首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a result of a low pH, the inorganic carbon of acidic lakes is present as CO2 at air-equilibrium concentration and is substantially lower than the inorganic carbon concentration in higher-pH waters with bicarbonate. This situation is quite common in artificially acidified lakes and where inorganic carbon is considered the limiting factor in phytoplankton growth. Apart from low inorganic carbon content, Lake Caviahue in Argentina has low nitrogen and high phosphorus content. The aim of this work was to assess the importance of inorganic carbon, phosphorus, and nitrogen, relating data on lake nutrients to phytoplankton species requirements. Lake samples taken in the 2004–2006 period did not show any particular trend in the vertical distribution of the water column of ammonium, inorganic carbon, and phosphorus with reference to either seasonality or depth. A decrease of some 15% in the lake’s phosphorus concentration was observed over the same period. Although the total phytoplankton biomass in Lake Caviahue was similar throughout the period, a seasonal variation was observed. Lab bioassays were carried out with solutions of bicarbonates, ammonium, nitrates, and phosphate. We worked with three species separately, namely, two chlorophytes, Keratococcus rhaphidioides and Watanabea sp.; and one euglenophyte, Euglena mutabilis. Answers to specific nutrient requirements differed for each algal species: both chlorophytes prefer ammonium or nitrates added on their own, whereas the euglenophyte registered a higher growth rate with the joint addition of ammonium and phosphorus. Even when the limiting nutrient(s) for phytoplankton yield and rate varied between species, we observed a tendency for nitrogen limitation in Lake Caviahue.  相似文献   

2.
This study presents data of in situ measurements of inorganic carbon assimilation by phytoplankton communities of the St Lawrence estuary during the end of summer 1982. We used carboxylase activity measurements (ribulose-1,5-bisphosphate carboxylase, carboxylases) and the 13C/12C ratio of phytoplankton organic carbon, expressed as 13C, to study patterns of assimilation. Upper estuary phytoplankton communities showed a smaller turn-over rate in carbon assimilation than lower estuary phytoplankton communities. Carbon assimilation was limited by light intensity in the upper estuary and by CO2 availability in the lower estuary. In the St Lawrence estuary, stable carbon isotope ratios of phytoplankton organic carbon seemed to be controlled by inorganic carbon availability rather than by phytoplankton metabolism.  相似文献   

3.
Decomposition of natural populations of Lake Mendota phytoplankton dominated by blue-green algae (cyanobacteria) was monitored by using oxygen uptake and disappearance of chlorophyll, algal volume (fluorescence microscopy), particulate protein, particulate organic carbon, and photosynthetic ability (14CO2 up-take). In some experiments, decomposition of 14C-labeled axenic cultures of Anabaena sp. was also measured. In addition to decomposition, mineralization of inorganic nitrogen and phosphorus were followed in some experiments. Decomposition could be described as a first-order process, and the rate of decomposition was similar to that found by others using pure cultures of eucaryotic algae. Nitrogen and phosphorus never limited the decomposition process, even when the lake water was severely limited in soluble forms of these nutrients. This suggests that the bacteria responsible for decomposition can obtain all of their key nutrients for growth from the blue-green algal cells. Filtration of lake water through plankton netting that removed up to 90% of the algal biomass usually did not cause a similar decrease in oxygen demand, suggesting that most of the particulate organic matter used for respiration of the decomposing bacteria was in a small-particle fraction. Short-term oxygen demand correlated well with the particulate chlorophyll concentration of the sample, and a relationship was derived that could be used to predict community respiration of the lake from chlorophyll concentration. Kinetic analysis showed that not all analyzed components disappeared at the same rate during the decomposition process. The relative rates of decrease of the measured parameters were as follows: photosynthetic ability > algal volume > particulate chlorophyll > particulate protein. Decomposition of 14C-labeled Anabaena occurred at similar rates with aerobic epilimnetic water and with anaerobic sediment, but was considerably slower with anaerobic hypolimnetic water. Of the various genera present in the lake, Aphanizomenon and Anabaena were more sensitive to decomposition than was Microcystis. In addition to providing a general picture of the decomposition process, the present work relates to other work on sedimentation to provide a detailed picture of the fate of blue-green algal biomass in a eutrophic lake ecosystem.  相似文献   

