this strain was affiliated to the family Rhodobacteraceae in the class Alphaproteobacteria and was related most closely to Lutimaribacter saemankumensis (96.6 % similarity) and Oceanicola pacificus (96.6 %). The predominant respiratory lipoquinone was ubiquinone-10 and the major cellular fatty acids were C18:1 ω7c (66.7 %), C16:0 (7.7 %), C12:1 3-OH (6.1 %), and C17:0 (6.1 %). The DNA G+C content was 58.9 mol %. On the basis of physiological, chemotaxonomic, and phylogenetic data, strain KU5D5T is suggested to represent a novel species of the genus Lutimaribacter, for which the name Lutimaribacter litoralis sp. nov. is proposed. It is also proposed that O. pacificus should be transferred to the genus Lutimaribacter as Lutimaribacter pacificus comb. nov. The type strain of L. litoralis is KU5D5T (=JCM 17792T = KCTC 23660T) and the type strain of L. pacificus is W11-2BT (=CCTCC AB 208224T = LMG 24619T = MCCC 1A01034T).  相似文献   

17.
The genome of Thermococcus kodakarensis, along with those of most Thermococcus and Pyrococcus species, harbors five paralogous genes encoding putative α subunits of nucleoside diphosphate (NDP)-forming acyl coenzyme A (acyl-CoA) synthetases. The substrate specificities of the protein products for three of these paralogs have been clarified through studies on the individual enzymes from Pyrococcus furiosus and T. kodakarensis. Here we have examined the biochemical properties of the remaining two acyl-CoA synthetase proteins from T. kodakarensis. The TK0944 and TK2127 genes encoding the two α subunits were each coexpressed with the β subunit-encoding TK0943 gene. In both cases, soluble proteins with an α2β2 structure were obtained and their activities toward various acids in the ADP-forming reaction were examined. The purified TK0944/TK0943 protein (ACS IIITk) accommodated a broad range of acids that corresponded to those generated in the oxidative metabolism of Ala, Val, Leu, Ile, Met, Phe, and Cys. In contrast, the TK2127/TK0943 protein exhibited relevant levels of activity only toward 2-(imidazol-4-yl)acetate, a metabolite of His degradation, and was thus designated 2-(imidazol-4-yl)acetyl-CoA synthetase (ICSTk), a novel enzyme. Kinetic analyses were performed on both proteins with their respective substrates. In T. kodakarensis, we found that the addition of histidine to the medium led to increases in intracellular ADP-forming 2-(imidazol-4-yl)acetyl-CoA synthetase activity, and 2-(imidazol-4-yl)acetate was detected in the culture medium, suggesting that ICSTk participates in histidine catabolism. The results presented here, together with those of previous studies, have clarified the substrate specificities of all five known NDP-forming acyl-CoA synthetase proteins in the Thermococcales.  相似文献   

18.
The oomycete Leptolegnia chapmanii is among the most promising entomopathogens for biological control of Aedes aegypti. This mosquito vector breeds in small water collections, where this aquatic watermold pathogen can face short-term scenarios of challenging high or low temperatures during changing ambient conditions, but it is yet not well understood how extreme temperatures might affect the virulence and recycling capacities of this pathogen. We tested the effect of short-term exposure of encysted L. chapmanii zoospores (cysts) on A. aegypti larvae killed after infection by this pathogen to stressful low or high temperatures on virulence and production of cysts and oogonia, respectively. Cysts were exposed to temperature regimes between ?12 °C and 40 °C for 4, 6 or 8 h, and then their infectivity was tested against third instar larvae (L3) at 25 °C; in addition, production of cysts and oogonia on L3 killed by infection exposed to the same temperature regimes as well as their larvicidal activity were monitored. Virulence of cysts to larvae and the degree of zoosporogenesis on dead larvae under laboratory conditions were highest at 25 °C but were hampered or even blocked after 4 up to 8 h exposure of cysts or dead larvae at both the highest (35 °C and 40 °C) and the lowest (?12 °C) temperatures followed by subsequent incubation at 25 °C. The virulence of cysts was less affected by accelerated than by slow thawing from the frozen state. The production of oogonia on dead larvae was stimulated by short-term exposure to freezing temperatures (?12 °C and 0 °C) or cool temperatures (5 °C and 10 °C) but was not detected at higher temperatures (25 °C–40 °C). These findings emphasize the susceptibility of L. chapmanii to short-term temperature stresses and underscore its interest as an agent for biocontrol of mosquitoes in the tropics and subtropics, especially A. aegypti, that breed preferentially in small volumes of water that are generally protected from direct sunlight.  相似文献   

19.
A novel 1,170 bp β-galactosidase gene sequence from Halomonas sp. S62 (BGalH) was identified through whole genome sequencing and was submitted to GenBank (Accession No. JQ337961). The BGalH gene was heterologously expressed in Escherichia coli BL21(DE3) cells, and the enzymatic properties of recombinant BGalH were studied. According to the polyacrylamide gel electrophoresis results and the sequence alignment analysis, BGalH is a dimeric protein and cannot be classified into one of the known β-galactosidase families (GH1, GH2, GH35, GH42). The optimal pH and temperature were determined to be 7.0 and 45 °C, respectively; the K m and K cat were 2.9 mM and 390.3 s?1, respectively, for the reaction with the substrate ortho-nitrophenyl-β-d-galactopyranoside. At 0–20 °C, BGalH exhibited 50–70 % activity relative to its activity under the optimal conditions. BGalH was stable over a wide range of pHs (6.0–8.5) after a 1 h incubation (>93 % relative activity) and was thermostable at 50 °C and below (>60 % relative activity). The enzyme hydrolyzes lactose completely in milk over 24 h at 7 °C. The characteristics of this novel β-galactosidase suggest that BGalH may be a good candidate for medical researches and food industry applications.  相似文献   

20.
A glycosyl hydrolase family 10 endoxylanase from Bacillus sp. HJ14 was grouped in a separated cluster with another six Bacillus endoxylanases which have not been characterized. These Bacillus endoxylanases showed less than 52 % amino acid sequence identity with other endoxylanases and far distance with endoxylanases from most microorganisms. Signal peptide was not detected in the endoxylanase. The endoxylanase was expressed in Escherichia coli BL21 (DE3), and the purified recombinant enzyme (rXynAHJ14) was characterized. rXynAHJ14 was apparent optimal at 62.5 °C and pH 6.5 and retained more than 55 % of the maximum activity when assayed at 40–75 °C, 23 % at 20 °C, 16 % at 85 °C, and even 8 % at 0 °C. Half-lives of the enzyme were more than 60 min, approximately 25 and 4 min at 70, 75, and 80 °C, respectively. The enzyme exhibited more than 62 % xylanase activity and stability at the concentration of 3–30 % (w/v) NaCl. No xylanase activity was lost after incubation of the purified rXynAHJ14 with trypsin and proteinase K at 37 °C for 60 min. Different components of oligosaccharides were detected in the time-course hydrolysis of beechwood xylan by the enzyme. During the simulated intestinal digestion phase in vitro, 11.5–19.0, 15.3–19.0, 21.9–27.7, and 28.2–31.2 μmol/mL reducing sugar were released by the purified rXynAHJ14 from soybean meal, wheat bran, beechwood xylan, and rapeseed meal, respectively. The endoxylanase might be an alternative for potential applications in the processing of sea food and saline food and in aquaculture as agastric fish feed additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号