首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, a theoretical hypothesis was proposed that the coexistence of antagonism and mutualism may stabilize ecological community and even give rise to a positive complexity-stability relationship (interaction-type diversity hypothesis). This hypothesis was derived from an analysis of community model, which was developed based on two specific assumptions about the interaction strengths: those are, (i) different interaction types, antagonism and mutualism, have quantitatively comparable magnitude of effects to population growth; and (ii) interaction strength decreases with increasing interaction links of the same interaction type. However, those assumptions do not necessarily hold in real ecosystems, leaving unclear how robust this hypothesis is. Here, using a model with those two assumptions relaxed, we show (i) that the balance of interaction strength is necessary for the positive complexity effect to arise and (ii) that interaction-type diversity hypothesis may still hold when interaction strength decreases with increasing links of all interaction type for some species.  相似文献   

2.
3.
Light pollution impacts both intra- and inter-specific interactions, such as interactions between mates and predator–prey interactions. In mobile organisms attracted to artificial lights, the effect of light pollution on these interactions may be intensified. If organisms are repelled by artificial lights, effects of light pollution on intra- and inter-specific interactions may be diminished as organisms move away. However, organisms repelled by artificial lights would likely lose suitable habitat as light pollution expands. Thus, we investigated how light pollution affects both net attraction or repulsion of organisms and effects on intra- and inter-specific interactions. In manipulative field studies using fireflies, we found that Photuris versicolor and Photinus pyralis fireflies were lured to artificial (LED) light at night and that both species were less likely to engage in courtship dialogues (bioluminescent flashing) in light-polluted field plots. Light pollution also lowered the mating success of P. pyralis. P. versicolor is known to prey upon P. pyralis by mimicking the flash patterns of P. pyralis, but we did not find an effect of light pollution on PhoturisPhotinus predator–prey interactions. Our study suggests, that for some nocturnal insects, light-polluted areas may act as demographic traps, i.e., areas where immigration exceeds emigration and inhibition of courtship dialogues and mating reduces reproduction. Examining multiple factors affecting population growth in concert is needed to understand and mitigate impacts of light pollution on wildlife.  相似文献   

4.
Predator foraging facilitation may strongly influence the dynamics of a predator–prey system. This behavioral pattern is well-observed in real life interactions, but less is known about its possible impacts on the predator–prey dynamics. In this paper we analyze a modified Rosenzweig–MacArthur model, where a predator-dependent family of functions describing predator foraging facilitation is introduced into the Holling type II functional response. As the general assumption of foraging facilitation is that higher predator densities give rise to an increased foraging efficiency, we model predator facilitation with an increasing encounter rate function. Using the tools of bifurcation analysis we describe all the nonlinear phenomena that occur in the system provoked by foraging facilitation, these include the fold, Hopf, transcritial, homoclinic and Bogdanov–Takens bifurcation. We show that foraging facilitation can stabilize the coexistence in the predator–prey system for specific rates, but in most of the cases it can have fatal consequences for the predators themselves.  相似文献   

5.
Ecologists have long debated whether predators primarily disrupt one another’s prey capture through interspecific interference, or instead complement one another by occupying different feeding niches. Resolution of this debate has been difficult because different experimental designs are typically used to study interference versus complementarity. We adopted a somewhat atypical approach, surveying communities of predatory insects on 73 free-growing Brassica oleracea plants, and then re-constructing each community in field cages to measure its impact on aphid prey. The predator communities naturally varied in species composition, richness, and relative abundance; in our experiment we kept total predator density constant to avoid confounding effects of differing overall abundance. The predator communities’ impacts on aphids differed by >10-fold. Using a generalized linear model, we found that pairings of several predators in the community improved aphid suppression while no pairings disrupted it. Indeed, accounting for the presence of the beneficial pairings provided more power than species richness to explain predators’ impacts on aphids. Altogether, our results suggest generally complementary or neutral, rather than disruptive, multi-predator effects in this community. Our approach may be useful for determining the frequency of complementary species-pairings in many other systems.  相似文献   