4.
Previous studies of Pyramid Lake, Nevada, led to the hypothesis that detritus could be an important food source for zooplankton because abundance of palatable algal species did not seem to be enough to support the zooplankton community throughout the year. Furthermore, a large portion of the annual primary productivity was attributed to a nonpalatable blue-green alga, Nodularia spumigena. We felt this alga became important to the Pyramid Lake aquatic community upon death, as edible detritus and a source of new nitrogen. Changes in pelagic detritus concentrations and microbial standing crops were monitored to determine the availability of these potential foods. Epilimnetic particulate organic carbon (POC) was primarily living phytoplankton. During holomixis and following spring primary production, hypolimnetic POC was 60–97% detrital, but these profundal POC concentrations were low (ca 650 µg l-1). Detritus-bacteria aggregates were observed only following the September cyanophyte bloom. Although pelagic detritus availability for zooplankton was low, bacterial populations were sufficient to be at least a supplemental food source. Bacteria numbers ranged from 0.50 106 to 24.7 106 ml-1 and increased in response to photosynthetic peaks. Microbial diversity, contribution to POC, and particle association were notable after July. The percentage of living carbon (assessed with ATP measurements) attributable to bacteria was highest in late summer and fall hypolimnetic samples. Patterns of change in organic phosphorus and nitrogen, the presence of a nitrogen-fixing cyanophyte, the N:P ratio, and results of other research demonstrated that non-nitrogen-fixing algae of Pyramid Lake are limited by inorganic nitrogen. The importance of N. spumigena to the aquatic community appeared to be as a source of new nitrogen, rather than as a forage; its mineralization is critical for the growth of palatable diatoms and green algae following winter mixing.  相似文献   

5.
Algal growth on organic compounds as nitrogen sources   总被引:19,自引:0,他引:19  
Two experimental series were run to evaluate the potential of algal development on dissolved organic nitrogen (DON) compounds as the sole source of nitrogen (N) nutrition. Monocultures of several common Lake Kinneret algae (Pediastrum duplex, Synechococcus sp., Microcystis aeruginosa, Aphanizomenon ovalisporum and Cyclotella sp.) were incubated for 3 weeks in the laboratory with different inorganic (NH4+, NO3-) or organic (hypoxanthine, urea, guanine, ornithine, glucosamine, lysine) nitrogen sources. Even though the cultures were not axenic, marked differences were observed in algal growth response. Pediastrum, Cyclotella and Aphanizomenon grew well on most N sources, and cyanobacterial growth and yield were consistently greatest when the urea was the only N source. We also followed algal growth and eventual species dominance in batch samples of GF/F-filtered lake water, supplemented with orthophosphate and different inorganic or organic N compounds and inoculated with concentrated lake phytoplankton. Although no clear impact on phytoplankton growth (as chlorophyll concentration) was observed, in seven out of 11 experiments we could discern changes in the algal species that became dominant in flasks with different organic and inorganic N sources. Our results are consistent with the proposition that components of the DON pool are not only an important potential, direct or indirect N source for phytoplankton, but also that different algal species can exploit these sources with varying capabilities so that different N substrates may selectively stimulate the development of dominant algal species.   相似文献   

6.
The New River Estuary, NC, is a nutrient-sensitive, eutrophic water body that is prone to harmful algal blooms. High annual loading from the watershed of varying nutrient forms, including inorganic phosphorus and inorganic and organic nitrogen, may be linked to the persistence of algal blooms in the estuary. In order to evaluate phytoplankton response to nutrient inputs, a series of in situ nutrient addition experiments were carried out during June 2010 to July 2011 on water from an estuarine site known to support algal blooms. Estuarine water was enriched with nutrients consisting of individual and combined sources of dissolved inorganic nitrogen, orthophosphate, urea, and a natural dissolved organic nitrogen (DON) addition derived from upstream New River water. The combined inorganic N and P addition most frequently stimulated phytoplankton biomass production as total chlorophyll a. The responses of diagnostic (of major algal groups) photopigments were also evaluated. Significant increases in peridinin (dinoflagellates), chlorophyll b (chlorophytes), and myxoxanthophyll (cyanobacteria) were most frequently promoted by additions containing riverine DON. Significant increases in zeaxanthin (cyanobacteria) were more frequently promoted by inorganic nitrogen additions, while increases in fucoxanthin (diatoms) and alloxanthin (cryptophytes) were not promoted consistently by any one nutrient treatment. Evaluating the impact of varying nutrient forms on phytoplankton community dynamics is necessary in order to develop strategies to avoid long-term changes in community structure and larger-scale changes in ecosystem condition.  相似文献   