6.
While behavioral responses of individual organisms can be predicted with optimal foraging theory, the theory of how individual behavior feeds back to population and ecosystem dynamics has not been fully explored. Ecological models of trophic interactions incorporating behavior of entire populations commonly assume either that populations act as one when making decisions, that behavior is slowly varying or that non-linear effects are negligible in behavioral choices at the population scale. Here, we scale from individual optimal behavior to ecosystem structure in a classic tri-trophic chain where both prey and predators adapt their behavior in response to food availability and predation risk. Behavior is modeled as playing the field, with both consumers and predators behaving optimally at every instant basing their choices on the average population behavior. We establish uniqueness of the Nash equilibrium, and find it numerically. By modeling the interactions as playing the field, we can perform instantaneous optimization at the individual level while taking the entire population into account. We find that optimal behavior essentially removes the effect of top-down forcing at the population level, while drastically changing the behavior. Bottom-up forcing is found to increase populations at all trophic levels. These phenomena both appear to be driven by an emerging constant consumption rate, corresponding to a partial satiation. In addition, we find that a Type III functional response arises from a Type II response for both predators and consumers when their behavior follows the Nash equilibrium, showing that this is a general phenomenon. Our approach is general and computationally efficient and can be used to account for behavior in population dynamics with fast behavioral responses.  相似文献   

7.
Agroecosystems contain complex networks of interacting organisms and these interaction webs are structured by the relative timing of key biological and ecological events. Recent intensification of land management and global changes in climate threaten to desynchronize the temporal structure of interaction webs and disrupt the provisioning of ecosystem services, such as biological control by natural enemies. It is therefore critical to recognize the central role of temporal dynamics in driving predator–prey interactions in agroecosystems. Specifically, ecological dynamics in crop fields routinely behave as periodic oscillations, or cycles. Familiar examples include phenological cycles, diel activity rhythms, and crop-management cycles. The relative timing and the degree of overlap among ecological cycles determine the nature and magnitude of the ecological interactions among organisms, and ultimately determine whether ecosystem services, such as biological control, can be provided. Additionally, the ecological dynamics in many cropping systems are characterized by a pattern of frequent disturbances due to management actions such as harvest, sowing and pesticide applications. These disturbance cycles cause agroecosystems to be dominated by dispersal and repopulation dynamics. However, they also serve as selective filters that regulate which animals can persist in agroecosystems over larger temporal scales. Here, we review key concepts and examples from the literature on temporal dynamics in ecological systems, and provide a framework to guide biological control strategies for sustainable pest management in a changing world.  相似文献   

8.
Predators can influence primary producers by generating cascades of effects in ecological webs. These effects are often non‐intuitive, going undetected because they involve many links and different types of species interactions. Particularly, little is understood about how antagonistic (negative) and mutualistic (positive) interactions combine to create cascades. Here, we show that black bears can benefit plants by consuming ants. The ants are mutualists of herbivores and protect herbivores from other arthropod predators. We found that plants near bear‐damaged ant nests had greater reproduction than those near undamaged nests, due to weaker ant protection for herbivores, which allowed herbivore suppression by arthropod predators. Our results highlight the need to integrate mutualisms into trophic cascade theory, which is based primarily on antagonistic relationships. Predators are often conservation targets, and our results suggest that bears and other predators should be managed with the understanding that they can influence primary producers through many paths.  相似文献   

9.
The agricultural intensification and the subsequent habitat changes in agroecosystem can strongly affect biological control services. We here examine the influence of inter-annual landscape change in wheat field area on interactions of cereal aphids and their natural enemies, as well as the efficacy of biological control using data collected from a 4-year experiment in Northwest China. Two hypotheses were tested. (i) Population densities decline following an inter-annual expansion of wheat crop proportion cover due to dilution and crowding effects. (ii) Species that are specialists or at higher trophic levels are more sensitive to bottom-up disturbance by inter-annual change in percent cover of wheat crop. Results showed the population densities of one cereal aphid (Macrosiphum avenae), one parasitic wasp (Aphidius avenae), two specialist predators (ladybirds: Hippodamia variegata and H. tredecimpunctata) and one hyperparasitic wasp (Pachyneuron aphidis) declined following the expansion of wheat crop areas, supporting the predictions of inter-annual dilution and crowding effects. In contrast, the populations of one cereal aphid (Schizaphis graminum), one parasitic wasp (A. gifuensis), two generalist predators (spiders: Pardosa astrigera; carabid beetles: Chlaenius pallipes), and two hyperparasitic wasps (Asaphes suspensus, and Alloxysta sp.) did not respond to inter-annual landscape change. The two hypotheses were partially supported but with noticeable exceptions, and the bio-control efficiency declined with the increase of the proportion cover of wheat field in agricultural landscape. Overall, different responses of cereal aphids and their natural enemies make it difficult but still possible to optimize inter-annual landscape change for enhancing the parasitism rate and predator-prey ratio.  相似文献   