7.
The dumping of bauxite tailings into Batata Lake, an Amazonian clear-water lake, generated high levels of turbidity and caused a serious decrease in phytoplankton densities, which could possibly be the result of a photosynthetic limitation due to light attenuation together with an increase in algal sinking due to the adhesion of clay particles. This study aimed to investigate the sinking process through the addition of different suspended clay concentrations in columns containing Batata lake water. Since no effect of the suspended clays on Batata Lake phytoplankton sinking was observed, it was then evaluated, under laboratory conditions, whether the low conductivity of the Batata Lake water could interfere with the algae-clay aggregation process. Cultures of two algal species known to be capable to aggregate to Batata Lake suspended clays in algal culture medium: Staurodesmus convergens and Phormidium amoenum, were added to both the low conductivity Batata Lake water (14 μS cm?1) and the high conductivity algal culture media (WC – 300 μS cm?1 and Z8 – 560 μS cm?1) together with Batata lake suspended clays. In both algal culture media and Batata lake water the two species had their sinking accelerated due to clay adhesion. It is thus suggested that the decrease in phytoplankton densities recorded in Batata Lake may not be related to an increase in phytoplankton loss rates due to algal-clay aggregation, but rather are a consequence of decreasing growth rates because of light attenuation.  相似文献   

8.
The aim of this research was to examine nutrient limitation of phytoplankton in solar salt ponds of varying salinity at Useless Inlet in Western Australia. These ponds use solar energy to evaporate seawater for the purpose of commercial salt production. A combination of techniques involving water column nutrient ratios, comparisons of nutrient concentrations to concentration of magnesium ions and bioassays were used in the investigation. Comparisons of changes in dissolved inorganic nitrogen to phosphorus ratios and concentrations of dissolved inorganic nutrients against changes in concentrations of the conservative cation Mg2+ indicated that phytoplankton biomass was potentially nitrogen limited along the entire pond salinity gradient. Nutrient addition bioassays indicated that in low salinity ponds, phytoplankton was nitrogen limited but in high salinity ponds, phosphorus limited. This may be due to isolation of phytoplankton in bioassay bottles from in situ conditions as well as to changes in phytoplankton species composition between ponds, and the variable availability of inorganic and organic nutrient sources. The differences in limiting nutrient between methods indicate that phytoplankton cells may be proximally limited by nutrients that are not theoretically limiting at the pond scale. Dissolved organic nutrients constituted a large proportion of total nutrients, with concentrations increasing through the pond sequence of increasing salinity. From the change in nutrient concentrations in bioassay bottles, sufficient dissolved organic nitrogen may be available for phytoplankton uptake in low salinity ponds, potentially alleviating the dissolved inorganic nitrogen limitation of phytoplankton biomass. Guest Editors: J. John & B. Timms Salt Lake Research: Biodiversity and Conservation—Selected Papers from the 9th Conference of the International Society for Salt Lake Research  相似文献   

9.
Photosynthetic production of oxygen by phytoplankton assemblagedominated by Peridinium in Lake Kinneret, Israel, generallyexceeds the molar equivalent rate of carbon assimilation. Carbonassimilation occurs only if oxygenic photosynthesis exceedsa light-dependent threshold. Assimilation quotients (mol C molO2–1) are a variable function of irradiance, and typicallyonly about one-half of the photoreductant produced during oxygenicphotosynthesis is used for reduction of carbon dioxide. Mostof the residual oxygenic photoreductant probably is used forlight-dependent reduction of nitrate, which competes with carbondioxide for oxygenic photoreductant. Nitrate is an importantsource of nitrogen for this algal assemblage, and light-dependentnitrate reduction probably is much larger than carbon dioxidereduction at lowest irradiances in the euphotic zone. Oxygenproduction also may be much larger than carbon assimilationat low light levels in other environments where oxidized formsof nitrogen are important nitrogenous nutrients for phytoplankton,as in the lower euphotic zone of the sea, where low rates ofcarbon assimilation by phytoplankton have been thought to beinconsistent with the amount of oxygen that accumulates duringsummer.  相似文献   

10.
The acidic caldera lake Caviahue (Patagonia, Argentina) and its main tributaries were studied on two dates during September 1998. The main results are: The acidity of the Lake Caviahue (pH: 2.56, acidity: >5 mmol H+ l–1) is controlled by the extremely acidic Upper Rio Agrio (pH: 1.78, acidity: >20 mmol H+ l–1). The high sulphate contents of both the river and the lake can be attributed to sulphuric acid generated by the uptake of sulphurous gases in the crater lake of Copahue Volcano at approximately 2800 m a.s.l. The high concentrations of both Fe and trace metals (e.g. Cr, Ni, Zn) in Lake Caviahue originate from sulphur–acid interactions with the predominantly volcanic geology of the catchment area. The P-rich andesitic geology influences both the Upper and Lower Rio Agrio and Lake Caviahue. Both were found to have high phosphorus concentrations (300–500 g P l–1) indicative of a high potential for eutrophication. The plankton community consisted of bacterioplankton, phytoplankton and rotifers. The phytoplankton was dominated by one green alga, Keratococcus raphidioides (>90% of total abundance) followed by a green sphaerical and Chlamydomonas sp. The total phytoplankton density was about 15000 cells ml–1 in the upper 10 m of the water column. Rotifers were represented by one bdelloid species and their abundance was highly variable (360–4040 ind l–1) in the water columm. In the Upper and Lower Rio Agrio, the epilithic community was dominated by one chloroccocal species and two species of Ulothricales. According to trophic categories based on phytoplankton density and TP concentration, Lake Caviahue can be classified as mesotrophic/eutrophic. However, chlorophyll a concentrations observed were not in agreement with this state.  相似文献   

11.
1. The influence of inorganic nitrogen and phosphorus enrichment on phytoplankton photosynthesis was investigated in Lakes Bonney (east and west lobes), Hoare, Fryxell and Vanda, which lie in the ablation valleys adjacent to McMurdo Sound, Antarctica. Bioassay experiments were conducted during the austral summer on phytoplankton populations just beneath the permanent ice cover in all lakes and on populations forming deep-chlorophyll maxima in the east and west lobes of Lake Bonney. 2. Phytoplankton photosynthesis in surface and mid-depth (13 m) samples from both lobes of Lake Bonney were stimulated significantly (P < 0.01) by phosphorus enrichment (2 μM) with further stimulation by simultaneous phosphorus plus NH4+ (20 μM) enrichment. Similar trends were observed in deeper waters (18 m) from the east lobe of Lake Bonney, although they were not statistically significant at P < 0.05. Photosynthesis in this lake was never enhanced by the addition of 20 μM NH4+ alone. Simultaneous addition of phosphorus plus nitrogen stimulated photosynthesis significantly (P < 0.01) in both Lake Hoare and Lake Fryxell. No nutrient response occurred in Lake Vanda, where activity in nutrient-enriched samples was below unamended controls; results from Lake Vanda are suspect owing to excessively long sample storage in the field resulting from logistic constraints. 3. Ambient dissolved inorganic nitrogen (DIN) (NH4++ NO2?+ NO3?): soluble reactive phosphorus (SRP) ratios partially support results from bioassay experiments indicating strong phosphorus deficiency in Lake Bonney and nitrogen deficiency in Lakes Hoare and Fryxell. DIN : SRP ratios also imply phosphorus deficiency in Lake Vanda, although not as strong as in Lake Bonney. Particulate carbon (PC): particulate nitrogen (PN) ratios all exceed published ratios for balanced phytoplankton growth, indicative of nitrogen deficiency. 4. Vertical nutrient profiles in concert with low advective flux, indicate that new (sensu Dugdale & Goering, 1967) phytoplankton production in these lakes is supported by upward diffusion of nutrients from deep nutrient pools. This contention was tested by computing upward DIN : SRP flux ratios across horizontal planes located immediately beneath each chlorophyll maximum and about 2 m beneath the ice (to examine flux to the phytoplankton immediately below the ice cover). These flux ratios further corroborated nutrient bioassay results and bulk DIN : SRP ratios indicating phosphorus deficiency in Lakes Bonney and Vanda and potential nitrogen deficiency in Lakes Hoare and Fryxell. 5. Neither biochemical reactions nor physical processes appear to be responsible for differences in nutrient deficiency among the study lakes. The differences may instead be related to conditions which existed before or during the evolution of the lakes.  相似文献   