10.
An abundance index of an eastern Quebec population of North American porcupines (Erethizon dorsatum) has cycled with superimposed periodicities of 11 and 22 years from 1868 to 2000. This cycle closely followed 11- and 22-year cycles in solar irradiance and local weather (e.g., winter precipitation and spring temperature), generating the hypothesis that solar activity may affect porcupine abundance through effects on local weather. We investigated the mechanisms linking porcupine abundance to local weather conditions using a 6-year study (2000–2005) involving individual mark-recapture, radio tracking, seasonal survival analyses and identification of mortality causes. Summer (May–August) survival was high and constant over the study period, whereas winter (August–May) survival was lower and varied during the duration of our study. Variations in local winter precipitation explained 89% of the variation in winter survival. Porcupine predation rates appeared strongly related to snow conditions; 95% of depredated porcupines were killed when snow was covering the ground, and predation rates were higher in years with increased winter precipitation. Our data thus support the hypothesis that changes in predation rates under different snow conditions were the mechanism relating climate to porcupine population dynamics, via modifications of the local predator–prey interactions and impacts on porcupine winter survival. Our study adds to the growing body of evidence supporting an effect of climate on predator–prey processes. Also, it identifies one possible mechanism involved in the relationship between solar irradiance and porcupine population cycles observed at this study site over a 130-year period.  相似文献   

11.
Interactions between plants and their herbivores and pathogens are mostly analysed separately, thereby neglecting mutualistic or antagonistic interactions between these antagonists and possible joint effects on the host. We studied interactions between the weed Cirsium arvense, the rust fungus Puccinia punctiformis and three herbivorous insects, the aphids Aphis fabae ssp. cirsiiacanthoidis and Uroleucon cirsii, and the beetle Cassida rubiginosa. All three insect species mechanically transported spore material and significantly increased rates of P. punctiformis infection in healthy thistles. The interaction between C. rubiginosa and the fungus was antagonistic. Although C. rubiginosa transferred spores, biomass of adults was significantly reduced, development of adults tended to be prolonged and mortality increased when feeding on plants infected with P. punctiformis. In contrast, the relationship between the aphid U. cirsii and P. punctiformis was mutualistic: U. cirsii profited by fungal infection and formed significantly larger colonies on fungus-infected plants. Although the differences in insect performance suggest that aphids may be better vectors than the beetle, infection rates were similar. This is the first study to demonstrate that the relationship between herbivores, which increase the dispersal of a pathogen, and the pathogen itself can be mutualistic or antagonistic, depending on the species.  相似文献   

12.
While it is known that population cycles are driven by delayed density-dependent feedbacks, the search for a common feedback mechanism in natural populations with cyclic dynamics has remained unresolved for almost a century. To identify the existence and cause of delayed feedbacks I apply six age- and sex-structured population dynamics models to seven species of baleen whales (suborder Mysticeti) that were heavily depleted by past commercial whaling. The six models include a predator–prey model with killer whale (Orcinus orca) as the predator, and five singe-species models based on (1) exponential growth, (2) density-regulated growth, (3) density-regulated growth with depensation, (4) delayed density-regulated growth and (5) selection-delayed dynamics. The latter model has a density-regulated growth rate that is accelerated and decelerated by the intra-specific natural selection that arises from the density-dependent competitive interactions between the individuals in the population. Essential parameters are estimated by a Bayesian statistical framework, and it is shown that baleen whales have a delayed recovery relative to density-regulated growth. The time-lag is not explained by depensation, or by interactions with prey or predators. It is instead resolved by a selection-delayed acceleration of the intrinsic growth rate. The results are discussed in relation to the literature on cyclic dynamics, and it is noted (1) that selection-delayed dynamics is both theoretically and empirically sufficient for cyclic population dynamics, (2) that it is widespread in natural populations owing to the widespread occurrence of otherwise unexplained phenotypic cycles in populations with cyclic dynamics, and (3) that there is a lack of empirical evidence showing that predator–prey interactions is a sufficient cause for the cyclic dynamics of natural populations. The conclusion stresses the importance of intra-specific delays in cyclic dynamics, and suggests that it is the acceleration of the growth rate, and not the growth rate itself, that is determined by the density-dependent environment.  相似文献   