12.
Nutrient control of bacterioplankton and phytoplankton dynamics   总被引:5,自引:0,他引:5  
To determine whether positive correlations between phytoplankton and bacterioplankton growth in nutrient addition experiments are due to growth coupling or growth stimulation by the same nutrients, we examined phyto- and bacterioplankton growth in a series of eleven nutrient addition (N × P) and light/dark experiments. In mesotrophic Castle Lake, the phyto- and bacterioplankton growth responses to phosphorus (P) addition were strongly correlated (r2=0.59), while only a weak correlation (r2=0.10) was observed for the nitrogen addition treatments. After normalizing the N + P treatments for the growth stimulation observed in the respective P treatments, we found a substantial stimulation of the phytoplankton (e.g., costimulation by N + P) and no stimulation of the bacterioplankton. Bacteria growth rates were similar in both light and dark incubated P treatments. In these experiments, we found clear evidence suggesting the dynamics of bacteria and phytoplankton were correlated because they are often limited by the same resource (mainly inorganic phosphorus). We found only limited evidence that bacterioplankton growth coupling to algal dynamics was occurring in these experiments. However, we did not consider several factors such as dissolved organic nutrient availability, bacterivory, availability of physical substrates, and temperature which are also thought to influence the nature of bacterial/phytoplankton interactions. Based on the results of our experiments, we conclude the biomass of the bacterio- and phytoplankton covaried because they were stimulated by the same nutrients. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Can bacteria outcompete phytoplankton for phosphorus? a chemostat test   总被引:3,自引:0,他引:3  
Although the bacterioplankton of lakes are usually considered primarily in terms of mineralization processes, recent studies suggest that they may also strongly compete for phosphorus with the phytoplankton. In the present study, we have tested in chemostat culture, and found support for the hypotheses that (1) a freshwater bacterium (Pseudomonas paucimobilis), whose carbon source is excretion from a phosphorus-limited alga (Synedra ulna var.danica), can outcompete that alga for phosphorus (P) under widely varied P supply rates; (2) exogenously-supplied organic carbon positively influences bacterial biomass and negatively influences algal biomass; (3) the ratio of bacterial to algal phosphorus uptake in short-term32P orthophosphate uptake experiments is an accurate predictor of their relative long-term phosphorus assimilation (i.e., growth) in mixed culture.  相似文献   

14.
1. Phytoplankton carbon assimilation and losses (exudation, dark carbon losses) as well as oxygen release and dark community respiration were measured regularly for 2 years at four stations along the lower Spree (Germany). Carbon balance of river phytoplankton was estimated using measured assimilation, metabolic losses and variations in algal carbon along a stretch of river. 2. The light/dark bottle method was modified to simulate vertical mixing. 3. Waxing and waning of phytoplankton populations dominated the load of particulate organic carbon as well as the oxygen budget of the river. 4. Phytoplankton assimilated 310–358 g C m?2 yr?1. A mean value of 586 mg C m?3 day?1 was fixed in photosynthesis, with 16.7 mg C being exuded during the day and 20.1 mg lost at night. The measured dark respiration was equivalent to only 28% of the daily gross oxygen production of the plankton community. Phytoplankton washed from upstream lakes and reservoirs was not measurably damaged by turbulent transport. 5. In spring, 18–22% of assimilated carbon was used for net biosynthesis of phytoplankton along the river course. At this time, the carbon balance of this part of the Spree was dominated by autochthonous net production. During summer, however, total carbon losses exceeded the intensive carbon assimilation. The decline of algal biomass along the river course in summer was not explicable by measurable physiological losses. The importance of sedimentation and grazing losses is discussed.  相似文献   

15.
The significance of nitrogen for algal growth was studied in Lake Vesijärvi in 1979 and 1980 by algal bioassay, using Selenastrum capricornutum and Anabaena cylindrica as test organisms. Nitrogen limited the growth of Selenastrum for the major part of the investigation period, while phosphorus seemed to be the most limiting factor for Anabaena. This difference was reflected in the in situ succession of phytoplankton. As the ratio of inorganic nitrogen to phosphate phosphorus became smaller, nitrogen-fixing blue-green algae became dominant. Nitrogen fixation was greatest at the beginning of July, coinciding with maximum heterocyst numbers.  相似文献   