13.
Effective species management and conservation relies on accurate estimates of vital rates and an understanding of their link to environmental variables. We used multistate capture–mark–recapture models to directly quantify effects of predation on age-specific survival of black-tailed deer Odocoileus hemionus columbianus in California, USA. Survival probabilities were derived from individual encounter histories of 136 fawns and 57 adults monitored over 4 years. Based on results from our survival analysis we parameterized a Lefkovitch matrix and used elasticity analyses to investigate contributions of mortality due to predation to changes in population growth. We found strong evidence for age-specific survival including senescence. Survival of females >1 year old was consistently low (0.56 ± 0.18 for yearlings, 0.77 ± 0.13 for prime-aged females, and 0.55 ± 0.08 for senescent individuals), primarily due to high puma Puma concolor predation during summer. Predation from black bears Ursus americanus and coyotes Canis latrans was the primary cause for low annual survival of fawns (0.24 ± 0.16). Resulting estimates of population growth rates were indicative of a strongly declining population (λ = 0.82 ± 0.13). Despite high sensitivity to changes in adult survival, results from a lower-level elasticity analysis suggested that predation on fawns was the most significant individual mortality component affecting population decline. Our results provide a rare, direct link between predation, age-specific survival and the predicted population decline of a common ungulate species. The magnitude of predation was unexpected and suggests that ungulates in multi-predator systems struggle to cope with simultaneous reductions in survival probabilities from predators targeting different age classes.  相似文献   

14.
Most empirical and theoretical papers on prey–predator interactions are for animals with long-range detection, animals that can detect and react to predators long before these touch the prey. Heavy-bodied and chemically defended harvestmen (Arachnida, Opiliones) are an exception to this general pattern and rely on contact to detect arthropod predators. We examined the interactions between the Brazilian wandering spider Ctenus ornatus with harvestmen (Mischonyx cuspidatus) or control prey (Gryllus sp. and M. cuspidatus immature, both with soft integuments). Considering a prey–predator system in which fleeing from or reacting to a predator at a distance is not possible, we predicted both a high survival value of near-range defense mechanisms and that mortality would be higher in the absence of such defense mechanisms. We also expected the predator to behave differently when interacting with harvestmen or with a control prey without such defense mechanisms. Our results from laboratory experiments partially matched our predictions: First of all, histological sections showed that the integument of adult harvestmen is thicker than that of immature harvestmen and that of crickets. Adult harvestmen were less preyed upon than the control prey; the heavy armature increases the survival rate but the secretions from the scent glands do not. The predator did behave differently when attacking harvestmen compared to crickets. Despite the large size difference between predator and harvestmen, the protection provided by the armature allowed some of the harvestmen to survive encounters without pre-contact detection, thus greatly reducing the reliance on long-range detection to survive encounters with predators. Harvestmen call for theoretical and empirical work on prey–predator interactions that take into account the possibility that prey may not detect the predator before contact is established.  相似文献   

15.
A major transition in flowering plants has been the evolution of separate sexes from hermaphroditism via gynodioecy which is considered to be the most important route. Biotic interactions, both antagonist and mutualistic, have been proposed to influence this transition which is generally accompanied by the evolution of sexual dimorphism in secondary sexual traits. While some researchers have studied sex-specific patterns in herbivory and pollination, less attention has been paid to pathogens/parasites and a limited number of studies have revised sex-specific patterns in mycorrhizal symbiosis. In this article, we explore sex-specific interactions in dioecious and gynodioecious plants, examining the interrelationships among the incidence and/or frequency of herbivory, pathogen/parasite infestation, pollination and mycorrhizal symbioses. We review how multiple interactions (both above and belowground) act synergistically or antagonistically to shape the ecological and evolutionary results of pairwise interactions. Finally, we identify gaps in the knowledge of sex-specific patterns in multiple interactions in dioecious and gynodioecious plants, as well as future and promising lines of research.  相似文献   

16.
Environmental disturbances such as deforestation, urbanization or pollution have been widely acknowledged to play a key role in the emergence of many infectious diseases, including mosquito-borne viruses. However, we have little understanding of how habitat isolation affects the communities containing disease vectors. Here, we test the effects of habitat type and isolation on the colonization rates, species richness and abundances of mosquitoes and their aquatic predators in water-filled containers in northwestern Thailand. For eight weeks water-filled containers were monitored in areas containing forest, urban and agricultural habitats and mixtures of these three. Mosquito larvae of the genera Aedes and Culex appeared to be differentially affected by the presence of the dominant predator; Toxorhynchites splendens (Culicidae). Therefore, a predation experiment was conducted to determine predator response to prey density and its relative effects on different mosquito prey populations. Colonization rates, species richness and abundances of mosquito predators were strongly related to forest habitat and to the distance from other aquatic habitats. Areas with more tree cover had higher predator species richness and abundance in containers. Containers that were close to surface water were more rapidly colonized than those further away. In all habitat types, including urban areas, when predators were present, the number of mosquito larvae was much lower. Containers in urban areas closer to water-bodies, or with more canopy cover, had higher predator colonization rates and species richness. T. splendens (Culicidae) preyed on the larvae of two mosquito genera at different rates, which appeared to be related to prey behaviour. This study shows that anthropogenic landscape modification has an important effect on the natural biological control of mosquitoes. Vector control programmes and urban planning should attempt to integrate ecological theory when developing strategies to reduce mosquito populations. This would result in management strategies that are beneficial for both public health and biodiversity.  相似文献   