16.
Phytoplankton have traditionally been regarded as strictly phototrophic, with a well defined position at the base of pelagic food webs. However, recently we have learned that the nutritional demands of a growing number of phytoplankton species can be met, at least partially, or under specific environmental conditions, through heterotrophy. Mixotrophy is the ability of an organism to be both phototrophic and heterotrophic, in the latter case utilizing either organic particles (phagotrophy) or dissolved organic substances (osmotrophy). This finding has direct implications for our view on algal survival strategies, particularly for harmful species, and energy- and nutrient flow in pelagic food webs. Mixotrophic species may outcompete strict autotrophs, e.g. in waters poor in inorganic nutrients or under low light. In the traditional view of the ‘microbial loop’ DOC is thought to be channeled from algal photosynthesis to bacteria and then up the food chain through heterotrophic flagellates, ciliates and mesozooplankton. Are mixotrophic phytoplankton that feed on bacteria also significantly contributing to this transport of photosynthetic carbon up the food chain? How can we estimate the fluxes of carbon and nutrients between different trophic levels in the plankton food web involving phagotrophic algae? These questions largely remain unanswered. In this review we treat evidence for both osmotrophy and phagotrophy in phytoplankton, especially toxic marine species, and some ecological implications of mixotrophy.  相似文献   

17.
Estimations of bacterioplankton production and biomass werecarried out in enclosure experiments during two consecutiveyears (1989 and 1990) in oligotrophic clearwater Lake Njupfatet.The lake was limed in November 1989, and the experiments werecarried out both in 1989 (unlimed) and in 1990 (limed). Bags(3001) were manipulated with inorganic phosphorus and nitrogen,organic carbon, and metazoan zooplankton abundance. Both years,bacterial production was stimulated by inorganic nutrients aloneand in combination with organic carbon. However, the increasein bacterial production when inorganic nutrients were addedalone was much stronger in 1990 than in 1989. In 1989. bacterialproduction increased strongly only when inorganic nutrientsand organic carbon were added together. The phytoplankton communitywas dominated by the cyanobacterium Merismopedia tenuis-simaduring 1989, and the phytoplankton biomass increased only slightlywhen receiving inorganic nutrients. In 1990, when the lake hadbeen limed. M.tenuissima had completely disappeared and thephytoplankton community, dominated by Chrysophyceae and Chlorophyceae,responded strongly to additions of inorganic nutrients. Theincreased phytoplankton productivity in 1990 may have resultedin increased release of organic carbon, and this in turn thatthe carbon limitation of bacterioplankton production decreasedfrom 1989 to 1990. Zooplankton had a positive effect on bacterioplanktonproduction in 1989, but no effect in 1990. The loss of bacterialbiomass approximated 60% of the bacterial production in 1989,while in 1990 it almost equalled the bacterioplankton production.  相似文献   

18.
Atmospheric carbon dioxide emissions cause a decrease in the pH and aragonite saturation state of surface ocean water. As a result, calcifying organisms are expected to suffer under future ocean conditions, but their physiological responses may depend on their nutrient status. Because many coral reefs experience high inorganic nutrient loads or seasonal changes in nutrient availability, reef organisms in localized areas will have to cope with elevated carbon dioxide and changes in inorganic nutrients. Halimeda opuntia is a dominant calcifying primary producer on coral reefs that contributes to coral reef accretion. Therefore, we investigated the carbon and nutrient balance of H. opuntia exposed to elevated carbon dioxide and inorganic nutrients. We measured tissue nitrogen, phosphorus and carbon content as well as the activity of enzymes involved in inorganic carbon uptake and nitrogen assimilation (external carbonic anhydrase and nitrate reductase, respectively). Inorganic carbon content was lower in algae exposed to high CO2, but calcification rates were not significantly affected by CO2 or inorganic nutrients. Organic carbon was positively correlated to external carbonic anhydrase activity, while inorganic carbon showed the opposite correlation. Carbon dioxide had a significant effect on tissue nitrogen and organic carbon content, while inorganic nutrients affected tissue phosphorus and N:P ratios. Nitrate reductase activity was highest in algae grown under elevated CO2 and inorganic nutrient conditions and lowest when phosphate was limiting. In general, we found that enzymatic responses were strongly influenced by nutrient availability, indicating its important role in dictating the local responses of the calcifying primary producer H. opuntia to ocean acidification.  相似文献   

19.
Population dynamics and nutrient fluxes in an aquatic microcosm   总被引:1,自引:1,他引:0  
An aquatic microcosm, consisting of three spatially separated yet mutually dependent trophic levels, was established in the laboratory and monitored for 310 days. A three-fold research approach evaluates the experimental potential of this large, multicompartmental microecosystem. Realistic biological and chemical features and nutrient fluxes parallel identifiable patterns observed in natural aquatic ecosystems as well as in published laboratory observations. Two successional patterns developed in the autotrophic community: a sequential change in species composition and a progression from a one-compartment planktonic situation to a two-phased planktonic-attached system. Although the microcosm was initially seeded with an axenic culture of Cryptomonas ovata var. palustris Ehr, contamination by Chlorella, Scenedesmus, Closterium, and Anabaena occurred within 41 days. The appearance of attached algae, noted on day 5, marked the transition from a planktonically-based ecosystem to a heterogeneous system. Crashes in the cladoceran population occurred on days 103 and 202. The second collapse was final. Repeated attempts to reestablish Daphnia middendorffiana failed. Mineralization and nutrient cycling are recognizable properties of the microcosm. Ammonification, nitrification, and nitrogen assimilation occurred predominantly in the decomposer tank as did the regeneration of inorganic phosphorus. A peak on day 205 in the ammonia input to the algal tank drawn from beneath the bacterial filter bed followed a peak in total Kjeldahl nitrogen (TKN) (day 135) and preceded peaks in nitrate (day 219) and TKN (day 233). Although levels in the algal tank were undetectable after three weeks, dissolved orthophosphate was actively regenerated in the decomposer bed, recycled to the autotroph unit, and rapidly assimilated by the algae. Characteristic patterns of radiotracer circulation also were evident. Sequential movement of 32P from the dissolved compartment to phytoplankton to attached algae was proposed. Conversely, 14C was steadily incorporated into the phytoplankton compartment; filtrate activities fluctuated. Tracer behaviors in the cladoceran compartment were superficially cyclic. Carbon turnover times in the algal and zooplankton compartments were 17 and 11.11 hours, respectively. Indicative of the greater biological mobility of phosphorus, respective turnover times of 2.50 and 2.44 hours were similarly calculated for phosphorus. Unlike dissolved carbon which had a turnover time of 625 hours, dissolved phosphorus was rapidly cycled into the algae (turnover time = 0.58 h).  相似文献   

20.
The availability and composition of dissolved nitrogen in ocean waters are factors that influence species composition in natural phytoplankton communities. The same factors affect the ratio of organic to inorganic carbon incorporation in calcifying species, such as the coccolithophore Emiliania huxleyi (Lohman) W. W. Hay et H. Mohler. E. huxleyi has been shown to thrive on various nitrogen sources, including dissolved organic nitrogen. Nevertheless, assimilation of dissolved nitrogen under nitrogen‐replete and ‐limited conditions is not well understood in this ecologically important species. In this study, the complete amino acid sequences for three functional genes involved in nitrogen metabolism in E. huxleyi were identified: a putative formamidase, a glutamine synthetase (GSII family), and assimilatory nitrate reductase. Expression patterns of the three enzymes in cells grown on inorganic as well as organic nitrogen sources indicated reduced expression levels of nitrate reductase when cells were grown on NH4+ and a reduced expression level of the putative formamidase when growth was on NO3?. The data reported here suggest the presence of a nitrogen preference hierarchy in E. huxleyi. In addition, the gene encoding for a phosphate repressible phosphate permease was more highly expressed in cells growing on formamide than in cells growing on inorganic nitrogen sources. This finding suggests a coupling between phosphate and nitrogen metabolism, which might give this species a competitive advantage in nutrient‐depleted environments. The potential of using expression of genes investigated here as indicators of specific nitrogen‐metabolism strategies of E. huxleyi in natural populations of phytoplankton is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号