17.
During evolution, certain endoparasitoid wasps have developed mechanisms to suppress the defence systems of their hosts. For this purpose, these species, all of which belong to the families Ichneumonidae and Braconidae, inject various kinds of virus-like particles. The most studied of these particles are classified as polydnaviruses (family Polydnaviridae) which are symbiotic viruses. Over the past decade, it has also been shown that several wasp species harbour reoviruses (family Reoviridae), and that two of these suppress host defence, allowing the development of the parasitoid eggs. In this paper, we summarize the key features of these viruses and their relationships with their wasp hosts. Five reoviruses are known that appear to be non-pathogenic for the wasps. Three of these, McRVLP, HeRV, OpRVLP, use their wasp hosts as vectors, and do not appear to be involved in host defence suppression. The fourth, DpRV-1, is a commensal reovirus detected in most field populations of the wasp, Diadromus pulchellus. This reovirus is always found associated with an ascovirus, DpAV-4a, which is indispensable for host immune suppression. Although DpRV-1 has not been shown to directly increase D. pulchellus parasitic success, it may contribute to this success by retarding DpAV-4a replication in the wasp. The fifth reovirus, DpRV-2, occurs in a specific population of D. pulchellus in which DpRV-1 and DpAV-4 are absent. This virus has a mutualistic relationship with its wasp host, as its injection by females during oviposition is essential for host immunosuppression. Interestingly, these viruses belong to several different reovirus genera.  相似文献   

18.
Spatial variation in population densities across a landscape is a feature of many ecological systems, from self-organised patterns on mussel beds to spatially restricted insect outbreaks. It occurs as a result of environmental variation in abiotic factors and/or biotic factors structuring the spatial distribution of populations. However the ways in which abiotic and biotic factors interact to determine the existence and nature of spatial patterns in population density remain poorly understood. Here we present a new approach to studying this question by analysing a predator–prey patch-model in a heterogenous landscape. We use analytical and numerical methods originally developed for studying nearest-neighbour (juxtacrine) signalling in epithelia to explore whether and under which conditions patterns emerge. We find that abiotic and biotic factors interact to promote pattern formation. In fact, we find a rich and highly complex array of coexisting stable patterns, located within an enormous number of unstable patterns. Our simulation results indicate that many of the stable patterns have appreciable basins of attraction, making them significant in applications. We are able to identify mechanisms for these patterns based on the classical ideas of long-range inhibition and short-range activation, whereby landscape heterogeneity can modulate the spatial scales at which these processes operate to structure the populations.  相似文献   

19.
The increased persistence of predator–prey systems when interactions are distributed through the space has been acknowledged by both empirical and theoretical studies. One salient feature of predator–prey interactions in heterogeneous space, for example, is the existence of cycles with reduced amplitude when compared with a homogeneous landscape. Although the role of spatial interactions in shaping the dynamics of predator–prey systems has been extensively studied, still very few works have focused on the effects of habitat loss and fragmentation on these systems. In this work, we study the population dynamics of a predator–prey system in a single finite habitat with flux at the boundaries. Species movement and growth are described through a reaction–diffusion model with Rosenzweig–MacArthur type local interactions. Conforming with the existing literature, we find that the reduction of habitat size, or increasing of species movement rates equivalently, has the potential to decrease the amplitude of oscillations and even bring the system to a steady coexistence equilibrium above a threshold. We observe, however, situations in which this trend is reversed. This occurs when species movement rates and response at patch boundaries interact to induce non-trivial patterns of species distributions. These distributions are characterized by anti-correlation between predator and prey, creating then spatial refugia for prey. Our results highlight the role of population loss through habitat boundaries in determining the dynamics of predator–prey interactions.  相似文献   

20.
Global stability of predator-prey interactions   总被引:4,自引:0,他引:4  
Summary A Lyapunov function is given that extends functions used by Volterra, Goh, and Hsu to a wide class of predator-prey models, including Leslie type models, and a biological interpretation of this function is given. It yields a simple stability criterion, which is used to examine the effect on stability of intraspecific competition among both prey and predators, of a refuge for the prey, and of Holling type II and type III functional responses. Although local stability analysis of these specific models has been done previously, the Lyapunov function facilitates study of global stability and domains of attraction and provides a unified theory which depends on the general nature of the interactions and not on the specific functions used to model them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号